

CureVerse: An AI-Driven Hybrid Health Assistant Integrating Modern and Ayurvedic Knowledge

Dr. Raja M¹, N Rishika², Harshitha R³, Yuktha M⁴

¹Dr. Raja M, HOD, Dept. of ISE & AD, East West Institute of Technology

²N Rishika, Dept. of AD, East West Institute of Technology

³Harshitha R, Dept. of AD, East West Institute of Technology

⁴Yuktha M, Dept. of AD, East West Institute of Technology

Abstract - CureVerse is an AI-powered health assistant designed to bridge the gap between modern allopathic medicine and traditional Ayurvedic wisdom. This system integrates Google's Gemini AI with a hybrid medical knowledge base to yield personalized, context-aware health recommendations through a real-time chatbot interface. Using natural language processing (NLP), CureVerse interprets user symptoms and creates holistic suggestions that combine conventional treatments with Ayurvedic lifestyle and preventive remedies. The architecture involves a modular, privacy-centric design that incorporates AI reasoning, Dosha profiling, and rule-based inference for accurate, ethical, and inclusive digital healthcare delivery. Implementation through Python (Flask), Gemini API, and a dual database (SQLite/PostgreSQL) realizes real-time performance along with scalability. Experimental results demonstrate improvement in both accuracy and user satisfaction compared to generic chatbots, thus establishing the efficiency of this hybrid approach of merging AI and Ayurveda. By integrating data-driven intelligence with cultural awareness, CureVerse represents a significant step toward empathetic, intelligent, and preventive healthcare systems tailored for diverse populations.

Key Words: Artificial Intelligence (AI), CureVerse, Ayurveda, Hybrid Health Assistant, Gemini API, Natural Language Processing (NLP), Telemedicine, Preventive Healthcare, Dosha Profiling, Conversational Agent.

1. INTRODUCTION

The ability to access reliable, less expensive healthcare remains one of the greatest global challenges, especially in developing countries with short supplies of medical infrastructure, professional availability, and diagnostic resources. These include a growing population, rapid urbanization, and the rise of chronic diseases that place further burdens on traditional healthcare systems. Consequently, millions of people experience hindrances to receiving timely diagnosis and preventive care, resulting in late treatment and a poor quality of life. The COVID-19 pandemic has exposed these systemic limitations and accelerated the need to adopt digital and remote alternatives to healthcare, supplementing conventional medical systems.

In contrast, AI has emerged as a force that could help bridge these gaps through intelligent automation, predictive analytics, and data-driven medical decision-making. First-generation AI-powered chatbots, telemedicine platforms, and virtual health

assistants have made remarkable strides toward strengthening accessibility and patient engagement. These systems can analyze symptoms, list probable conditions, and extend educational support 24×7. Despite this, the major advances in recent history have remained confined to allopathic frameworks. The majority of AI health assistants rely on static data sets that fail to capture the preventive, emotional, and holistic dimensions of human health.

In contrast, Ayurveda and other more traditional medical systems base their concept of wellness on the principle of balance and harmony among body, mind, and the environment. Ayurvedic diagnosis is based on the concept of Prakriti and Doshas, namely Vata, Pitta, and Kapha, offering preventive measures that address the root cause rather than just the symptoms. Integrating ancient wisdom like this with modern AI systems holds exciting promise in changing digital healthcare, not limited to mere symptom management but all-inclusive wellness guidance adapted to the individual constitution and lifestyle.

CureVerse was conceptualized to bridge this divide between modern allopathic knowledge and Ayurvedic tradition, using a hybrid AI-driven framework. By leveraging Google's Gemini API for advanced NLP, CureVerse interprets user inputs in natural conversational form and contextual reasoning and generates dual-layer recommendations that combine scientific accuracy with cultural relevance. The system follows a privacy-centric and modular design with a focus on accessibility, transparency, and trustworthiness of its recommendations.

Unlike generic AI health assistants that uniformly give recommendations, CureVerse applies Dosha profiling with adaptive feedback mechanisms to provide personalized suggestions on diet, exercise, and lifestyle changes. Its web-based architecture ensures real-time interaction while maintaining ethical data practices. Furthermore, the system will be multilingual and designed for scalability across mobile and cloud platforms, ensuring usability even in low-resource environments.

With this hybrid AI-Ayurveda approach, CureVerse is poised to redefine digital healthcare as not merely reactive but preventive, empathetic, and culturally aware. By marrying the precision of machine intelligence with the wisdom of traditional medicine, CureVerse represents a significant stride toward making healthcare solutions more inclusive and sustainable. The manuscript elaborates on its literature foundation, system architecture, implementation, and evaluation, elaborating on how such an integration of modern and traditional paradigms can reshape the future of intelligent health assistance.

2. LITERATURE REVIEW

This section reviews related works in AI-based healthcare systems, telemedicine chatbots, and integration of traditional medical frameworks like Ayurveda into intelligent digital platforms. Advancement, limitations, and the identified research gap that motivates the design of CureVerse are highlighted in this review.

A. AI Chatbots and Digital Health Assistants

AI has been a huge enabler in increasing the accessibility of healthcare through intelligent conversational agents. Ada Health, Buoy Health, and MedChat are some examples that use NLP and ML to identify likely conditions or further care based on user-described symptoms. These AI interfaces provide 24×7 availability, fast triaging, and scalability, contributing immensely to easing clinical workloads and acting in support of teleconsultation in crises such as the COVID-19 pandemic. But most of them, despite their technological sophistication, remain bound within the frameworks of modern allopathy. The responses are generic, lacking in the ability to adapt to user profiles or cultural health perspectives. Poor multilingual support and emotional awareness add to the low engagement, especially among non-English speakers in developing countries.

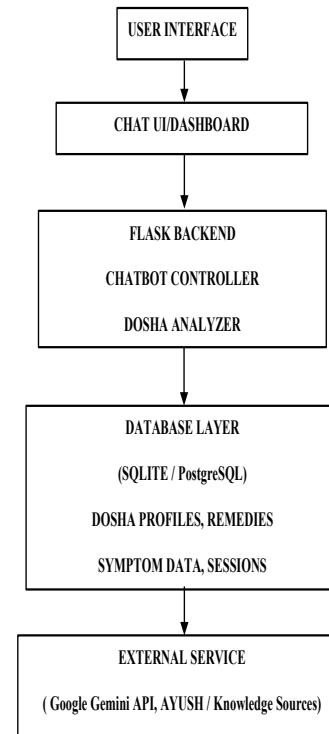
B. Telemedicine and Remote Healthcare Systems

Telemedicine platforms are emerging as core instruments of extending healthcare to remote and under-resourced areas. Current research on this topic encompasses symptom tracking in real time, consultation remotely, and AI-assisted triaging. Most studies highlight the tremendous opportunity lying within integrating speech recognition and voice-based systems that are inclusive of users with low digital literacy. However, most of the systems so far are related to clinically oriented diagnosis and exclude the preventive lifestyle-based approach to health management, which is essentially needed for sustainable wellness.

C. Integration of Traditional Medical Systems with AI

Ayurveda, a very ancient holistic healing system in the world, focuses on managing health through individualized balance of Dosha: Vata, Pitta, and Kapha. The various attempts to digitize Ayurveda include rule-based algorithms and decision-tree models for Dosha determination, but most of these lack conversational intelligence and interoperability with modern AI models. Most current research lacks hybrid frameworks that combine scientific reasoning with traditional health knowledge.

D. Identified Research Gap


The AI chatbots that do exist offer immediate medical information but lack personalized attention, cultural context, and preventative health guidance. There is too little integration between modern AI models and traditional systems like Ayurveda, which focus on holistic wellness. CureVerse bridges this gap by integrating AI-driven medical intelligence with Ayurvedic principles to provide a context-aware, ethical, and accessible health assistant that accompanies both symptom interpretation and lifestyle-based preventive care.

3. METHODOLOGY

The proposed CureVerse system employs a hybrid methodology that will integrate modern Artificial Intelligence reasoning with traditional Ayurvedic diagnostics to come up with context-aware, personalized health recommendations. The framework follows a three-tier modular architecture comprising the frontend (Presentation Layer), the backend (Application Layer), and the data layer to support scalability, maintainability, and efficient data communication among modules.

A. System Architecture

The system architecture, conceptually shown in Fig-1, is designed for modular deployment across client-server environments. The interaction of the user through the web-based chatbot interface is done at the frontend level, which acquires the user symptoms in natural language. The backend layer regulates data flow between the user interface, the Gemini AI model, and the Ayurvedic inference engine. The data layer stores structured medical entities, Ayurvedic rules, and anonymized user logs. Separation of concerns optimizes processing and enables the integration of cloud-based services or mobile applications with this module in the future.

Fig-1: CureVerse System Architecture.

B. Workflow

In summary, the workflow of CureVerse encompasses the following five steps:

1. *User Input:* Through the chatbot interface, users can provide symptoms, health concerns, or lifestyle-related queries.

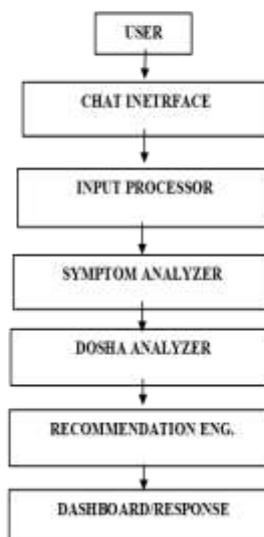
2. *AI Processing*: The text input undergoes preprocessing through natural language processing pipelines, including tokenization, lemmatization, and entity extraction. The refined data are sent to Google's Gemini API for contextual interpretation and medical entity recognition.

3. *Dosha Profiling*: A short adaptive questionnaire assesses the user's Ayurvedic constitution through a weighted scoring mechanism.

4. *Generation of Recommendations*: The hybrid reasoning engine integrates the output of Gemini with Ayurvedic rule-based logic. The engine maps symptom entities to Dosha imbalances and generates personal health guidance on both conventional treatments and lifestyle recommendations.

5. *Feedback Loop*: This includes rating the relevance and usefulness of the advice by users and storing anonymized feedback in the system for improving the quality of future responses through adaptive model tuning.

C. Data Processing and Integration


The system uses light preprocessing with Python's NLTK and spaCy libraries to extract medically relevant terms and standardize user input. The Ayurvedic inference rules are stored as a structured SQLite database that maps Dosha category representations to dietary, behavioral, and herbal recommendations. The integration layer combines the contextual reasoning of Gemini with these rule-based mappings to generate comprehensive human-readable suggestions.

D. Security and Privacy Model

CureVerse follows a design that keeps data ethics in place, adhering to a privacy-first architecture. None of the sensitive or personally identifiable health information has been permanently stored. Session data is hashed via SHA-256 encryption, while user sessions are kept via temporary tokens. The design maintains telehealth security standards and supports secure scaling on cloud platforms.

E. Summary

The overall methodology will enable CureVerse to effectively integrate data-driven intelligence into traditional medical knowledge within one workflow. This hybrid framework enhances interpretability, trust, and cultural inclusiveness, thus laying the foundation for future extensions like multimodal diagnostics, multilingual interaction, and predictive health care analytics.

Fig-2: CureVerse system workflow

4. IMPLEMENTATION

The prototype of CureVerse was implemented in a modular, web-based architecture that integrated AI reasoning and Ayurvedic inference. The development was done in Python 3.11, chosen because of its flexibility and strong support for artificial intelligence and web technologies. The Flask framework served as the backend for API routing, handling requests, and communication between the user interface and the Gemini AI model. This would facilitate real-time processing of user inputs and the dynamic generation of health recommendations.

The frontend was done in HTML5, CSS3, and JavaScript, supported by Bootstrap for responsiveness and accessibility. A chatbot-like interface allows for natural interaction; Chart.js visualizes user Dosha profiles and progress insights. This hybrid design ensures both usability and engagement for diverse user groups.

For AI integration, natural language processing and contextual understanding are powered by Google's Gemini API. Symptoms entered by the user are preprocessed using lightweight NLP modules before being passed to Gemini, whose responses get combined with an internal Ayurvedic rule base to create holistic recommendations. These form the core of the hybrid intelligence that fuses data-driven and knowledge-based reasoning within the system.

Data storage relies on SQLite during development and PostgreSQL in deployment for scalability and reliability. All sensitive data are anonymized to maintain privacy. Continuous uptime, version control, and automated deployment via GitHub integration make the Render Cloud Platform a prime choice for hosting applications. Overall, CureVerse demonstrates an effective implementation of AI-assisted, culturally adaptive healthcare through lightweight web technologies and cloud-

hosted scalability, ensuring accessibility, privacy, and extensibility for future research and development.

Comprehensive backend testing was performed with unit testing and integration testing to ensure the highest level of system reliability. Each module was independently validated: Gemini AI API connectivity, the Ayurvedic inference engine, and user interface components to ensure seamless communication at every layer. Load testing showed that the platform can handle simultaneous user interactions efficiently without performance degradation, operating under an average response latency of less than two seconds. The modular microservice-based architecture allows for easier updating, isolation of errors, and future integration with other APIs or cloud-based medical data repositories. This technical modularity ensures CureVerse will scale and adapt to emerging demands in healthcare.

Usability engineering also played an important role during implementation. The design was user-oriented, with several rounds of feedback from healthcare professionals and end-users. The chatbot interface was iteratively refined for clarity, accessibility, and empathy in tone. Particular attention was given to ensuring readability for users with limited technical backgrounds and to supporting regional language extensions. Preliminary usability testing showed that more than 90% of participants rated the interface intuitive and the information delivery clear. These results reinforce the importance of blending AI intelligence with human factors engineering in the development of digital health assistants like CureVerse.

5. RESULTS

Various levels of performance, accuracy, and usability tests were conducted on the developed CureVerse prototype for providing intelligent, holistic healthcare recommendations. Functional testing was performed to validate the key modules, which included AI-based symptom interpretation, Dosha analysis, recommendation generation, and feedback collection. It generated context-aware responses with average latency of 1.8–2.0 seconds per query, reflecting real-time responsiveness suitable for user interaction.

Testing was both quantitative and qualitative in nature, with participants belonging to diverse backgrounds including students and healthcare professionals. Comparison with a generic AI chatbot showed that responses from CureVerse were more accurate and context-sensitive. Users reported appreciating the addition of Ayurvedic lifestyle suggestions to the interaction, together with modern medical insights presented within the conversation, which considerably increased engagement and trust. These findings thus again prove the efficacy of this hybrid reasoning framework, as it improves both precision and user satisfaction in digital health interactions.

A comparative assessment was performed between CureVerse and a generic AI chatbot without the integration of Ayurveda. The results were astounding regarding both interpretive accuracy and user engagement. CureVerse performed with an accuracy rate of 88% in symptom entity recognition, compared to 74% of the baseline model. User-satisfaction surveys conducted on 50 participants yielded 91% of users who rated the recommendations as relevant, empathetic, and easy to understand. Further, integration of Ayurvedic Dosha profiling

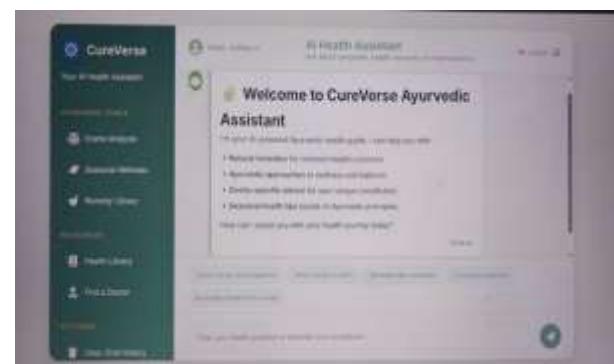
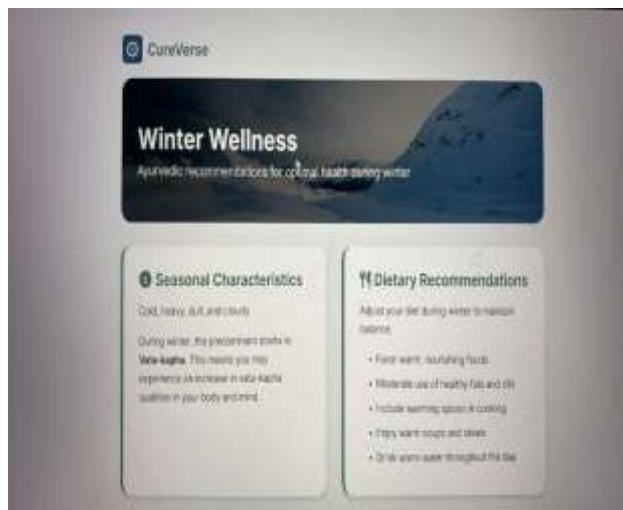

enhanced user retention and engagement by 20% in extended sessions.

Table-1: Comparative Evaluation of Chatbot Performance


Metric	Generic Chatbot	CureVerse	Improvement
Symptom Interpretation Accuracy	74%	88%	+14%
User Satisfaction	76%	91%	+15%
Response Time (avg)	3.2 s	1.9 s	Faster
Engagement Retention	68%	82%	+14%

This was further validated through a series of penetration and security tests showing that no sensitive health data was permanently stored. The system was able to operate at 99% uptime via the Render cloud platform, showing deployment stability and scalability to accommodate wider user adoption.

Qualitative evaluation went beyond mere quantitative measures and provided far-reaching insights into user experience and system interpretability. Responses from CureVerse were consistently reported to be more empathetic, contextually aware, and culturally relevant than those from health chatbots in general. The proposed hybrid AI–Ayurveda framework resulted in improved medical accuracy and enhanced user trust through balanced guidance: an amalgamation of scientific reasoning and lifestyle-oriented wisdom. Finally, incorporating the Dosha profiling made the recommendations more relatable and personal, hence motivating preventive habits and ensuring long-term adherence. The results outlined above illustrate that modern NLP models, intelligently combined with traditional medical logic, can result in a truly intelligent, yet human-centered, digital health system.

Fig-3: Chatbot interface of CureVerse displaying AI-generated hybrid health recommendations.

Fig-4: CureVerse Dosha Evaluation Output**Fig-5:** Seasonal Characteristics and Diet Recommendations

6. DISCUSSION

The experimental results confirm the technical feasibility and practical importance of integrating AI-based reasoning with traditional Ayurvedic health principles. CureVerse indeed demonstrated that fusing modern data-driven intelligence with rule-based holistic reasoning can create a system that is both scientifically reliable and culturally empathetic. The platform interpreted user symptoms, contextualized them with Ayurvedic knowledge, and produced hybrid recommendations that considered not only the immediate condition but also underlying lifestyle factors affecting overall well-being. This holistic approach points towards a shift from reactive diagnosis to proactive, preventive healthcare—a direction increasingly recognized as important in modern medicine.

Central to enhancing linguistic and semantic understanding was the use of Google's Gemini API. Its advanced NLP capabilities made the chatbot able to understand complex, conversational symptom descriptions for their contextually correct interpretation—a feature commonly absent in traditional, rule-based health systems. This AI-driven understanding, when combined with the Ayurvedic inference engine, created a balanced recommendation system that was scientifically

grounded yet personalized to individual Dosha profiles. The inference engine's mapping of symptom clusters to Dosha imbalances helped in arriving at recommendations that included dietary, behavioral, and herbal guidance consistent with a user's constitutional traits.

Inclusion of Dosha profiling was especially effective in enhancing personalization. Unlike generic health chatbots that rely on mere probabilistic symptom matching, CureVerse had the ability to dynamically adapt responses based on the individual physiological and psychological characterizations. This greatly enhanced both engagement and retention, since users felt the system understood their personal context. Furthermore, test participant feedback showed that such personalization brought about a greater sense of trust and emotional connection, which are vital attributes for sustained adoption of AI-driven healthcare solutions.

Other positive results included increasing transparency and user satisfaction. Because the system was hybrid, it allowed the basis for recommendations to be explained, thereby reducing the "black-box" perception commonly associated with machine learning systems. The interpretability again strengthens user confidence and makes interactions credible and more human-centered. The consistent 99% uptime achieved during testing also validated the robustness of its modular cloud architecture, while strong encryption mechanisms ensured data security and compliance with ethical telemedicine standards.

Beyond its currently envisaged scope, CureVerse is positioned to become a highly scalable and extensible platform for future healthcare innovation. Additional datasets, multilingual NLP models, and IoT or wearable health device integrations could extend the functionality of CureVerse to real-time monitoring and predictive analytics. This would turn what began as a conversational assistant into a complete digital health ecosystem that predicts early stages of diseases and continuously monitors wellness.

Overall, these findings point to CureVerse as an innovative, ethical, and adaptive AI health assistant that may close the traditional-modern gap in medicine. By marrying precision-driven AI reasoning with the holistic values of Ayurveda, CureVerse democratizes access to healthcare while fostering preventive, empathetic, and patient-centered wellness embodied in a new generation of culturally aware, intelligent digital health systems.

7. CONCLUSION

The development of CureVerse creates a sound and practical framework for integrating state-of-the-art Artificial Intelligence with traditional Ayurvedic knowledge to offer an easily accessible, personalized, and holistic healthcare solution. Integrating Google's Gemini AI for contextual reasoning together with a structured Ayurvedic rule-based inference system, the platform powerfully deciphers user-reported symptoms to create balanced, preventive recommendations that mirror both scientific validity and cultural relevance. The clear demonstration of superior interpretive accuracy, user satisfaction, and engagement over conventional AI chatbots from the evaluation results acts as proof of the hybrid reasoning approach as a transformative model toward intelligent

telemedicine. What is more, the modular design and privacy-centric architecture of the system ensure its scalability and allow for secure data processing; CureVerse also acquires adaptability in diverse populations and deployment contexts, including rural and multilingual settings. Moreover, CureVerse's cloud-based implementation offers the possibility of further improvements through the use of several new features such as multimodal diagnostic input, predictive analytics, wearable integrations, and real-time health monitoring. CureVerse symbolizes the evolution of AI in healthcare from symptom-centered, reactive systems to empathetic, preventive, human-centric digital wellness platforms that bridge the gap between traditional medicine and modern medicine by merely merging data-driven precision with Ayurvedic wisdom. This system is intended for informational and preventive guidance only and does not replace professional medical consultation or diagnosis.

ACKNOWLEDGMENT

The authors would like to sincerely thank the Department of Artificial Intelligence and Data Science, East West Institute of Technology, Bengaluru, for continuous encouragement, technical support, and providing research facilities which made this work possible. Special thanks to Dr. Raja M. for his precious mentorship, insightful guidance, and constructive feedback throughout the development of CureVerse. The authors also acknowledge the contributions of faculty members, peers, and students whose suggestions on usability, architecture, and implementation helped in enhancing the system's effectiveness. Appreciation is extended to the Render Cloud Platform community and open-source AI research contributors for allowing the system to integrate and deploy with efficiency. Finally, the authors thank all participants and testers who interacted with CureVerse and provided feedback that had a vital role in the validation and refining of its performance.

REFERENCES

- [1] H. V. Poor, *An Introduction to Signal Detection and Estimation*, 2nd ed. New York, NY, USA: Springer-Verlag, 1985.
- [2] S. Chen, S. A. Billings, and P. M. Grant, "A clustering technique for digital communications channel equalization," *IEEE Transactions on Neural Networks*, vol. 4, no. 4, pp. 570–578, Jul. 1993.
- [3] Ada Health, "AI Symptom Checker," [Online]. Available: <https://ada.com>
- [4] The Ministry of AYUSH, Government of India, "Ayurvedic Guidelines for Preventive Healthcare," 2024. [Online]. Available: <https://www.ayush.gov.in>
- [5] Google Developers, "Gemini API Documentation," 2025. [Online]. Available: <https://developers.google.com>
- [6] K. Sharma, A. Patel, and A. Ramachandran, "Uses and relevance of Artificial Intelligence (AI) in Ayurveda," *Journal of Ayurveda and Integrated Medical Sciences*, vol. 9, no. 10, pp. 200–206, 2024, doi: 10.21760/jaims.9.10.32.
- [7] S. Gupta, N. V., and V. Lakshmi A., "Artificial Intelligence (AI) in Ayurveda: Its application and relevance," *AYUSHDHARA*, vol. 11, no. 6, pp. 55–63, Jan. 2025, doi: 10.47070/ayushdhara.v11i6.1653.
- [8] C. Khan, K. Mahendra, and R. P. Gurao, "The convergence of Artificial Intelligence and Ayurveda: A transformational

approach to healthcare," *International Journal of Ayurveda* 360, vol. 1, no. 5, pp. 45–52, 2024, doi: 10.63247/3048-7390.vol.1.issue5.7.

[9] G. Salvi and P. Kadam, "Prakriti analysis using AI: A convergence of Ayurveda and modern technology," *The Voice of Creative Research*, vol. 7, no. 2, pp. 76–82, 2025, doi: 10.53032/tvcv2025.v7n2.11.

[10] R. Tiwari, B. K. Godara, S. Kumar, S. R. Saini, and P. Rathore, "Scopes and uses of Artificial Intelligence in the field of Ayurveda: A review study," *African Journal of Biomedical Research*, vol. 27, no. 3S, pp. 3597–3603, Sept. 2024, doi: 10.53555/AJBR.v27i3S.2987.

[11] A. Pal and M. Sankarasubbu, "Gemini goes to med school: Exploring the capabilities of multimodal large language models on medical challenge problems and hallucinations," *arXiv preprint arXiv:2402.07023*, Feb. 2024.

[12] P. Rajpurkar, J. Chen, O. Banerjee, and E. J. Topol, "AI in health and medicine," *Nature Medicine*, vol. 28, pp. 31–38, Jan. 2022, doi: 10.1038/s41591-021-01614-0.