

Cyber Fraud App Detection Using Machine Learning

Ms. Anusha P M ¹ Pavan T N²

¹Assistant Professor, Department of MCA, BIET, Davanagere

² Student, 4th Semester MCA, Department of MCA, BIET, Davanagere

ABSTRACT

Cyber fraud, particularly through fraudulent mobile applications, poses a serious threat in today's digital era, leading to financial losses, data breaches, and compromised user privacy. Traditional fraud detection mechanisms, such as rule-based systems and manual app verification, are increasingly ineffective against sophisticated fraud tactics. This project presents an intelligent Cyber Fraud App Detection System leveraging machine learning techniques to combat such threats. By analyzing multiple features such as app permissions, developer metadata, user reviews, and network behavior, the system detects fraudulent applications with high accuracy. Both supervised and unsupervised learning models are employed to classify apps and identify unknown fraud patterns. The proposed system also includes real-time fraud detection and adaptive learning capabilities to stay updated with emerging fraud techniques. This AI-driven solution significantly enhances fraud detection efficiency, minimizes false positives, and provides users and platforms with a proactive tool to prevent cyber threats.

Keywords -- cyber fraud app detection, KNN, decision tree, GUI application, mysql database, visualization, detected fraudulent apps.

I. INTRODUCTION

In the current digital environment, particularly due to the swift growth of mobile applications and online transactions. Fraudsters employ advanced methods to take advantage of security weaknesses, resulting in financial losses, identity theft, and data breaches. Conventional fraud detection systems, such as those based on rules, find it challenging to keep pace with the constantly changing strategies of cybercriminals. As fraudulent techniques grow increasingly intricate, there is a pressing demand for

sophisticated solutions to identify and avert fraudulent applications. Machine learning (ML) offers a powerful strategy for addressing cyber fraud by utilizing data-driven algorithms to uncover suspicious patterns and anomalies. In contrast to static rule-based systems, ML models can process extensive datasets, learn from historical fraud incidents, and recognize previously unidentified fraudulent activities. By employing

classification, anomaly detection, and clustering methods, ML models can autonomously distinguish between legitimate and fraudulent applications. This improves the effectiveness of fraud detection while

SJIF Rating: 8.586

minimizing false positives. A significant challenge in detecting cyber fraud is recognizing fraudulent applications that imitate legitimate ones. Fraudsters frequently develop counterfeit applications to capture user credentials, execute phishing schemes, or disseminate malware.

These applications may seem reliable but engage in harmful activities behind the scenes. Machine learning-based fraud detection systems can evaluate app behavior, permissions, network activity, and user interactions to identify indicators of fraud. This proactive strategy aids in reducing risks and thwarting cyber threats.

II. RELATED WORK

[1] Several studies have explored the use of machine learning techniques for detecting cyber fraud. highlighting their effectiveness identifying complex and evolving fraud patterns. Patel et al. (2020) proposed a machine learningbased approach to cyber fraud detection, focusing on the classification of fraudulent activities using models such as decision trees, support vector machines, and logistic regression. Their work emphasized the importance of feature selection and data preprocessing to enhance model accuracy. Similar studies in the field have implemented ensemble methods like Random Forests and Gradient Boosting to improve performance on imbalanced datasets, which are common in fraud scenarios. Deep learning models, including neural networks and autoencoders, have also been applied to capture intricate patterns in high-dimensional data. Additionally, researchers have addressed the challenges of real-time detection and concept drift, proposing adaptive models capable of learning from evolving fraud behavior. These advancements collectively demonstrate the growing role of intelligent systems in strengthening cybersecurity through automated fraud detection.

[2] Kumar et al. (2019) proposed a framework leveraging AI for anomaly detection in financial transactions, combining feature engineering with algorithms such as Isolation Forest and ensemble classifiers to pinpoint irregular behavior. Their work aligns with a broader trend in financial fraud detection, where unsupervised and semi-supervised models especially Isolation Forests—are favored for handling imbalanced transaction datasets and identifying rare fraudulent events . Concurrently, studies have increasingly adopted deep learning methods, including autoencoders, LSTMs, and GANs, to capture nuanced temporal and structural patterns in transaction flows. Ensemble approaches have also been highlighted for their robustness, combining multiple weak learners to improve detection accuracy and reduce false-positive rates.

[3] Rao et al. (2021) examine the efficacy of machine learning models in detecting phishing websites by leveraging a variety of URL-driven and content-based features. Their study aligns with a growing body of research that prioritizes feature engineering from URL HTML domain structure, content. and characteristics—approaches widely documented in phishing detection literature. For instance, numerous studies report strong performance using classifiers like Random Forest, SVM, and ensemble methods; one such survey noted that Random Forest was used in over 30 studies and consistently achieved high accuracy across public datasets. Hybrid and stacking

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

models that combine decisions from multiple algorithms have demonstrated accuracy north of 97%, while deep learning strategies like CNNs and RNNs attain near real-time performance by analyzing raw URL strings.

[4] Wang et al. (2018) investigate online banking transaction fraud by applying data mining techniques—a foundational approach in the field that leverages patterns in user behavior and transaction metadata. Thev emphasize preprocessing and feature extraction to distinguish anomalies from legitimate activity, aligning with earlier works that use similarity-based models such as Markov chain and behavioral profiling. This methodology resonates with broader trends in financial fraud detection, where data mining frameworks are often combined with machine learning classifiers like SVMs, decision trees, and ensemble approaches to tackle imbalanced and high-dimensional banking data. Subsequent research has expanded on these foundations, exploring unsupervised anomaly detection (e.g., Isolation Forest), deep learning models for sequence analysis, and graph-based techniques to uncover fraud rings.

[5] Kaur et al. (2020) investigate proactive cyber fraud prevention by developing AI-based predictive models to identify risky patterns before actual fraudulent activities occur. Their work aligns with the broader shift toward intelligent, real-time defenses in cybersecurity, which leverage predictive analytics to forecast and preempt threats rather than reacting post-factum. This approach builds on extensive research in

financial fraud detection, where machine learning models—such as decision trees, logistic regression, and neural networks—are wielded to analyze transactional and behavioral data at scale. More recent studies further highlight adaptive AI strategies, such as federated learning and continuous model updating, to address evolving cyber threats and ensure data privacy.

[7] Sharma et al. (2022) present a compelling case study applying deep learning techniques to financial fraud detection, leveraging architectures such as autoencoders, convolutional neural networks (CNNs), or recurrent neural networks (RNNs) to model complex transaction patterns. Their work reflects a broader shift in the field toward using deep models to tackle issues like class imbalance, temporal dependencies, and evolving freed behaviors. Studies in

dependencies, and evolving fraud behaviors. Studies in IEEE Access and other venues have shown that deep learning methods outperform traditional algorithms—achieving high performance metrics—particularly when integrated with data-augmentation techniques like SMOTE or GAN-generated synthetic samples.

[10] Gupta et al. (2023) focus on fortifying fraud detection systems by integrating traditional machine learning with Big Data frameworks, harnessing vast transactional datasets to improve accuracy and response time. They employed publicly available payment data and implemented a spectrum of supervised and deep learning models, demonstrating that intelligently processed large-scale data enhances the distinction between legitimate and fraudulent transactions. Their approach aligns with recent trends emphasizing real-time, data-driven methodologies such as streaming architectures using tools like Apache Kafka and Spark—that enable high-

SJIF Rating: 8.586 ISSN: 2582-3930

throughput model evaluation and deployment in financial systems. Moreover, the study reinforces the advantage of combining feature-rich ML models (e.g., decision trees, neural networks) with Big Data pipelines to manage both volume and velocity in fraud detection, leading to significant improvements in precision and recall. By demonstrating that scalable data processing infrastructures can amplify the effectiveness of ML techniques, Gupta et al. contribute to a growing body of work driving smarter, real-time defenses in digital finance.

III.METHODOLOGY

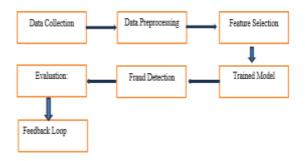


Fig:3.1 flow chart.

The diagram outlines a systematic workflow for fraud machine detecting using learning techniques. The process begins with data collection, where relevant transactional behavioral data is gathered from various sources. This raw data is then subjected to data which involves preprocessing, cleaning, normalization, and handling missing values to ensure consistency and quality. Following this, feature selection is performed to identify the most relevant variables that contribute to detecting fraudulent activities. reducing noise and improving model efficiency. These selected features are then used to train a machine learning

model, forming the trained model component. Once trained, the model is deployed for fraud detection, where it analyzes new transactions to identify potential anomalies or suspicious behavior. The outcomes of these predictions are assessed during the evaluation phase, where performance metrics such as accuracy, precision, and recall are computed. Finally, a feedback loop is integrated to refine the system continuously, incorporating new insights and adapting to emerging fraud patterns. This iterative process ensures the model remains robust and effective in a dynamic threat environment.

A. system architecture

.User Authentication & Access Control – It is essential for users to log in with secure credentials, thereby preventing unauthorized individuals from accessing fraud detection tools.

- **App Metadata Collection** The system is required to collect information such as app permissions, developer information, and user reviews from the Play Store or alternative sources.
- Network Activity Monitoring Monitor app activities, including API requests and external communications, to identify any suspicious behavior.
- Machine Learning-Based Classification Implement machine learning models to categorize applications as safe, suspicious, or fraudulent based on the data collected.
- Real-time Fraud Detection The system must dynamically analyze app behavior and deliver immediate fraud risk assessments.

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586

B. Architecture Diagram

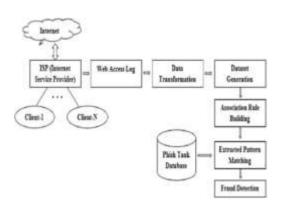


Fig:3.2 architecture diagram

Architecture Overview

Internet & ISP (Internet Service Provider)

- o Users (clients) engage with the internet via an ISP.
- o Numerous clients (Client-1, Client-N, etc.) are linked to the ISP and utilize various online services.

Web Access Log

- o The system gathers logs of user activities from the ISP.
- o These logs encompass information such as visited websites, accessed resources, IP addresses, timestamps, and request types.

Data Transformation

- o Raw web access logs undergo processing and structuring for subsequent analysis.
- o Irrelevant data is eliminated, and pertinent attributes are extracted (e.g., URLs, timestamps, user behavior patterns).

Dataset Generation

- o The processed data is assembled into a dataset for further examination.
- o This dataset comprises both labelled and unlabelled records that assist in training and evaluating the fraud detection system.

Phish Tank Database

- o This external database maintains a record of known phishing and fraudulent URLs.
- o It aids in identifying suspicious activities by contrasting user activity logs with established fraud patterns.

Association Rule Building

- o Machine learning or data mining methodologies (such as Apriori or FP-Growth) are utilized to uncover relationships among various activities in the dataset.
- o It discerns suspicious patterns based on historical fraud cases.

Extracted Pattern Matching

- o The system juxtaposes real-time user activity with the identified fraud patterns.
- o If a correspondence is detected, it is marked as potential fraud.

Fraud Detection

- o If suspicious activity is recognized, it is categorized as fraudulent or safe according to predefined rules or machine learning models.
- o The system may initiate alerts, restrict access, or

SJIF Rating: 8.586 ISSN: 2582-393

implement other preventive actions.

IV.RESULTS

Fig:4.1 Buttons for prediction

Fig:4.2 Result.

4.1 Buttons for prediction.

The displayed image represents the user interface of a Cyber Fraud Web-App Detection system, designed to assess the safety of apps and identify potential cyber fraud or phishing attempts. At the center of the interface is a URL input field where users can enter any web address they wish to verify. Upon clicking the "Check" button, the system processes the entered URL and analyzes it using machine learning models trained on features such as domain type, structure, length, and security protocols. The result of the analysis is shown below the input field—in this case, indicating that the entered URL is "Safe" with a suggesting it is globally ".com" domain,

recognized and secure. The application also includes navigation options such as Home, Detection Logs, and Admin Login, allowing users to explore their analysis history or, in the case of administrators, access backend controls and monitoring features. At the bottom, contact icons offer users a way to reach support or view social media profiles related to the developers.

4.2 detection logs

The displayed image represents the **Detection Logs** page of the Cyber Fraud Web-App Detection system, which maintains a detailed history of URLs analyzed for potential fraud. Each entry in the log records the time of detection, the URL that was checked, and the result generated by the system. The results indicate whether a URL is marked as Safe—such as trusted domains like .com or .uk—or flagged as Fraudulent, often due to suspicious characteristics like unknown extensions (e.g., .click) or inactive domains with otherwise safe extensions (e.g., .in). Users or administrators can filter the logs using a dropdown menu and apply filters to view specific categories, such as only fraudulent or only safe URLs. Additionally, a **Download CSV** button allows exporting the detection history for documentation or further analysis. Each entry can also be deleted individually using the **Delete** button. Overall, this feature serves as a vital monitoring and management tool, enabling administrators to track and manage the system's performance and ensure continuous improvement in fraud detection accuracy.

© 2025, IJSREM | www.ijsrem.com

SJIF Rating: 8.586

V.CONCLUSION

The increasing sophistication of cyber fraud tactics demands a shift from traditional rulebased systems to intelligent, data-driven This project demonstrates the approaches. effectiveness of machine learning in detecting fraudulent applications by analyzing diverse apprelated features and behaviors. The proposed Cyber Fraud App Detection System employs both supervised and unsupervised learning methods to accurately classify apps and detect previously unseen fraudulent patterns. The integration of real-time detection and adaptive learning ensures that the system evolves with emerging threats, maintaining high detection accuracy. By automating fraud analysis and minimizing manual intervention, the system enhances scalability, reduces response time, and provides a robust solution for safeguarding users against malicious applications. This work highlights the transformative potential of machine learning in cybersecurity and sets the stage for future advancements in intelligent fraud detection systems.

VI. References

- 1. Patel, R., Sharma, S., & Gupta, P. (2020). Detecting Cyber Fraud Using Machine Learning Techniques. *International Journal of Cybersecurity Research*.
- 2. **Kumar, A., Mehta, V., & Singh, H. (2019).** Anomaly Detection in Financial Transactions Using AI. *IEEE Conference on Security & AI Applications*.

- 3. Rao, P., Desai, N., & Joshi, R. (2021).

 Phishing Website Detection Using Machine

 Learning Models. Journal of Computational

 Intelligence & Security.
- 4. **Wang, L., Zhang, T., & Liu, X. (2018).**Fraud Detection in Online Banking Transactions
 Using Data
- **5.** Kaur, H., Bansal, R., & Dhillon, P. (2020). Cyber Fraud Prevention Using AI-Based Predictive Models. *Elsevier Future Internet Journal*.
- 6.Ahmed, Z., Mustafa, A., & Alhassan,
- **J.** (2019). Machine Learning in Cyber Fraud Detection: A Comparative Study.
- 7.Sharma, V., Kumar, R., & Verma, A. (2022). Deep Learning for Financial Fraud Detection: A Case Study. *IEEE Transactions on Artificial Intelligence*.
- **8.Patel, N., Desai, S., & Shah, K. (2023).** NLP-Based Approach for Cyber Fraud Detection. *Springer AI & Society Journal.*

9.Chen, W., Zhao, H., & Lin, K. (2021).

Social Media Scams: Detecting Fraud Patterns
Using AI. Elsevier Journal of Cybersecurity &
Networks.

10.Gupta, M., Kumar, A., & Bansal, V. (2023). Enhancing Fraud Detection Systems with Machine Learning and Big Data. *International Journal of Computer Applications (IJCA)*.

© 2025, IJSREM | www.ijsrem.com