
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Cybersecurity Portal for Effective Management of Servers and Firewalls

Sterlin Minish T N

Assistant Professor

Computer Science and Engineering
Presidency University

India

Sterlinminish@presidencyuniversity.in

Gautham C N
Computer Science and Engineering

Presidency University

India

Gauthamcn49@gmail.com

Jyotsna Banakar

Computer Science and Engineering
Presidency University

India

Jjbanakar@gmail.com

Vaibhav Bharadwaj

Computer Science and Engineering

Presidency University
India

Vaibhavbharadwaj25@gmail.com

Abstract—This paper presents the design and development

of a cybersecurity portal specifically tailored for the centralized

management of server infrastructures and firewalls in

institutional data centres. With increasing cyber threats and the

complexity of distributed IT environments, organizations such

as the All-India Council for Technical Education (AICTE)

require a scalable, secure, and integrated platform to monitor,

authenticate, and control infrastructure endpoints. The portal

integrates functionalities like server status monitoring, firewall

rule visualization, secure user authentication via OTP, and

redirection to threat intelligence services such as VirusTotal.

Built using Flask, SQLite, and Flask-Mail, the system simulates

real-time API integrations and provides a prototype for

potential large-scale implementations in governmental or

academic settings.

Keywords— Cybersecurity, Server Monitoring, Firewall

Management, Flask Web Portal, OTP Authentication,

Infrastructure Management, AICTE, VirusTotal API

I. INTRODUCTION

A. Background

The growing reliance on digital infrastructure within
educational and governmental institutions has led to the
accumulation of critical data and sensitive operations. AICTE,
as a centralized authority overseeing thousands of colleges,
must manage its data center infrastructure with strict security,
compliance, and reliability. However, challenges such as
fragmented monitoring systems, manual interventions, and
lack of real-time threat integration.
To address these issues, we present a unified web-based
cybersecurity portal that combines intuitive UI, secure
authentication, and real-time server/firewall management,
simulating the needs of centralized educational infrastructure
governance.

II. PROBLEM STATEMENT

The All India Council for Technical Education (AICTE)

plays a pivotal role in overseeing and protecting the digital
infrastructure and data associated with technical education

institutions throughout India. To maintain a strong

cybersecurity posture, AICTE requires a unified and

comprehensive system capable of managing core

infrastructure elements—such as servers, firewalls, load

balancers, software licenses, and user access controls. This

system, typically referred to as a Data Center Infrastructure

Management (DCIM) Portal, is essential for effective

oversight of IT assets.

However, existing approaches to infrastructure management

within AICTE face several limitations, which pose risks to

operational efficiency and cybersecurity. These include:

1. Lack of Centralized Infrastructure Oversight:

Current infrastructure management practices may be

disjointed, relying on multiple, uncoordinated tools

to manage key components like servers, firewalls,

and load balancers. This fragmentation results in

operational inefficiencies, inconsistencies, and

exposure to potential security gaps.
2. High Dependence on Manual Processes: Without

an integrated platform, many tasks—including

system provisioning, resource monitoring, patch

management, and license tracking—are conducted

manually. These labor-intensive activities consume

valuable human effort and increase the likelihood of

errors.

3. Insufficient Visibility and Monitoring

Capabilities: The absence of a unified portal hinders

real-time monitoring and comprehensive visibility

into infrastructure performance and security. This

makes it difficult to detect anomalies early or

respond proactively to emerging threats.

4. Challenges in Software License Compliance:

Managing licenses without a centralized platform

can result in inefficient usage, unintentional policy

violations, or unnecessary expenses stemming from

duplicated or underutilized software purchases.

5. Inadequate Access Control Mechanisms: Proper

user access control—including role definitions,

permission management, secure authentication, and

activity logging—is essential. Without a centralized
system, ensuring secure access and maintaining

detailed audit trails becomes significantly more

challenging, increasing the risk of privilege misuse

or unauthorized access.

http://www.ijsrem.com/
mailto:Sterlinminish@presidencyuniversity.in
mailto:Gauthamcn49@gmail.com
mailto:Jjbanakar@gmail.com
mailto:Vaibhavbharadwaj25@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

III. RESEARCH GAPS OF EXISTING METHODS

Despite the availability of numerous network monitoring,

infrastructure visualization, and cybersecurity management

tools, educational institutions and public sector bodies in

India remain underserved. The gap lies not just in

technological availability, but in relevance, affordability,

contextual fit, and ease of deployment.

3.1 Institutional Disconnect in Tool Design

Most of the tools available today are designed for enterprise-

level IT ecosystems—systems that assume continuous power

supply, high-speed internet, trained IT staff, and centralized
governance. Institutions like AICTE function under a multi-

tier administrative hierarchy, where control is delegated to

regional bodies, technical institutions, and campus units.

Existing tools often fail to:

• Represent decentralized deployment structures

• Enable local autonomy over security rules (like

firewall exceptions)

• Integrate with public sector infrastructure

constraints (e.g., non-cloud servers, reliance on

email for credentials)

3.2 Over-Reliance on Single-Factor Authentication

Cybersecurity best practices globally emphasize Multi-Factor

Authentication (MFA), especially for administrator access.

Despite this, most educational dashboards and portals still use

simple email-password login systems.
Risks Include:

• Credential reuse across platforms

• Susceptibility to phishing attacks

• Brute-force vulnerabilities from exposed login

pages

AICTE’s decentralized system, where login credentials may

be shared among multiple personnel per institution, increases

the need for OTP-based or biometric verification systems.

Yet, no academic infrastructure portal natively supports these

measures.

3.3 Fragmented Operational Monitoring

A complete cybersecurity solution must involve:

• Server health (uptime, load, performance)

• User access logging

• Firewall and port activity

• Threat correlation

Tools like Zabbix or Nagios specialize in one or two of these.

Even in academic deployments, server health may be tracked,

but access logs or firewall rules are still managed manually

or not at all.
Result:

A disjointed view of the infrastructure, where cyber events
cannot be correlated across components. For example, a
firewall denial event cannot be traced to CPU load or login
attempts within the same interface.

3.4 No Simulated Environment for Training or Testing

Cybersecurity preparedness in government systems involves

not just deployment but training. In reality:

• Admin staff have little exposure to tools used in

high-level threat detection.

• There is no safe sandbox for students or junior staff

to test operations without risking actual servers.
What’s missing:

• API-driven simulated infrastructure

• Mock data generators for firewall and server metrics

• Frontend-based interfaces for demos or assignments

This lack of simulation inhibits both research and institutional

training.

3.5 Minimal Usage of Threat Intelligence APIs

Real-time threat detection no longer relies solely on local

logs. External sources—VirusTotal, AbuseIPDB, IBM X-

Force, Shodan—offer updated databases of malicious

domains, IPs, files, and patterns.
Yet, most academic dashboards:

• Do not include even redirection to these platforms

• Do not fetch or correlate reputation scores

• Fail to log external lookups for auditing

There is a significant knowledge-action gap here: the

awareness of such services exists in academia, but

implementation in institutional tech is nearly zero.

3.6 High Complexity of Setup for Open Tools

Even where free tools exist (Nagios, LibreNMS, Grafana):

• Configuration is CLI-based

• Deployment requires system admin knowledge
(shell scripting, daemon management)

• Monitoring agents must be installed manually

across devices

Such overhead discourages institutions from deploying them

entirely. In AICTE-type structures, which may serve

thousands of connected systems across states, deployment

feasibility must be automated or GUI-driven.

3.7 Lack of Modular, Extensible Portals

Academic and government portals tend to be:

• Monolithic (no plugin/add-on support)

• Legacy-coded (PHP, Java JSP)

• Insecure (no HTTPS, no access logging)

These factors prevent future upgrades, security patches, or

API integrations. Most importantly, there is no common

framework or template to build from.

3.8 Real-World Example of Failure

In 2021, multiple Indian universities faced ransomware

attacks that went undetected for hours due to a lack of

centralized monitoring. Servers were running independently,

with no alerts, and no API to escalate threats to central
authorities.
Key contributing factors:

• No dashboard visibility

• No MFA

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

• No integration with DNS/IP reputation databases

• No automated threat redirection

IV. PROPOSED METHODOLOGY

The proposed system is a web-based cybersecurity portal

built using the Flask microframework in Python, with an

emphasis on modularity, usability, security, and extensibility.
The design follows a layered and functional architecture to

isolate concerns, improve maintainability, and enable future

integrations. This methodology targets low-resource

environments like AICTE-affiliated institutions, which may

not have full-fledged IT teams or scalable infrastructure. The

system provides secure access, centralized infrastructure

visibility, simulated threat environments, and ease of

deployment.

4.1 Architectural Philosophy

The portal is designed using the following architectural

principles:

• Modular Design: Each feature (authentication,

monitoring, threat lookup) is isolated in separate

Flask routes and templates. This allows easy

upgrades or replacements.

• MVC Pattern: While Flask is not a strict MVC

framework, the project is loosely organized into:

o Models (SQLAlchemy-based DB classes)

o Views (Jinja2 templates)

o Controllers (Flask routes and logic)

• Lightweight Backend: No large libraries or

compiled frameworks. Runs with Flask, SQLite, and

core Python.

• Simulated Infrastructure: Uses a local API to

generate real-time-like data to reflect the status of
servers and simulate AICTE behavior.

4.2 System Modules

4.2.1 User Authentication Module

Objective: Prevent unauthorized access using email-based
OTP verification.
Mechanism:

• Passwords are securely hashed using Werkzeug’s

generate_password_hash() with SHA256.

• Upon successful password entry, a random six-digit

OTP is generated and stored temporarily in the

user’s record.

• This OTP is sent to the registered email using Flask-

Mail, configured with Gmail SMTP and App

Password authentication.

• The user is redirected to an OTP verification page.

If OTP matches, Flask-Login’s login_user() method
creates a secure session.

Security Aspects:

• OTPs expire upon successful use or session timeout.

• Email credentials are hidden using environment

variables.

• OTP verification route is protected with session

checks.

Why This Matters:

• It introduces a basic form of MFA — a necessity in

any portal with administrative privileges.

4.2.2 Server Monitoring Module

Objective: Provide visibility into the operational state of

critical infrastructure.
Implementation:

• A mock server monitoring API (aicte_mock_api.py)

exposes endpoints like /aicte/server-status.

• The API returns JSON with simulated CPU usage,

memory stats, uptime, and operational state
(Running/Stopped).

• Flask route /servers fetches this data using the

requests library.

• The data is displayed in a structured table within
servers.html.

Why Simulation?

• Institutions can train staff or demonstrate

monitoring without needing access to live

production infrastructure.

• AIC-like environments can be replicated safely.

Scalability:

• Can be upgraded to use psutil or paramiko to fetch

live server data over SSH.

4.2.3 Firewall Rule Management Module

Objective: Enable administrators to view, understand, and

plan firewall policies.

Data Model:

• FirewallRule table stores:

o ip_address

o port

o action (Allow/Deny)

o is_active (Boolean)

Functionality:

• Route /firewall pulls rules from the database.

• Renders a visual table in firewall.html showing all
active/inactive rules.

• Prepares ground for CRUD

(Create/Read/Update/Delete) interfaces in future

versions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

Why This Matters:

• Institutions rarely maintain updated visual records

of their firewall policies.

• Most use raw config files or outdated logs — prone

to errors or oversight.

4.2.4 VirusTotal Threat Lookup Module

Objective: Connect administrators with real-time external

threat databases.
Implementation:

• A Flask route /scan-ip redirects to

https://www.virustotal.com.

• No API key is used in this version (avoids quota

issues and complexity).

• Future versions can integrate API-based lookups of

IPs/domains/hashes.

Academic Relevance:

• Helps institutions adopt cyber threat awareness

practices.

• Acts as a bridge between passive logging and

proactive research.

4.2.5 Dashboard and Navigation

Objective: Serve as the control center of the portal.

Details:

• /dashboard is accessible only after OTP login.

• Contains links to all major modules: Server

Management, Firewall, VirusTotal, Logout.

• Personalized greeting shows user’s email to confirm
session.

•

UI Principles:

• Pastel themes

• Clean typography

• Mobile-responsive elements (for deployment on

tablets or small laptops)

V. OBJECTIVES

• Develop a secure, responsive web portal using Flask and

SQLite.

• Simulate a real-world AICTE server for demonstration and

academic use.

• Allow visualization of firewall rules with clear status labels

(Allow/Deny).

• Implement MFA using OTP to the registered email for

authentication.

• Redirect users to VirusTotal as a gateway to real-time

cybersecurity research.

• Ensure extensibility to deploy in other educational or

government institutions.

VI. SYSTEM DESIGN & IMPLEMENTATION

The system design focuses on modular development, secure

interaction, and educational utility. Each component is

designed to be easily maintainable, extensible, and

deployable by public sector institutions with limited

infrastructure or technical manpower. The system is

implemented using Flask, Python, SQLite, HTML/CSS, and

Flask-Mail, ensuring cross-platform compatibility and

minimal dependency overhead.

6.1 High-Level Architecture Overview

The portal is structured into five core modules:

1. Authentication Module – Handles login and OTP-

based multi-factor authentication.

2. Dashboard Module – Provides users with

navigation and control over all portal features.

3. Server Monitoring Module – Displays current

server status and metrics using simulated APIs.

4. Firewall Management Module – Visualizes

firewall rule entries from a local database.

5. Threat Intelligence Module – Enables redirection

to VirusTotal for external threat investigation.

6.2 User Authentication and OTP System

• Login Input: Email and password.

• Verification: Email is checked in SQLite database,

and password is validated using hashed comparison.

• OTP Generation: A 6-digit numeric OTP is

generated using random.randint().

• OTP Delivery: Sent via Flask-Mail through Gmail

SMTP with an App Password.

• Verification: User must input the OTP on a separate

/verify-otp page to gain access.

Security Notes:

• Password are hashed using

generate_password_hash() (SHA256).

• OTPs are never stored in plain text and are

invalidated after successful use.

• Session is managed using Flask-Login.

6.3 Dashboard System

• Accessible only after successful OTP

authentication.

• Routes:

o /dashboard: The authenticated home route,
where the user is welcomed and presented
with navigational links to:

• Server Monitoring (/servers)

• Firewall Management (/firewall)

• VirusTotal Threat Intelligence

(/scan-ip)

• Logout (/logout)

• The dashboard uses Jinja2 templating with a clean

pastel-themed UI for user-friendly interaction.
UI Layout Features:

• Card-based layout for each module

• Personalization via dynamic user email display

http://www.ijsrem.com/
http://www.virustotal.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

• Link buttons styled with hover effects to improve

accessibility

6.4 Server Monitoring Module

• oute: /servers

• Function:

o Sends a GET request to a local API
(http://127.0.0.1:5001/aicte/server-status)

o Fetches simulated JSON data for:

• Server Name

• Status (Running/Stopped)

• CPU Usage (%)

• Memory Usage (%)

o The server data is presented in a table on
servers.html

Simulation Logic:

• The mock API dynamically generates pseudo-

randomized performance values on every call to
simulate real server fluctuations.

Scalability:

• This module can be extended by:

o Integrating psutil to fetch live stats from
host systems

o Pulling from remote endpoints via SSH
using paramiko

o Storing server logs and visualizing trends
with Chart.js

6.5 Firewall Rule Viewer Module

• Route: /firewall

• Function:

o Queries all entries in the firewall_rules
table

o Fields:
▪ IP Address
▪ Port

▪ Action (Allow/Deny)

▪ is_active (True/False)

o Outputs a responsive HTML table
(firewall.html) showing the rules

o IP reputation scores

o Auto-alerts on blacklisted domains
Justification:

• Most institutions are unaware or untrained in using

such platforms despite their free access.

6.3.6 Logging and Session Management

o Flask’s built-in session management is used to track
user login and OTP validation.

o Optional log entries (expandable in future work):

• Login attempts

• OTP dispatch timestamps

• Page accesses by user session ID

6.6 Development and Deployment Strategy

Local Testing:

• Developed and tested using:

o Python 3.11.3

o Windows 11 (x64)

o VS Code IDE

• Flask run in debug mode for real-time reloading

Deployment Possibilities:

• Lightweight VMs (2GB RAM)

• Railway.app, Render.com (Flask-compatible)

• Cloud VMs or shared campus servers

Packaging:

• Single app.py file with template folder

• No containerization needed for deployment

6.6 Functional Flow Diagram

Use Case:

• Allows system administrators to visualize current firewall

posture at a glance.

• Can be linked in the future to:

o Real-time rule updates

o Logs of dropped/allowed packets

o Port scan alerts

6.3.5 VirusTotal Threat Lookup Module

• Route: /scan-ip

• Redirects to: https://www.virustotal.com

• Purpose:

o Simplifies navigation from internal
infrastructure to external threat intelligence
tools.

o Encourages security teams to verify
suspicious IPs/domains.

Future Upgrade Path:

• Implement VirusTotal’s REST API for:

o Hash scans

Fig) 1.0

http://www.ijsrem.com/
http://127.0.0.1:5001/aicte/server-status)
http://www.virustotal.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

VII. OUTCOMES

This section presents the tangible outcomes derived from
the development, testing, and demonstration of the
cybersecurity portal. It focuses on functionality achieved,
system performance, academic utility, and real-world
deployment potential. These outcomes validate the
methodology and objectives defined in previous sections.

7.1 Functional Outcomes

The portal successfully integrates core infrastructure

management components in a secure and accessible manner.

Each module was validated through multiple iterations of

development and testing in a local environment.

Fig) 2.0

7.2 User Experience Outcomes

To assess the usability of the system, feedback was collected

from peers and academic stakeholders (faculty or students

with basic knowledge of cybersecurity). Key points of

feedback include:

• “Intuitive interface for navigation.”

• “No need for command-line configuration — that’s

a big win.”

• “Simulated server data was helpful for

understanding real-world metrics.”

• “Easy to set up with no external servers or cloud

dependencies.”

7.3 Security Improvements

Before this system, administrators managing academic

infrastructure typically used shared passwords, unsecured

local logins, or no firewall visibility at all. This portal

significantly improves the following:

• Secure access via OTPs, ensuring that only verified

users interact with infrastructure components.

• Clear visibility into firewall policies to reduce

misconfiguration and unauthorized exposure.

• Awareness of threat intelligence through the

VirusTotal integration.

7.4 Academic and Educational Utility

The system has immense potential for being integrated into:

• Cybersecurity Lab courses as a training tool.

• Final-year academic projects demonstrating portal-

based architecture.

• Workshops on server security and incident response.

• Administrative IT audits or internal infrastructure

reviews.

VIII. RESULTS AND DISCUSSIONS

The cybersecurity portal developed as part of this research

project was tested thoroughly for functionality, performance,

usability, and resilience. The results of this testing confirm

that the system successfully meets the design objectives and

demonstrates potential for both academic training and

practical institutional deployment.

The portal’s core modules — login with OTP, dashboard

navigation, server status monitoring, firewall rule display,

and VirusTotal integration — each functioned as intended.

Users were able to log in using email and password, receive

a one-time password (OTP) via email through Gmail SMTP,

and access the secure dashboard only upon correct OTP

verification. Once logged in, users could view live-like server
statistics pulled from a simulated API and interact with a

simple, visually organized interface to review firewall rule

configurations.

From a performance standpoint, the portal was tested on a

standard laptop running Windows 11 with 8 GB of RAM and

a mid-range processor. During operation, the application

maintained low CPU and RAM usage, indicating suitability

for resource-constrained environments like campus offices or

shared college servers. Page transitions were fast, with the

average page rendering time staying under half a second.

OTP delivery was consistent, taking approximately 2 to 3
seconds on average to reach the user’s email inbox — well

within acceptable bounds for secure authentication.

In terms of user experience, informal usability tests were

conducted with six individuals — including faculty members,

IT support staff, and students. Most users had minimal or no

prior experience with Flask-based applications. Feedback

was overwhelmingly positive. Users appreciated the portal’s
clarity, ease of navigation, and the minimal learning curve

required to understand its features. Many found the OTP

system both reassuring and practical, while others noted that

visualizing firewall rules in a table instead of navigating raw

system files was a considerable improvement.

The system’s behavior in failure conditions was also

examined. In cases where the internet connection was
disabled and email delivery failed, the portal responded with

user-friendly flash messages indicating the issue, rather than

crashing or becoming unresponsive. Similarly, when the

simulated AICTE API was turned off, the portal caught the

error and displayed a fallback message, maintaining a smooth

user experience. These behaviors illustrate that the system

has been built to gracefully handle exceptions — a crucial

aspect of real-world deployment.

Despite its achievements, the portal has a few limitations. For

instance, the current version uses a simulated API to fetch

server metrics rather than integrating with real-time system

monitoring tools like psutil or SNMP. The OTP system does

not yet have time-bound expiration logic; it remains valid

until logout. Firewall management is limited to read-only

viewing, with no create, update, or delete operations.

Additionally, while the VirusTotal integration enables

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

redirection to the external threat intelligence platform, it does

not yet support internal scanning using API keys.

These limitations are not critical for the intended use case —

that is, academic demonstration and administrative adoption

in lower-risk institutional environments. However, they do

present opportunities for enhancement, especially in scaling

the portal for national-level education bodies or integrating it

into hybrid cloud infrastructures.

Overall, the results show that the cybersecurity portal is

stable, lightweight, secure, and practical. It meets the primary

goals of improving infrastructure visibility, implementing

secure access control, and introducing administrators to

threat intelligence practices. The combination of technical

completeness, educational value, and low deployment

overhead makes the portal an ideal candidate for widespread
use in educational institutions, IT training labs, or as a

teaching tool in cybersecurity curricula.

IX. CONCLUSION AND FUTURE SCOPE

This research project culminated in the design, development,

and successful deployment of a lightweight, modular, and

educationally relevant cybersecurity portal tailored for

institutional infrastructure management. The system

addresses longstanding gaps in how organizations—

particularly those in the academic and public sectors—handle

server monitoring, firewall rule visibility, and secure access

control.

The portal's architecture integrates core cybersecurity

functionalities into a unified web interface that can be

deployed with minimal resources. Its modular build ensures

that institutions can use only the parts they need—such as

login with OTP authentication, server status visualization,

firewall rule inspection, or threat intelligence redirection—

without being forced to adopt a complex, full-stack

monitoring system. The use of Flask and SQLite further
simplifies deployment and maintenance, especially for

organizations that lack full-time IT teams or rely on basic

computing infrastructure.

This project successfully implemented a secure login system

using email and one-time passwords (OTP), eliminating the

common vulnerability of single-factor authentication. It

introduced a simulated API mimicking AICTE's

infrastructure, allowing real-time-like server data to be

accessed and displayed for training and visualization. A

dedicated firewall viewer helped administrators track and

interpret access policies, and the inclusion of redirection to

VirusTotal empowered users to leverage global threat
intelligence platforms as part of their decision-making

process.

Beyond just functionality, this system demonstrated a shift in

how cybersecurity education and practice can be approached.

By enabling simulation, hands-on interaction, and a user-

friendly interface, it reduces the entry barrier for students,

faculty, and administrators alike to engage with essential
cybersecurity tools. The portal is not just a monitoring

interface—it’s also a scalable template for curriculum

integration, lab demonstrations, or internal IT audits.

Nevertheless, there are improvements yet to be implemented.

The current portal does not include automatic alerting

mechanisms, role-based access control, or real-time log

analytics. OTPs are not time-restricted and do not expire

unless manually logged out. The system’s interaction with

VirusTotal is limited to basic redirection, lacking full API
integration to query threat scores from within the dashboard

itself. These are all enhancements that fall within the future

development scope.

In future versions, the portal can be containerized using

Docker to ensure environment consistency and ease of

deployment across institutions. It could incorporate live data

monitoring from servers via psutil, SNMP, or paramiko,

thereby converting simulation into production-ready

intelligence. A reporting module could generate PDF or CSV

reports for audits or internal reviews. Threat analytics

integration through APIs like AbuseIPDB or IBM X-Force

would also add immense value for proactive security

planning. Furthermore, enhancements such as role-based
access control and session management could strengthen

administrative control and internal compliance.

The portal also holds value at the national level.

Organizations like AICTE could adopt this system or its

evolved versions as a recommended infrastructure for all

affiliated institutions. Doing so would not only standardize

cybersecurity practices across colleges but also contribute

toward India’s broader digital initiatives, including Digital

India and the National Cybersecurity Policy.

In conclusion, this project lays the groundwork for a scalable,

open-source cybersecurity portal that is equally useful in

academic settings and real-world institutional environments.

It bridges the gap between theoretical cybersecurity

knowledge and practical implementation while fostering a

mindset of proactive, accessible, and transparent

infrastructure management.

ACKNOWLEDGMENT

“Acknowledgment(s)” is spelled without an “e” after the
“g” in American English.

As you can see, the formatting ensures that the text ends in
two equal-sized columns rather than only displaying one
column on the last page.

This template was adapted from those provided by the
IEEE on their own website.

REFERENCES

[1] 1. Orchestrating Collaborative Cybersecurity: A Secure Framework for
Distributed Privacy-Preserving Threat Intelligence Sharing - Trocoso-
Pastoriza, Juan & Mermoud, Alain & Bouyé, Romain & Marino,
Francesco & Bossuat, Jean-Philippe & Lenders, Vincent & Hubaux,
Jean-Pierre. (2022). Orchestrating Collaborative Cybersecurity: A
Secure Framework for Distributed Privacy-Preserving Threat
Intelligence Sharing. 10.48550/arXiv.2209.02676.

[2] 2. SeCTIS: A Framework to Secure CTI Sharing- Arikkat, Dincy &
Cihangiroglu, Mert & Conti, Mauro & Rehiman K A, Rafidha &
Nicolazzo, Serena & Nocera, Antonino & Vinod, P.. (2024). SeCTIS: A
Framework to Secure CTI Sharing. 10.48550/arXiv.2406.14102.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 8

[3] 3. Distributed Security Framework for Reliable Threat Intelligence
Sharing- Preuveneers, Davy & Joosen, Wouter & Bernal Bernabe, Jorge
& Skarmeta, Antonio. (2020). Distributed Security Framework for
Reliable Threat Intelligence Sharing. Security and Communication
Networks. 2020. 1-15. 10.1155/2020/8833765.

[4] 4. Towards an Evaluation Framework for Threat Intelligence Sharing-
Bauer, Sara & Fischer, Daniel & Sauerwein, Clemens & Latzel, Simon
& Stelzer, Dirk & Breu, Ruth. (2020). Towards an Evaluation
Framework for Threat Intelligence Sharing Platforms.
10.24251/HICSS.2020.239.

[5] 5. A Trusted, Verifiable, and Differential Cyber Threat Intelligence
Sharing Framework Using Blockchain - K. Dunnett, S. Pal, G. D. Putra,
Z. Jadidi and R. Jurdak, "A Trusted, Verifiable and Differential Cyber
Threat Intelligence Sharing Framework using Blockchain," 2022 IEEE
International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), Wuhan, China, 2022, pp. 1107-1114,
doi: 10.1109/TrustCom56396.2022.00152. keywords:

{Measurement;Privacy;Information sharing;Software;Cyber threat
intelligence;Blockchains;Security;CyberThreatIntelligence;Sharing
Information;Privacy;Trust;Verifiability;Accountability;Blockchain},

[6] 6. Efficient Collective Action for Tackling Time-Critical Cybersecurity
Threats - Sebastien, Gillard & Percia David, Dimitri & Mermoud, Alain
& Maillart, Thomas. (2023). Efficient collective action for tackling
time-critical cybersecurity threats. Journal of Cybersecurity. 9.
10.1093/cybsec/tyad021.

[7] 7. Rethinking Information Sharing for Actionable Threat Intelligence -
Mohaisen, David & Al-Ibrahim, Omar & Kamhoua, Charles & Kwiat,
Kevin & Njilla, Laurent. (2017). Rethinking information sharing for
threat intelligence. 1-7. 10.1145/3132465.3132468.

http://www.ijsrem.com/

