j.-t' “ARe
@REME‘%
3 ©-Jeurnal

W Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Cypher - An Operating System

Prof. Ashwini R !, Venkateshwaran S %, Yashwanth Rao H 3, Sanjay G K 4, Manoj S °

I Ashwini R, Asst. Prof, Dept. of ISE, East West Institute of Technology
2 Venkateshwaran S, Dept. of ISE, East West Institute of Technology
3 Yashwanth Rao H, Dept. of ISE, East West Institute of Technology

* Sanjay G K, Dept. of ISE, East West Institute of Technology
3 Manoj S, Dept. of ISE, East West Institute of Technology

sksksk

Abstract - Minimal Linux-based operating systems
provide a practical environment for examining how user-
space components interact with the kernel, but
mainstream operating systems often obscure these
fundamentals behind complex subsystems. Custom shells
offer a clearer view of command interpretation by
exposing the fundamental stages without inherited
complexity. This paper presents Cypher, a Linux-based
operating system designed with its own command
interpreter called Rayshell, that demonstrates the basic
stages of command processing, including lexical analysis,
parsing, expansion and execution. The objective is not to
reproduce the completeness or complexity of full-
featured operating systems, but to demonstrate a clear,
instructive design suitable for research, experimentation
and educational use.

Key Words: Operating System, Linux, Shell, Command
Interpreter

1. INTRODUCTION

Linux provides a mature and well-established foundation
for operating system development, offering stable kernel
facilities for process management, memory handling,
device interaction, and system services. Building anything
on top of Linux usually means working with layers of
tools and components that have been around for decades.
Shells like Bash and Zsh are powerful, but they also carry
a large amount of historical behavior and internal
complexity. For someone trying to understand how a shell
actually works at its core, these established tools can feel
more like black boxes than learning material.

Cypher was developed as a Linux-based operating system
intended to provide a simpler environment that behaves
like a normal system but stays simple enough that its
pieces can be followed without digging through years of
legacy code. Instead of relying on an existing shell, the
system includes a custom one named Rayshell. It is not
designed to compete with established shells, but to offer a
compact and understandable implementation that is easy
to follow and extend.

Rayshell is built around the standard stages such as lexical
analysis, parsing, expansion and execution. It implements
essential features such as command execution, pipelines,
redirections, variables, expansion rules, control-flow
statements, job control, and basic scripting. The focus is
on minimalism and correctness rather than replicating the
full feature set of production-grade shells.

Cypher ultimately provides a minimal and functional
system that is easy to inspect, modify, and experiment
with. By integrating a lightweight graphical interface and
a basic window manager, it offers a clear and usable
environment.

2. LITERATURE REVIEW

Work related to lightweight Linux systems and custom
shells mostly falls into three groups: instructional sources
that show how to build a system from scratch, research on
experimental official
documentation that defines how Linux components are

Linux distributions, and
expected to behave. Together, these references shape the
background for Cypher, but none of them directly focus
on building a simple, easily-inspectable shell as the core
of a small Linux environment.

Linux From Scratch (LFS) [1] is the closest thing to a
foundation for projects like Cypher. It explains how to
assemble a complete Linux user space using only source
code, and it walks through system initialization,
dependency handling, and toolchain setup. LFS is
practical and detailed, but its goal is to teach system
construction, not to analyze design choices behind small
shells or minimal environments. Still, it sets the baseline
for understanding how a user space can be built cleanly
and with full control.

Research projects such as ASH OS [2] and other Linux-
based prototypes [3] show how developers build
customized distributions for performance, Ul changes, or
specific use cases. These papers are useful for
understanding how a distribution can be shaped around a
particular idea, but they lean toward feature integration

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54569 |

Page 1

https://ijsrem.com/

j.-t.' 1Y
@REME%
3 ©-Jeurnal

W Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

rather than simplification. Their focus is on improving the
user experience or adding system-wide capabilities, not on
exposing the internal workings of the shell.

The Linux Foundation’s documentation [4] provides the
technical rules that all Linux systems and shells are
expected to follow like system-call behavior, process
management, POSIX features, and general compatibility
guidelines. It gives the authoritative definitions needed to
ensure that a custom shell behaves correctly, but it does
not explore minimal designs or educational shells.

3. SYSTEM DESIGN

Cypher is structured in three layers: a minimal Arch
Linux base, the custom Rayshell interpreter, and a
lightweight graphical setup built with Hyprland. The
system design as shown in Fig 3.1, keeps each layer
understandable, and easy to work with, avoiding the
heavy complexity of a full Linux distribution.

3.1 Base System
The system begins with a very minimal Arch Linux
environment. Arch’s simplicity and packaging tools
make it practical to assemble only what is required: the
kernel, core userland programs, filesystem utilities, init
setup, and the toolchain needed to build Rayshell.
services

By avoiding additional and background

components, the base remains predictable and easy to

Linux kernel

Base system

Rayshell

Graphical interface

Fig -3.1: System Architecture

inspect.

3.2 Rayshell

Rayshell is the main component that defines how a user
interacts with Cypher, so its design is built around strict
separation of stages as shown in Fig 3.2. The interpreter is
structured as a pipeline, where each stage handles one
well-defined responsibility before handing control to the
next.

1. Tokenization: The lexer scans the raw
input string and breaks it into tokens: words,
operators, redirection symbols, variable
references, assignment statements, and control
keywords. The lexer handles quoting rules,
escape sequences, and token boundaries. Its
output is a linear token stream with exact type
information.

2. Parsing: The parser walks through the
token stream and constructs an internal
representation of the command, an abstract
syntax tree. It encodes pipelines, redirection
operations, control structures such as if and
while, grouped commands, and shell lists
separated by semicolons or newlines. Rayshell
uses a grammar specifically written for the
project instead of copying the long and
inconsistent grammars used by traditional
shells. This keeps the parser predictable and
reduces hidden behaviors.

3. Expansion: After the parse step, Rayshell
performs expansions on the parsed structure.
This includes variable expansion, command
substitution, and expansion
(globbing). The stage is
intentionally isolated from lexing and parsing
to make debugging easier.

pathname
expansion

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54569 |

Page 2

https://ijsrem.com/

’.-t’ ‘33‘
é‘ IJSREM§
e Journal

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

4. Built-ins: Rayshell has its own built-ins
for core operations like cd, pwd, variable
assignment, and job listing. Built-ins bypass
process creation overhead and interact directly

with shell state (working directory,

Rayshell Prompt

|

Lexer

|

Parser

|

AST Construction

!
Expansion

'

Execution

Output
Fig -3.2 Shell Architecture

environment table, job list). Their behavior is
kept minimal and predictable to maintain the
instructional purpose of the shell.

5. Execution: The executor walks the
expanded structure and performs the actual
actions
evaluating built-ins directly inside the shell
process, setting up pipes and file descriptors,
handling redirections, managing background

like running external commands,

jobs and also implements basic job control so
that users can suspend, resume, and inspect
running jobs.

3.3 Graphical design

Cypher adopts a minimal graphical environment built
around Hyprland, a lightweight Wayland compositor
known for its responsiveness and modular configuration
model. The goal is to provide a usable environment that
supports interaction with Rayshell and basic system tools
without adding unnecessary complexity that comes with
traditional minimal systems.

The setup relies on only a few components: Hyprland as

the compositor and window manager, a taskbar for basic

system information, and Kitty as the primary terminal

emulator. Most user interaction still happens inside

Rayshell, so the GUI exists mainly to make the system
easier to use rather than to replace the shell. Hyprland’s
configuration files make it straightforward to define
keybindings, organize windows, and fine-tune behavior
without writing custom window-manager code.

This design keeps the graphical layer minimal and easy
to understand. Instead of trying to imitate a full desktop
environment, Cypher uses a small, predictable setup
that supports experimentation and keeps the user close
to the system’s underlying behavior. Images of the
terminal and desktop are shown in Fig 4.1 and 4.2

4. IMPLEMENTATION

Fig -4.2: Desktop of Cypher

The development of Cypher was carried out in a
pragmatic manner: first building a minimal Linux base,
then developing Rayshell, finally putting together a
simple graphical environment for usability.

4.1 System setup

The development process started with a manual Arch
Linux installation. Only the necessary components like
bootloader, toolchain, and a minimal window manager
were included. Keeping the system small made it easier to
see exactly what was running and to avoid unwanted
complexities while developing the shell.

Most of the work here was straightforward: partitioning
the disk, preparing the filesystem, installing the kernel,
setting up networking, and configuring a user account.
The goal was to create a clean slate where Rayshell could
be added without conflicts or legacy behavior from
existing shells.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54569 |

Page 3

https://ijsrem.com/

f.‘f-’ ‘3;_*‘
%é;;;REF:;%
<Journal

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

Once the system reached the point where it would boot
reliably and provide a login, the foundation was

Fig -4.1: Terminal with Rayshell

considered ready for Rayshell.

4.2 Development of Rayshell
Rayshell was developed using Python, to make the
development process easier.

The initial concept was to use Python’s subprocess
module, because that is the usual path when implementing
a shell-like interface. The problem is that subprocess
behaves like a middleman. Every command becomes a
“request,” and the module hands it off to the system like
an outsourced job. That works for normal utilities, but not
for a shell intended to feel native and immediate.

So Rayshell took a more direct approach: Python’s os
module, specifically os.exec*() was used to spawn and
replace processes at a much lower level. When Rayshell
launched a command, the shell process became that
command. When the command terminated, control passed
back to the parent stub, which then re-initialized
Rayshell’s prompt. That behavior gave the shell a cleaner,
more authentic execution model, closer to how classic
shells like bash or dash operate.

Writing the command dispatcher was the next major task.
It needed to distinguish between built-ins and external
binaries. The fragile part was ensuring RayShell never
accidentally exec()’d itself out of existence by replacing
its own process while still needing to run. The built-ins
like change directory, exit, environment variable
manipulation, and a few helper utilities were implemented
as plain Python functions. Everything else was delegated
to the real system binaries through the execvp family.
This design made RayShell light, fast, and predictable.

Error handling had to be handled manually. Invalid
commands, missing binaries, broken environment paths,
and failed permission checks all surfaced as raw OSError
exceptions. These weren’t wrapped by Python into

© 2025, IJSREM | https://ijsrem.com

friendly messages; RayShell had to intercept them and
respond with consistent shell-like output. The goal was to
avoid Python’s tracebacks entirely, preserving the illusion
that RayShell was a native part of the operating system
rather than an application sitting on top of it.

The shell’s prompt system was intentionally minimal. No
fancy glyphs or animations, just ‘rayshell’. The intention
was to keep the experience grounded and stable,
especially since the system was intentionally stripped-
down during installation. RayShell ultimately became a
small, explicit, transparent shell. No layers of abstraction,
no unnecessary complexity, and no dependency bloat. Its
behavior is deterministic because everything it does is
visible: when it runs a command, it directly hands
execution to the OS; when something breaks, the cause is
obvious.

This simplicity is what made it fit neatly into the rest of
Cypher’s system architecture. The shell didn’t need to be
clever; it only needed to be solid enough to stand as the
user’s primary interface and flexible enough to coexist
with the GUI layer without conflicting with the base
system.

4.3 Features of Rayshell

Rayshell supports the essential Unix shell workflow:
executing binaries, managing working directories,
inspecting the environment, and running basic system
utilities. Commands such as cd, exit and environment
variable manipulation are handled internally so execution
does not break the shell’s
Everything else is dispatched directly to system binaries
through execvp, allowing RayShell to behave like a

own process context.

conventional POSIX shell without re-implementing core
tools.

Control structures (if and while) were developed with an
easier syntax rather than copying bash. The syntax, as
shown in Fig. 4.3 and 4.4, is closer to a programming

language’s syntax, so anyone who has a basic

O ifrst

if (ls core | grep ijui) -> {
echo done

}

elif (false) -> {
echo nothing

}

else {
print this will work

}

D b
O W NOOLIEWNKE ™

TERMINAL
rayshell> ./test/if.rsh

this will work
rayshell> []

Fig -4.3: Working of If block

DOI: 10.55041/IJSREM54569 |

Page 4

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

W Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

understanding of programming languages
Rayshell without having to deal with complex semantics.

can usec

History support was added for usability, mostly out of
frustration. Without it, even trivial mistakes required
retyping long commands. RayShell loads a history file on

"

Fig -4.4: Working of History command

startup, appends every executed line, and exposes it
interactively.

Job control was the most technically demanding feature
but also the most important for interactivity. A shell is
supposed to let programs run in the background, bring
them back, and keep track of what’s alive. RayShell
manages this using direct calls to fork(), exec*(), and
waitpid() through Python’s os module. The shell creates
process groups, monitors them, and lets users suspend and
resume tasks.

The final but crucial feature was signal handling, because
without it the shell behaves like a fragile demonstration
rather than a real interactive environment. As soon as
RayShell started running programs, the
limitations became obvious: pressing Ctrl-C would either

external

kill the entire shell or fail to interrupt the running
command, depending on how Python chose to react.
Neither outcome is acceptable in anything calling itself a
shell. To fix this, Rayshell has explicit handlers for
signals such as SIGINT and SIGTSTP and routes them to
the correct process group instead of letting Python’s
default behavior take over. This required tying together
RayShell’s job-control system with low-level UNIX
primitives so the foreground job responds instantly to user
interruptions while the shell itself remains unaffected. In
practice, this means users can halt a runaway command,
stop a long-running job, or resume it later without
destabilizing the shell.

17 wn 3
1 while (true) -> {
2 echo hehe
3}

4 while (false) -> {
5 echo nothing

o0

}

TERMINAL

rayshell> ./test/while.rsh
hehe
hehe
hehe
hehe
hehe
hehe
hehe
hehe

Fig -4.5: Working of While Block

4.4 Graphical Interface

The graphical interface of Cypher was designed to be
simple, functional, and lightweight, emphasizing usability
without unnecessary complexity. Window management is
handled by Hyprland, a modern dynamic tiling
compositor for Linux, selected for its speed, minimal
resource usage, and straightforward integration with
custom components.

A custom taskbar was developed using the PyQt5
framework in Python. This taskbar allows easy access to
open workspaces, and other basic features. A complete
desktop of Cypher is shown in Fig. 4.2.

Initially, a custom terminal emulator was attempted to
unify the interface experience, but achieving stable
performance was challenging. Hence, Kitty, a fast and
feature-rich terminal emulator, was incorporated as the
default terminal. Kitty

integrates seamlessly with

Fig -4.6: Working of Script file

Hyprland and the taskbar, offering reliable command-line
access while maintaining the visual and functional goals
of the interface.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM54569 |

Page 5

https://ijsrem.com/

SO TY
b R
@5“ International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
The graphical environment was designed to work hand-in- 5] OSDev Wiki: Operating System Development
hand with Rayshell, offering a smooth and intuitive user Community.

experience. The goal was to keep it stable, minimal, and
flexible, reflecting Cypher’s lightweight philosophy,
while leaving space for future improvements and
additions.

5. CONCLUSION

Cypher demonstrates how a Linux-based operating
system can be customized around a lightweight,
educational shell and a minimal graphical interface.
Rayshell showcases a clear and structured approach to
command interpretation, with features such as custom
control structures, job management, history tracking, and
signal handling, all built without relying on external
subprocess frameworks. The graphical environment
complements this by providing a stable, responsive
interface through Hyprland, a PyQt5-based taskbar, and a
reliable terminal emulator in Kitty.

Within the wider ecosystem of Linux-based operating
systems, Cypher occupies a very different role compared
to projects such as EndeavourOS or Omarchy. Both of
them prioritize approachability and a complete desktop
environment. Cypher, in contrast, integrates its own
command interpreter which focuses on experimentation
alongside usability. Future work could expand both the
shell and interface capabilities, exploring custom terminal
features, enhanced GUI elements, or deeper integration
with system services, while maintaining the lightweight
and modular philosophy that Cypher embodies.

ACKNOWLEDGMENT

We deeply express our sincere gratitude to our guide,
Mrs. Ashwini R, Asst. prof, Department of ISE, EWIT for
her guidance throughout the development of this work.

REFERENCES
(11 G. Beekmans, Linux From Scratch, LFS
Community.

2] ASH OS: A Comprehensive Linux Based
Operating System with Optimized User Interface, by
Arvind Kumar, M. Iyyappan, S. Priyan, Abhijat,
Sourabh Kumar Jha, and Himanshu Gaikward,
International Journal of Advanced Computer Science
and Applications, vol. 14, no. 2, 2023.

3] Linux-Based OS Prototypes, by Kumar et al.,
Journal of Emerging Computing Systems, 2023.

4] The Linux Community Documentation, by The
Linux Foundation.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 6

https://ijsrem.com/

