
 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 05 | May -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com | Page 1

Custom Parser for Serialize Data Schema for Energy Meter

Dinesh Singh1, Ankur Goyal2

1Student, Department of Computer Science & Engg., YIT, Jaipur, India
2Associate Professor, Department of Computer Science & Engg., YIT, Jaipur, India

---***---

Abstract - In this paper, we study the Profile generic class

(Class id = 7) of DLMS/COSEM. Profile generic class provides a

generalized concept to store, sort and access data groups or

data series. We suggest a custom parser of serialize data

schema for energy meters which convert DLMS APDU

(Application Protocol Data Unit) in user understandable

format that easily shoe in user interface (UI).

Key Words: DSL, DLMS/COSEM, Energy meter, Profile

Generic, Parser etc.

1. INTRODUCTION

Domain specific languages (DSLs) aim at raising the

abstraction level for programmers, thereby enhancing

both quality and productivity in software development.

Device Language Message Specification (DLMS) is

domain specific language which used in power domain.

This is the standard language for smart devices. It is an

application layer specification, independent of the

lower layers and thus of the communication channel,

designed to support messaging to and from (energy)

distribution devices in a computer-integrated

environment. The DLMS (Device Language Message

Specification) User Association (UA) provides the

DLMS/COSEM [2-4] that is the suite of standards.

DLMS UA is considered by the IEC TC13 WG14 into the

IEC 62056 series of standards. DLMS UA has been

established for international standards to exchange

data of a meter. Stated by DLMS UA, the meter must be

embedded with the information including registration,

maintenance and conformance testing services. COSEM

(Companion Specification for Energy Metering)

integrated set of the protocol layer (Transport Layer

and Application Layer) to combine with DLMS protocol.

The DLMS/COSEM Specification determines the

protocol of an interface model and communication to

exchange data of meter equipment.

2. THE COSEM INTERFACE CLASSES

For specification purposes, DLMS uses the technique of

object modelling. An object is a collection of attributes

and methods. Attributes represent the characteristics

of an object. The value of an attribute may affect the

behavior of an object. The first attribute of any object is

the logical_name. It is one part of the identification of

the object. An object may offer a number of methods to

either examine or modify the values of the attributes.

Objects that share common characteristics are

generalized as an interface class, identified with a

class_id. Within a specific IC, the common

characteristics (attributes and methods) are described

once for all objects. Instantiations of ICs are called

COSEM interface objects.

Fig - 1: An interface class and its instances

The IC “Register” is formed by combining the features

necessary to model the behavior of a generic register

(containing measured or static information) as seen

from the client (data collection system, hand held

terminal). The contents of the register are identified by

the attribute logical_name. The logical_name contains

an OBIS identifier (see Clause 7). The actual (dynamic)

content of the register is carried by its value attribute.

Defining a specific meter means defining several

specific objects. In the example of Figure 3, the meter

contains two registers; i.e. two specific instances of the

IC “Register” are instantiated. Through the

instantiation, one COSEM object becomes a “total,

positive, active energy register” whereas the other

becomes a “total, positive, reactive energy register”.

3. DATE TIME FORMAT

date-time OCTET STRING (SIZE(12))

{

 year highbyte,

 year lowbyte,

 month,

 day of month,

 day of week,

 hour,

 minute,

 second,

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 05 | May -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com | Page 2

 hundredths of second,

 deviation highbyte,

 deviation lowbyte,

 clock status

}

4. COMMON DATA TYPES

Fig - 2: Common Data Types

5. PROFILE GENERIC (Class_id=7, version=1)

This IC provides a generalized concept allowing to

store, sort and access data groups or data series, called

capture objects [3]. Capture objects are appropriate

attributes or elements of (an) attribute(s) of COSEM

objects. The capture objects are collected periodically

or occasionally.

A profile has a buffer to store the captured data. To

retrieve only a part of the buffer, either a value range

or an entry range may be specified, asking to retrieve

all entries that fall within the range specified.

The list of capture objects defines the values to be

stored in the buffer (using auto capture or the method

capture). The list is defined statically to ensure

homogenous buffer entries (all entries have the same

size and structure). If the list of capture objects is

modified, the buffer is cleared. If the buffer is captured

by other “Profile generic” objects, their buffer is cleared

as well, to guarantee the homogeneity of their buffer

entries.

The buffer may be defined as sorted by one of the

capture objects, e.g. the clock, or the entries are stacked

in a “last in first out” order. For example, it is very easy

to build a “maximum demand register” with a one

entry deep sorted profile capturing and sorted by a “Demand register” last_average_value attribute. It is

just as simple to define a profile retaining the three

largest values of some period.

The size of profile data is determined by three

parameters:

a) The number of entries filled (entries_in_use). This

will be zero after clearing the profile;

b) The maximum number of entries to retain

(profile_entries). If all entries are filled and a capture ()

request occurs, the least important entry (according to

the requested sorting method) will get lost. This

maximum number of entries may be specified. Upon

changing it, the buffer will be adjusted;

c) The physical limit for the buffer. This limit typically

depends on the objects to capture. The object will

reject an attempt of setting the maximum number of

entries that is larger than physically possible

Fig - 3: Profile Generic Class

Table -1: Attribute Description

Logical

name

It is always the first attribute of an IC. It

identifies the instantiation (COSEM object) of

this IC. The value of the logical_name

conforms to OBIS.

buffer Contains a sequence of entries. Each entry

contains values of the captured objects.

compact-array or array entry

entry ::= structure

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 05 | May -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com | Page 3

{

 CHOICE

 {

 -- simple data types

 null-data [0],

 boolean [3],

 bit-string [4],

 double-long [5],

 double-long-unsigned [6],

 octet-string [9],

 visible-string [10],

 utf8-string [12],

 bcd [13],

 integer [15],

 long [16],

 unsigned [17],

 long-unsigned [18],

 long64 [20],

 long64-unsigned [21],

 enum [22],

 float32 [23],

 float64 [24],

 date-time [25],

 date [26],

 time [27],

 -- complex data types

 array [1],

 structure [2],

 compact-array [19]

 }

}

The number and the order of the elements of

the structure holding the entries is the same

as in the definition of the capture_objects. The

buffer is filled by auto captures or by

subsequent calls of the method capture. The

sequence of the entries within the array is

ordered according to the sort_method

specified.

Default: The buffer is empty after reset.

capture

_

objects

Specifies the list of capture objects that are

assigned to the object instance.

Upon a call of the capture (data) method or

automatically in defined intervals, the

selected attributes are copied into the buffer

of the profile.

array capture_object_definition

capture_object_definition ::= structure

{

 class_id: long-unsigned,

 logical_name: octet-string,

 attribute_index: integer,

 data_index: long-unsigned

}

- Where attribute_index is a pointer to the

attribute within the object identified by its

class_id and logical_name. Attribute_index 1

refers to the 1st attribute (i.e. the

logical_name), attribute_index 2 to the 2nd,

etc.); attribute_index 0 refers to all public

attributes;

- Where data_index is a pointer selecting a

specific element of the attribute. The first

element in the attribute structure is

identified by data_index 1. If the attribute is

not a structure, then the data_index has no

meaning.

capture

_ period

>=1: Automatic capturing assumed.

Specifies the capturing period in seconds.

0: No automatic capturing; capturing is

triggered externally or capture events

occur asynchronously.

sort_me

thod

If the profile is unsorted, it works as a “first

in first out” buffer. If the buffer is full, the

next call to capture () will push out the first

(oldest) entry of the buffer to make space for

the new entry.

If the profile is sorted, a call to capture() will

store the new entry at the appropriate

position in the buffer, moving all following

entries and probably losing the least

interesting entry. If the new entry would

enter the buffer after the last entry and if the

buffer is already full, the new entry will not

be retained at all.

enum:

(1) fifo (first in first out),

(2) lifo (last in first out),

(3) largest,

(4) smallest,

(5) nearest_to_zero,

(6) farest_from_zero

Def. fifo

sort_obj

ect

If the profile is sorted, this attribute specifies

the register or clock that the ordering is

based upon.

capture_object

_definition

See above.

Def. no object to sort by (only

possible with sort_method

fifo or lifo)

entries_

in_use

Counts the number of entries stored in the

buffer. After a call of the reset () method, the

buffer does not contain any entries, and this

value is zero. Upon each subsequent call of

the capture () method, this value will be

incremented up to the maximum number of

entries that will get stored (see

profile_entries).

double-long-unsigned

Def.

0…profile_entries
0

profile_

entries

Specifies how many entries shall be retained

in the buffer.

double-long-

unsigned

1…(limited by physical
size)

Def. 1

Method description

reset

(data)

Clears the buffer. It has no valid entries

afterwards; entries_in_use is zero after

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 05 | May -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com | Page 4

this call. This call does not trigger any

additional operations on the capture

objects. Specifically, it does not reset

any attributes captured.

data ::= integer (0)

capture

(data)

Copies the values of the objects to

capture into the buffer by reading each

capture object. Depending on the

sort_method and the actual state of the

buffer this produces a new entry or a

replacement for the less significant

entry. As long as not all entries are

already used, the entries_in_use attribute

will be incremented.

This call does not trigger any additional

operations within the capture objects

such as capture () or reset ().

Note, that if more than one attribute of

an object need to be captured, they have

to be defined one by one on the list of

capture_objects. If the attribute_index =

0, all attributes are captured.

data ::= integer (0)

6. ANALYSIS OF PROFILE GENERIC CLASS

Attribute 3 is capture object for profile generic class. It

contains list of parameters which is captured by energy

meter at specified interval or ad-hoc. Specified interval

contains daily for daily energy snapshots, monthly for

billing data. Here ad-hoc means when data captured

instantly in case of any events like power off or power

on.

Attribute 2 is buffer which contains actual data. It is an

array which has meter data values as defined in

capture objects. The sequence of data is same as

defined in attribute 3.

 The maximum size of buffer is defined in attribute 8.

When buffer entry reached at maximum size the buffer

entry must be roll over in attribute 5(sort method)

manner by default it is first in first Out (FIFO).

Total entry present in buffer is defined by attribute

7(entry in use). Once buffer entry reaches maximum

size then entry in use is equal to profile entries.

Attribute 6 defined the sorting parameter of buffer.

7. CUSTOM PARSER FOR PROFILE GENERIC CLASS

We purposed custom parsing of profile data in form of

table. A table is made up of rows and columns. If you

think of a table as a grid, the column go from left to

right across the grid and each entry of data is listed

down as a row.

7.1 Columns

Columns [5] are defined to hold a specific type of data,

such as dates, numeric, or textual data. In the simplest

of definitions a column is defined by its name and data

type. Columns names can’t be duplicated in a table.

7.2 Rows

A table can contain zero or more rows [5]. When there

is zero, it said to be empty. There is not practical limit

on the number of rows a table can hold. There is no

guarantee that the rows in a table are stored in a

particular order.

In Profile generic class we mainly focused on attribute

2 and 3 for parsing data by custom parser. An attribute

3 capture object represents columns in table. Attribute

2 buffers consists of an array which act as a rows in

table

Example: Daily Load Profile data of meter [1]

DLMS APDU for Attribute 2:

01030203090C07E3031DFF000000FF80000005000

0011F050000014A0203090C07E3031CFF000000FF

800000050000011D05000001470203090C07E303

1BFF000000FF80000005000001180500000141

DLMS APDU for Attribute 3:

0103020412000809060000010000FF0F021200000

20412000309060100010800FF0F02120000020412

000309060100090800FF0F02120000

In capture object attribute 3 of daily Load Profile have

3 columns (Parameters)

1. Class id: 8 Logical Name: 0.0.1.0.0.255 Attribute:

2 (Date Time)

2. Class id: 3 Logical Name: 1.0.1.8.0.255 Attribute:

2 (Cumulative Active Energy)

3. Class id: 3 Logical Name: 1.0.9.8.0.255 Attribute:

2 (Cumulative Apparent Energy)

In buffer attribute 3 of Daily Load Profile have 3 rows

1. 0203090C07E3031DFF000000FF8000000500

00011F050000014A

2. 0203090C07E3031CFF000000FF8000000500

00011D0500000147

3. 0203090C07E3031BFF000000FF8000000500

0001180500000141

So when we convert it in to table format

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 05 | May -2019 ISSN: 2395-0126

© 2019, IRJEMS | www.irjems.com | Page 5

Table -2: Daily Load Profile

8: 0.0.1.0.0.255:2

Date Time

3: 1.0.1.8.0.255:2

Cum. Active

Energy

3: 1.0.1.9.0.255:2

Cum. Apparent

Energy

29/03/2019

00:00:00

287 330

28/03/2019

00:00:00

285 327

27/03/2019

00:00:00

280 321

8. CONCLUSIONS

In Custom Parser for Serialize data schema we have to

convert profile generic data into database table format.

So we convert DLMS APDU complex data into

intermediate language (tabular format) which is

captured by any UI (user interface) and show the meter

data to user.

The paper proposes only profile generic class data

custom parsing.

REFERENCES

[1] Data Exchange for Electricity Meter Reading, Tariff

and Load Control – Companion Specification,

Version 1.2, edition 2,2009

[2] DLMS User Association, COSEM Architecture and

Protocols, Eighth Edition.

[3] DLMS User Association, Identification System and

Interface Classes, Twelfth Edition, pp.64–68.

[4] http://www.dlms.com/information/whatisdlmsco

sem/index.html.

[5] https://www.essentialsql.com/what-is-a-

database-table/

	7. CUSTOM PARSER FOR PROFILE GENERIC CLASS
	8. CONCLUSIONS

