

Current Status and Future Prospect Semiconductor Industry Cashflow

Rajbahadur R. Chourasia [PGDM-General]

chaurasiyaraj794@gmail.com

Sakshi S. Shukla [PGDM-General]

shuklasakshi867@gmail.com

Bhoomi A. Mishra [PGDM-General]

mishrabhoomi838@gmail.com

Samruddhi S. Tambe [PGDM-Pharma]

samruddhitambe2003@gmail.com

Abstract

The growing demand from industries like electronics, automotive, 5G, artificial intelligence, and renewable energy is propelling the rapid growth of the global semiconductor industry. One of the main pillars of contemporary technological and economic advancement is semiconductors. Emerging economies, especially India, are progressively solidifying their places in the global semiconductor value chain, even though nations like Taiwan, the US, and South Korea still dominate the production of sophisticated semiconductors.

Understanding the cash flow trends and financial stability of India's semiconductor industry in light of its international expansion is the main goal of this study. It examines the lengthy project gestation periods, the high capital requirements of semiconductor manufacturing, and the cash flow constraints that early-stage development firms face. The study also emphasizes how important government programs like the India Semiconductor Mission (ISM), Production-Linked Incentive (PLI) programs, and the most recent Union Budget support are for boosting liquidity, lowering investment risks, and drawing in both foreign and domestic capital. The results show that even though Indian semiconductor projects have short-term cash flow issues, the country is becoming a more significant and financially viable player in the global semiconductor market thanks to consistent policy support and rising demand worldwide.

Keywords: Semiconductors, India Growth, Cashflows, Policy

Overview

Semiconductors are essential in today's world and are used in many different applications, including consumer electronics, automotive systems, electronics, communication systems, lighting, and renewable energy. The semiconductor industry is highly sought after globally and needs substantial capital investment to prosper in the modern era. In order to reduce its dependency on imports and promote domestic manufacturing in India, the developing country has implemented a number of framework and policy initiatives, such as the Production Linked Incentive (PLI) Scheme and the India Semiconductor Mission (ISM). Press Information Bureau, 2024; Ministry of Electronics and Information Technology, 2023). (Indian Government 2026; MeitY/PIB 2024)

Cash-flow management is vital in the semiconductor industry since a long time and large investment are required. Due to its high production costs and sensitivity to the economic cycle, the semiconductor industry typically experiences negative cash flow during both expansion and recession (Intelligence, 2026).

INDIAN SEMICONDUCTOR INDUSTRY OVERVIEW

Although Indian semiconductors have started to show their interest and presence in the semiconductor manufacturing industry, they are still in their infancy when compared to nations like South Korea, Taiwan, and the United States, which are recognized as world leaders in this field. India has historically focused on design and software services rather than manufacturing semiconductors. Significant investments in semiconductor designs, assembly facilities, etc. have been announced by companies like HCL Technologies Limited (which entered the market as a joint venture in Uttar Pradesh), Bharat Electronics Limited (which partnered with the Tata Group), Tata Elxsi, Vedanta Limited, and Tata Power Company Ltd. [1]

In order to encourage more industries to invest in the semiconductor sector, the Indian government launched the Design Linked Incentive (DLI) Scheme, which focuses primarily on chip design, provides financial support, upgrades semiconductor laboratories, and offers special incentives for significant investments.

CASHFLOW CONCEPT IN CAPITAL-INTENSIVE INDUSTRIES

Cashflow is the movement of funds into and out of an organization over a specified period of time.

Three general categories can be used to classify cash flow:

- Operating cash flow
- Investment in cash flow
- Financed by cash flow

- Operating Cashflow: Usually, the company generates cash from its main business operations, like selling goods and rendering services, within a specified time frame.
- Cashflow from Investments: The organization's main source of income is investment, which mainly consists of acquisitions and the purchase of long-term assets like securities, machinery, equipment, and real estate.
- Financial cash flow: The company's operations, which include issuing shares, paying dividends, borrowing money, and repaying it, basically show how businesses are expanding.

Because of the high setup costs and time needed to achieve financial stability, semiconductor-dependent industries usually have negative cash flows.

RESEARCH GOALS

The following was the main goal of these studies:

1. To investigate the factors impeding financial stability.
 - a) To evaluate how interest rate changes affect capital expenditures and liquidity control.
 - b) To look into how cash flow dependability and financial planning are affected by changes in the USD–INR exchange rate.
 - c) To assess how capital gains tax laws affect long-term financial stability and investment decisions.
 - d) To investigate the ways in which incentives for foreign direct investment (FDI) enhance financial resilience and draw in capital inflows.

For a 360 degree perspective of the Indian semiconductor industry,

- a) To analyse the structure and value chain of semiconductor ecosystem in India.

Check also the governmental policy and incentives to boost semiconductor manufacturing.

- c) Explain the growth potential and strategic importance of semiconductor industry in India's development.

In order to understand the challenges facing liquidity.

- a) Analysing the dark Side of working capital - Issues in Cash flow steadiness.

HYPOTHESIS

Hypothesis List 1: Factors Inhibiting Financial Autonomy

H0₁: The cost of capital and liquidity management is not significantly influenced by changes in the interest rate.

H0₂: Variation in the USD/INR foreign exchange rate does not significantly affect financial planning and stability in cash flows.

H1₂: The volatility of the USD-INR exchange rate has a major impact on financial planning.

H0₃: Policies in place regarding capital gains tax have no significant influence on investment decisions and long-term economic stability.

H1₃: Policies that govern capital gains tax have a considerable impact on investment decisions and long-term financial well-being.

H0₄: The incentives for foreign direct investment have no significant effect on the enhancement of financial resilience and capital inflow.

H1₄: Incentives for foreign direct investments play an essential role in enhancing financial stability.

Hypothesis Set 2: State Programs and Financial Flow Efficiency

H0₅: Fiscal and monetary policies pursued by the government have a negligible impact on improving liquidity as far as working capital is concerned.

H1₅: The fiscal and monetary policies set by the government have increased the liquidity and availability of working capital remarkably.

H0₆: Incentive programs and financial aids have little or no effect on industrial cash flow management.

H1₆: Incentive programs and grants play an important role in managing cash flow in industries.

H0₇: Government policy measures do not ease cash flow constraints in capital-intensive industries.

H1₇: Governmental policy measures help offset cash flow limitations in capital-intensive industries.

Hypothesis Set 3 Semiconductor Industry in India

H1₈: Government regulations and incentive schemes greatly facilitate semiconductor manufacturing in India.

H0₉: The Indian semiconductor industry has little growth potential and holds no economic significance.

H1₉: The semiconductor industry in the Indian market dismisses high growth potential and bears strategic importance in the economic upliftment of the country.

Hypothesis Set 4: Challenges in Cash Flow Sustainability

H0₁₀: Operational difficulties do not substantially impact cash flow sustainability.

H1₁₀: Operational difficulties significantly impact cash flow sustainability.

H0₁₁: Significant capital investment and extended gestation periods do not impose financial limitations on cash flow sustainability.

H1₁₁: Significant capital investments and extended development periods impose financial limitations on the cash flow viability.

H0₁₂: External threats, such as market fluctuations, shifts in policies, and global supply chain interruptions, do not significantly affect cash flow sustainability.

H1₁₂: External threats, such as market fluctuations, shifts in policy, and global supply chain interruptions, greatly affect cash flow stability.

RESEARCH METHODS

This research relies on secondary data gathered from a wide range of trustworthy and reputable sources, such as government policy documents and official reports, industry analyses, market research publications, and publicly accessible company disclosures. Together, these sources provide a robust empirical basis for analysing the structural

traits, financial outcomes, and changing policy landscape of the Indian semiconductor sector. Utilizing various secondary sources improves the study's reliability by enabling information cross-verification and decreasing possible data bias.

This study employs a descriptive and analytical approach to systematically examine industry trends, financial behaviours, and structural patterns within the field. This method promotes a thorough understanding of both qualitative and quantitative factors impacting the industry's growth. Because of the scarcity of reliable and long-term financial information for Indian semiconductor companies, this research focuses more on trend analysis and conceptual understanding. These analytical instruments are used to evaluate changes over time, recognize emerging trends, and analyse fundamental industry dynamics. Despite the limitations of the data, this methodological framework allows for the extraction of valuable insights and aids in drawing informed conclusions about the financial and policy aspects of the Indian semiconductor industry.

Role Significance of Union Budget 2026–27 in Enhancing India's Semiconductor Ecosystem

Policy Support and Cash Flow Dynamics in India's Semiconductor Industry

The Union Budget 2026–27 reflects a strong policy commitment to strengthening India's semiconductor and electronics ecosystem by recognizing it as a strategic driver of economic growth, technological self-reliance, and global competitiveness. One major highlight is the launching of India Semiconductor Mission (ISM) 2.0 with an allocation of ₹40,000 crore for supporting semiconductor fabrication, advanced packaging, and ecosystem development with the intent of reducing import dependence and enhancing supply-chain resilience. Furthermore, another ₹40,000 crore has been allocated for the Electronics Components Manufacturing Scheme, which will focus on enhancing domestic manufacturing of PCBs, modules, and critical electronic components while promoting SMEs and increasing local value addition [2].

The research, innovation, and skill development are given further impetus through proposed industry–academia collaboration and training centres, apart from the fact that semiconductor manufacturing is capital- and knowledge-intensive. Strategic initiatives such as the development of Rare Earth Corridors in mineral-rich states and favourable tax measures have been proposed with the idea of securing critical raw materials to reduce exposure to global supply interruptions.

The industry still leans heavily towards being capital-intensive. This means that significant capital outlay has to be made at the outset on fabrication plant and equipment, besides research and development. Long gestation periods, coupled with high depreciation costs of technologically obsolescent plant and equipment, ensure that cash flows are negative for a long time until optimal capacity utilization is attained [3].

In the Indian context, most semiconductor initiatives are at the development or nascent operation stage, including large-scale fabrication and ATMP facilities for Tata Electronics, Micron Technology, and other industry participants. These initiatives involve significant initial cash outflows, and the operating cash flows are also lagged. In this context, funding support is critical. The incentives provided by the government under ISM 2.0 and the subsidy/tax incentives provided by the respective state governments have resulted in a significant reduction of the capital expenditures and funding risks. Although the semiconductor segment in India is currently facing a challenged cash flow situation, the supportive policies and initiatives undertaken by the government are expected to improve the viability of the semiconductor segment [4].

Impact Of Government Financial and Regulatory Assistance:

The availability of Government sponsored programs, including the capital subsidy and provision of tax credits, as well as PLI, all assist in creating positive cash flow stability for the semiconductor manufacturing industry. Project financing of the semiconductor production process is extremely high during the first phase of project development, leading to many times a prolonged period of negative cash inflows from operations or investments. As such, the financial assistance from the Government in this manner reduces the financial stress imposed upon companies, thereby providing them with increased ability to maintain their businesses over time. All forms of Government assistance, including tax reductions or exemptions for capital equipment and related tax incentives for processing of all raw materials related to the production of semiconductors, reduces the operational costs and costs of compliance. (MeitY/PIB, 2024; Govt of India, 2026). Government assists companies by providing cash flow stability through the use of Production Linked Incentives

(PLI) which directly provides companies financial support based on their production levels, and overall performance. Unlike/compared to a one-time form of financial support in the shape of a subsidy, the company will continue to receive cash payments through PLI schemes as a result of increasing production and subsequently aid the company in creating operating cash flows during the ramp-up phase of semiconductor production. This is extremely relevant in the semiconductor manufacturing industry, as semiconductor manufacturing plants generally take a number of years to reach optimum rates of capacity utilization, yet the generating of revenues will have a significantly extended period in the early phases of ramp-up [4].

Policy initiatives designed to support semiconductor industry development also greatly enhance investor confidence. Investors have more faith in making an investment decision when the country has a demonstrated, clear, and stable policy framework that conveys the government's commitment to the semiconductor industry over the long term. Increased confidence of investors leads to increased amounts of equity and long-term debt available for investors along with the establishment of strategic alliances that create improved liquidity and funding cash flow for these investments. In addition, investor-friendly policies provide opportunities for global technology partners to participate, allowing them to exchange knowledge and create operational efficiencies that ultimately lead to increased long-term financial sustainability. Overall, the government's fiscal and industrial policy-driven initiatives to support the growth of the semiconductor sector are key enablers of financial resilience within the semiconductor sector. These policy initiatives will greatly increase the long-term financial sustainability of semiconductor projects, particularly in emerging economies like India, by reducing capital intensity, improving access to financing, and stabilizing cash flow during the early operational stages of semiconductor production.

Study Limitations:

The semiconductor industry's examination in India is restricted by the absence of consistent, dependable financial information. The semiconductor business is not only presently in its infancy, but also that there are still many semiconductor initiatives that are either still being undertaken or just beginning their businesses. Hence, the financial statements available to the public do not always reflect the enterprises' operational performance or long-term cash flow patterns and/or profitability trends. In addition, many semiconductor initiatives are only a small part of larger businesses or joint ventures, and their semiconductor financial figures are included within all of the other products of these corporations, making it more difficult to analyse these semiconductor initiatives. Because the semiconductor business is in its infancy, there is only a limited amount of historical data from which to develop trend analyses, forecast future conditions, and conduct econometric work. Because many businesses have not completed a complete business cycle, they are unable to evaluate their financial sustainability or return on their investment or the long-term viability of cash flows. The frequent changes in policy, incentives, and capacity growth also make it more difficult to interpret and analyse existing data. Due to these restrictions, the majority of the data used in this report are obtained from secondary source data, which include government policy documents, budget reports, industry publications, corporate disclosures, and consulting firm report. While secondary sources frequently provide value-added information on industry trends, policies supporting them, and where investments tend to be made, secondary data often lacks the depth or current accuracy to provide an adequate level of detail to make reliable decisions. Different sources have varying methods for collecting data and for reporting it; therefore, it is often possible that there will be inconsistencies, and potentially biases, in analyses of the same data when they are derived from different sources. There are also limitations related to semi-conductor confidentiality that limit both the level of information available and the level of detail that companies will provide about the cost structures, yield rates, and other investments that relate to specific technologies under development or manufactured for sale or usage. While global market conditions, world political situations, and supply chain disruption can all impact a company's financial results; their impact is not always immediately apparent from the datasets that exist. Additionally, the lack of a common set of benchmarks against which companies can assess their new semiconductor initiatives in India limits the ability to compare them with the established global competitors. All of these limitations to data point to the exploratory nature of the study and indicate the need for care in interpreting results. The need exists for greater data transparency, longer timeframes for operations, and further collection of primary data to enhance the reliability and accuracy of the financial assessments in the semiconductor industry going forward [5].

Cash Flow Problems Facing the Semiconductor Industry

The semiconductor industry has serious cash flow problems due to its capital-intensive nature and fast-changing technologies. One of the main problems is the large initial capital investment required to construct new factories. It takes a large amount of money to build the factory, as well as for clean room construction, sophisticated machines, and utilities. As a result of these large cash expenditures at the start of the project, there is a very negative cash flow from investing during the early stages of the project, increasing the financial risk associated with making new investments. Another major problem is the long break-even time associated with semiconductor projects. Because the construction of new factories takes a long time to finish, it is common for companies to experience a delay in generating revenue because it takes so long to build new factories, they have slow increases in capacity, and they must achieve their yield targets. In the meantime, a company's fixed operating costs (maintenance, utilities, and skilled labour) are still high, which requires the company to use cash to pay for these costs, further increasing the strain on the operating cash flow of a company. Therefore, the long time to profitability creates added difficulty in financial planning and increases the liquidity risk. The rapid pace of technological change makes it impossible to predict cash flow accurately. Companies are constantly introducing new products because of technological innovation, and they need to replace the equipment used for production and update the manufacturing process as there are increases in the number of Process Nodes. This on-going demand for cash for capital means that businesses will have to continually invest in capital assets, shortening the useful lives of current assets and increasing the depreciation of those assets. Therefore, companies will need to be creative in terms of balancing the need to stay technologically competitive with the financial burden of such capital investments. The dependence on importing equipment and materials also presents significant challenges for the industry. Much of the newest semiconductor equipment is bought from a very limited number of global suppliers, making companies subject to risks associated with fluctuations in foreign exchange rates, interruptions in the supply chain, and geopolitical instability. Changes in foreign exchange rates and import costs can have a direct impact on capital and operating costs, and hence will directly affect the consistency of a company's cash flow. Additionally, fluctuations in global demand for semiconductors will greatly impact a company's revenue predictability. Because semiconductors are so closely tied to cyclical industries (consumer electronics, automotive, telecommunications), demand for semiconductors can experience rapid shifts due to an economic downturn, changes in consumer behaviour, or international conflicts, resulting in unpredictable cash flows for companies that manufacture semiconductors. Collectively, these factors create uncertainty in cash flow forecasts and underscore a critical need for utilising strategic finance models to manage risks and establish diverse financing structures to assist in the creation of sustainable business practices through good policy frameworks in the semiconductor industry [6].

Research Findings

Through the analysis conducted in this paper it was found that in the short-term, the cash flows of semiconductor companies operating in India are mainly negative due mainly to the capital intensive nature of the industry and therefore require very large amounts of capital to set up manufacturing operators and the associated physical assets, including equipment, buildings for cleanrooms, and R&D facilities, that are available when developing and entering the operational phase of manufacturing plants. Therefore, during the initial development and operational phases, semiconductor companies will experience very substantial negative cash flows from the investment in developing long-term assets. Simultaneously, cash from operations will be low for all manufacturing facilities until they reach their peak production and revenue levels.

One of the most important findings of this research is the crucial role that government incentives can play to help ease cash flow difficulties faced by companies in the early phases of their development. Incentive programs such as capital grants (subsidization); tax incentives, or other incentives directly related to the manufacturing of products, significantly reduce financial burden on companies because they help to reduce initial capital expenditures and operating costs. As a result, these types of policies improve liquidity during the development phase as well as enhance investor confidence and ultimately promote greater investment by both domestic and international participants. Therefore, companies will be in a better position to continue conducting business after extended periods of negative cash flow. The research indicates that long-term sustainability of cash flow greatly depends on operating efficiency as well as on market demand. Improvements in production efficiency, reduced costs, and efficient supply chain management are all key to achieving

successful operating cash flows. In addition, increased and steady demand from sectors such as electronics; automotive; and telecommunications create strong, dependable revenue sources. Without adequate levels of demand from those markets, even the most technologically advanced facilities will likely continue to experience difficulties achieving financial viability.

Recommendations

The study's findings allow for the formulation of several strategic recommendations aimed at improving cash flow stability and guaranteeing the Indian semiconductor industry's long-term financial sustainability. First, there is a strong need to improve public-private partnerships (PPPs). Cooperation between public and private organizations can help spread financial risk, encourage large investments, and expedite project implementation because of the substantial capital requirements and technological complexity of semiconductor production. By giving access to state-of-the-art technology, global expertise, and infrastructure support, public-private partnerships can reduce the strain on individual businesses and improve the viability of projects overall.

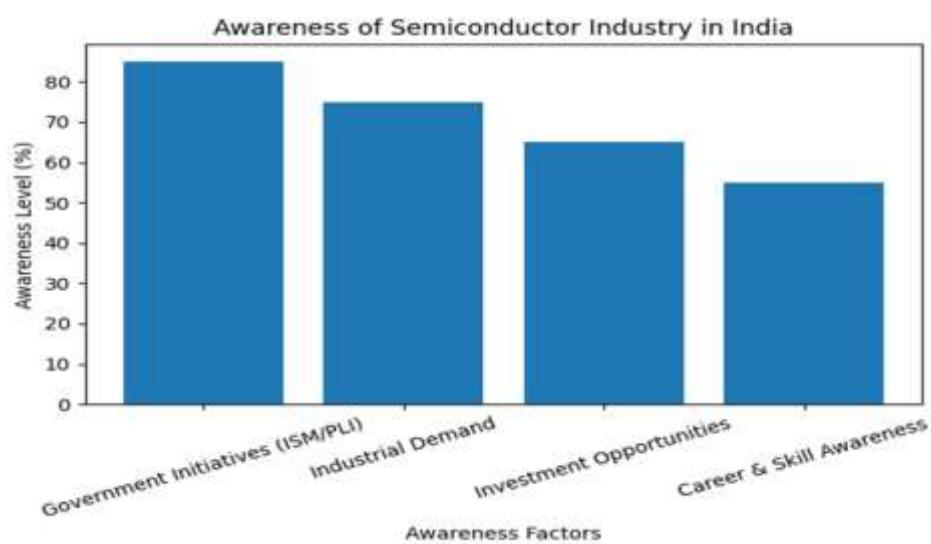
Second, preserving steady and dependable policy support is essential for building long-term strategy and investor trust. Semiconductor projects typically take a long time to develop, and policy changes can be unpredictable and make financial projections more difficult. Businesses will be able to more effectively plan capital investments and manage cash flow with greater certainty if they have a consistent policy framework with clearly defined incentives, long-term commitments, and transparent implementation procedures. During the early phases of operation, continuous support through capital subsidies, tax breaks, and production-linked programs is particularly important.

Thirdly, the study recommends encouraging the development of a robust domestic semiconductor supply chain. Businesses that heavily rely on imported equipment and supplies are more susceptible to supply disruptions, exchange rate swings, and geopolitical threats, all of which can have a negative impact on cash flow. Encouraging domestic production of components, supplies, and associated services can reduce costs, expedite supply chains, and improve operational efficiency. A localized supply chain has the potential to boost value creation and produce more stable operating cash flows over time.

Companies should do things a little at a time when it comes to investing. This helps companies deal with money problems and cash flow issues. Of trying to do everything at once companies can start small and add more as they go along. They can build things up slowly as the demand, for their products gets bigger and as they get better at using technology. This way companies can spend their money over time use what they have wisely and avoid spending too much money on things they do not need.

Together, these suggestions seek to boost financial stability, optimize cash flow management, and foster the sustainable development of the semiconductor sector in India.

Conclusion:


Shifting from Aspiration to Worldwide Integration

Indias semiconductor journey is moving forward now. It has gone from making plans to actually doing things. By February 2026 India will have a plan with three parts that will make it different from what India tried to do before to make its own computer chips. Indias semiconductor journey is really, about India making its computer chips.

The initiation of the India Semiconductor Mission (ISM) 2.0 in the 2026 Union Budget signifies an advanced development. By redirecting attention to local equipment production, specialty chemicals, and homegrown IP design, India is methodically tackling the "upstream" dependencies that had made it susceptible. This "full-stack" strategy guarantees that the country isn't merely accommodating foreign factories but is developing a self-sufficient technological ecosystem. (Meity/PIB 2024; Indian Government 2026)

2026 signifies the "Year of Production," as four key facilities—such as Micron's Sanand plant and Tata Electronics' pilots—start their commercial activities. The development of specialized industrial centres in Gujarat, Karnataka, and Tamil Nadu has generated a "pull" for international suppliers. India has effectively closed the divide between mid-stream

component manufacturing and downstream assembly with more than 10 sanctioned mega-projects and a boosted ₹40,000 Crore Electronics Component Scheme.

From the above bar graph, it is evident that the level of knowledge about India's semiconductor sector is demonstrated. Since the ISM and PLI schemes offered by the government have the highest awareness level compared to other parameters, it can be inferred that stakeholders of the industry have been successfully influenced by the schemes launched by the government.

Since there is a high level of awareness with regard to industrial demand compared to other parameters, it highlights the confidence of stakeholders towards increasing demand. Also, a low level of awareness regarding career development and investing opportunities highlights the necessity for further awareness campaigns. Indeed, the above graph confirms that overall awareness needs to be improved even though policy awareness is high.

Reference

- [1] M. Intelligence, India Semiconductor Market, Mordor Intelligence, 2026.
- [2] M. o. E. a. I. T. (MeitY), India Semiconductor Mission (ISM) 2.0 and Policy Initiatives for Semiconductor Ecosystem Development, Press Information Bureau (PIB), Government of India, 2024.
- [3] M. o. F. Government of India, Union Budget 2026–27: Budget Speech and Policy Highlights, Government of India, 2026.
- [4] G. o. I. Ministry of Electronics and Information Technology (MeitY), Production Linked Incentive (PLI) Scheme and Financial Support Measures for Semiconductor Manufacturing, Press Information Bureau (PIB), Government of India, 2024.
- [5] N. Aayog, Semiconductor Manufacturing in India: Opportunities, Constraints and Ecosystem Challenges, 2025: NITI Aayog, Government of India.
- [6] M. & C. (Practice), The Semiconductor Decade: A Trillion-Dollar Industry with Cyclical Cash Flow and Capital Challenges, McKinsey & Company, 2025.