
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 1

Cypher - An Operating System

Prof. Ashwini R 1, Venkateshwaran S 2, Yashwanth Rao H 3, Sanjay G K 4, Manoj S 5

1 Ashwini R, Asst. Prof, Dept. of ISE, East West Institute of Technology
2 Venkateshwaran S, Dept. of ISE, East West Institute of Technology
3 Yashwanth Rao H, Dept. of ISE, East West Institute of Technology

4 Sanjay G K, Dept. of ISE, East West Institute of Technology
5 Manoj S, Dept. of ISE, East West Institute of Technology

---***---

Abstract - Minimal Linux-based operating systems

provide a practical environment for examining how user-

space components interact with the kernel, but

mainstream operating systems often obscure these

fundamentals behind complex subsystems. Custom shells

offer a clearer view of command interpretation by

exposing the fundamental stages without inherited

complexity. This paper presents Cypher, a Linux-based

operating system designed with its own command

interpreter called Rayshell, that demonstrates the basic

stages of command processing, including lexical analysis,

parsing, expansion and execution. The objective is not to

reproduce the completeness or complexity of full-

featured operating systems, but to demonstrate a clear,

instructive design suitable for research, experimentation

and educational use.

Key Words: Operating System, Linux, Shell, Command

Interpreter

1. INTRODUCTION

Linux provides a mature and well-established foundation

for operating system development, offering stable kernel

facilities for process management, memory handling,

device interaction, and system services. Building anything

on top of Linux usually means working with layers of

tools and components that have been around for decades.

Shells like Bash and Zsh are powerful, but they also carry

a large amount of historical behavior and internal

complexity. For someone trying to understand how a shell

actually works at its core, these established tools can feel

more like black boxes than learning material.

Cypher was developed as a Linux-based operating system

intended to provide a simpler environment that behaves

like a normal system but stays simple enough that its

pieces can be followed without digging through years of

legacy code. Instead of relying on an existing shell, the

system includes a custom one named Rayshell. It is not

designed to compete with established shells, but to offer a

compact and understandable implementation that is easy

to follow and extend.

Rayshell is built around the standard stages such as lexical

analysis, parsing, expansion and execution. It implements

essential features such as command execution, pipelines,

redirections, variables, expansion rules, control-flow

statements, job control, and basic scripting. The focus is

on minimalism and correctness rather than replicating the

full feature set of production-grade shells.

Cypher ultimately provides a minimal and functional

system that is easy to inspect, modify, and experiment

with. By integrating a lightweight graphical interface and

a basic window manager, it offers a clear and usable

environment.

2. LITERATURE REVIEW

Work related to lightweight Linux systems and custom

shells mostly falls into three groups: instructional sources

that show how to build a system from scratch, research on

experimental Linux distributions, and official

documentation that defines how Linux components are

expected to behave. Together, these references shape the

background for Cypher, but none of them directly focus

on building a simple, easily-inspectable shell as the core

of a small Linux environment.

Linux From Scratch (LFS) [1] is the closest thing to a

foundation for projects like Cypher. It explains how to

assemble a complete Linux user space using only source

code, and it walks through system initialization,

dependency handling, and toolchain setup. LFS is

practical and detailed, but its goal is to teach system

construction, not to analyze design choices behind small

shells or minimal environments. Still, it sets the baseline

for understanding how a user space can be built cleanly

and with full control.

Research projects such as ASH OS [2] and other Linux-

based prototypes [3] show how developers build

customized distributions for performance, UI changes, or

specific use cases. These papers are useful for

understanding how a distribution can be shaped around a

particular idea, but they lean toward feature integration

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 2

rather than simplification. Their focus is on improving the

user experience or adding system-wide capabilities, not on

exposing the internal workings of the shell.

The Linux Foundation’s documentation [4] provides the

technical rules that all Linux systems and shells are

expected to follow like system-call behavior, process

management, POSIX features, and general compatibility

guidelines. It gives the authoritative definitions needed to

ensure that a custom shell behaves correctly, but it does

not explore minimal designs or educational shells.

3. SYSTEM DESIGN

Cypher is structured in three layers: a minimal Arch

Linux base, the custom Rayshell interpreter, and a

lightweight graphical setup built with Hyprland. The

system design as shown in Fig 3.1, keeps each layer

understandable, and easy to work with, avoiding the

heavy complexity of a full Linux distribution.

3.1 Base System

 The system begins with a very minimal Arch Linux

environment. Arch’s simplicity and packaging tools

make it practical to assemble only what is required: the

kernel, core userland programs, filesystem utilities, init

setup, and the toolchain needed to build Rayshell.

By avoiding additional services and background

components, the base remains predictable and easy to

inspect.

3.2 Rayshell

Rayshell is the main component that defines how a user

interacts with Cypher, so its design is built around strict

separation of stages as shown in Fig 3.2. The interpreter is

structured as a pipeline, where each stage handles one

well-defined responsibility before handing control to the

next.

1. Tokenization: The lexer scans the raw

input string and breaks it into tokens: words,

operators, redirection symbols, variable

references, assignment statements, and control

keywords. The lexer handles quoting rules,

escape sequences, and token boundaries. Its

output is a linear token stream with exact type

information.

2. Parsing: The parser walks through the

token stream and constructs an internal

representation of the command, an abstract

syntax tree. It encodes pipelines, redirection

operations, control structures such as if and

while, grouped commands, and shell lists

separated by semicolons or newlines. Rayshell

uses a grammar specifically written for the

project instead of copying the long and

inconsistent grammars used by traditional

shells. This keeps the parser predictable and

reduces hidden behaviors.

3. Expansion: After the parse step, Rayshell

performs expansions on the parsed structure.

This includes variable expansion, command

substitution, and pathname expansion

(globbing). The expansion stage is

intentionally isolated from lexing and parsing

to make debugging easier.

Fig -3.1: System Architecture

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 3

4. Built-ins: Rayshell has its own built-ins

for core operations like cd, pwd, variable

assignment, and job listing. Built-ins bypass

process creation overhead and interact directly

with shell state (working directory,

environment table, job list). Their behavior is

kept minimal and predictable to maintain the

instructional purpose of the shell.

5. Execution: The executor walks the

expanded structure and performs the actual

actions like running external commands,

evaluating built-ins directly inside the shell

process, setting up pipes and file descriptors,

handling redirections, managing background

jobs and also implements basic job control so

that users can suspend, resume, and inspect

running jobs.

3.3 Graphical design

Cypher adopts a minimal graphical environment built

around Hyprland, a lightweight Wayland compositor

known for its responsiveness and modular configuration

model. The goal is to provide a usable environment that

supports interaction with Rayshell and basic system tools

without adding unnecessary complexity that comes with

traditional minimal systems.

The setup relies on only a few components: Hyprland as

the compositor and window manager, a taskbar for basic

system information, and Kitty as the primary terminal

emulator. Most user interaction still happens inside

Rayshell, so the GUI exists mainly to make the system

easier to use rather than to replace the shell. Hyprland’s

configuration files make it straightforward to define

keybindings, organize windows, and fine-tune behavior

without writing custom window-manager code.

This design keeps the graphical layer minimal and easy

to understand. Instead of trying to imitate a full desktop

environment, Cypher uses a small, predictable setup

that supports experimentation and keeps the user close

to the system’s underlying behavior. Images of the

terminal and desktop are shown in Fig 4.1 and 4.2

4. IMPLEMENTATION

The development of Cypher was carried out in a

pragmatic manner: first building a minimal Linux base,

then developing Rayshell, finally putting together a

simple graphical environment for usability.

4.1 System setup

The development process started with a manual Arch

Linux installation. Only the necessary components like

bootloader, toolchain, and a minimal window manager

were included. Keeping the system small made it easier to

see exactly what was running and to avoid unwanted

complexities while developing the shell.

Most of the work here was straightforward: partitioning

the disk, preparing the filesystem, installing the kernel,

setting up networking, and configuring a user account.

The goal was to create a clean slate where Rayshell could

be added without conflicts or legacy behavior from

existing shells.

Fig -3.2 Shell Architecture

Fig -4.2: Desktop of Cypher

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 4

Once the system reached the point where it would boot

reliably and provide a login, the foundation was

considered ready for Rayshell.

4.2 Development of Rayshell

Rayshell was developed using Python, to make the

development process easier.

The initial concept was to use Python’s subprocess

module, because that is the usual path when implementing

a shell-like interface. The problem is that subprocess

behaves like a middleman. Every command becomes a

“request,” and the module hands it off to the system like

an outsourced job. That works for normal utilities, but not

for a shell intended to feel native and immediate.

So Rayshell took a more direct approach: Python’s os

module, specifically os.exec*() was used to spawn and

replace processes at a much lower level. When Rayshell

launched a command, the shell process became that

command. When the command terminated, control passed

back to the parent stub, which then re-initialized

Rayshell’s prompt. That behavior gave the shell a cleaner,

more authentic execution model, closer to how classic

shells like bash or dash operate.

Writing the command dispatcher was the next major task.

It needed to distinguish between built-ins and external

binaries. The fragile part was ensuring RayShell never

accidentally exec()’d itself out of existence by replacing

its own process while still needing to run. The built-ins

like change directory, exit, environment variable

manipulation, and a few helper utilities were implemented

as plain Python functions. Everything else was delegated

to the real system binaries through the execvp family.

This design made RayShell light, fast, and predictable.

Error handling had to be handled manually. Invalid

commands, missing binaries, broken environment paths,

and failed permission checks all surfaced as raw OSError

exceptions. These weren’t wrapped by Python into

friendly messages; RayShell had to intercept them and

respond with consistent shell-like output. The goal was to

avoid Python’s tracebacks entirely, preserving the illusion

that RayShell was a native part of the operating system

rather than an application sitting on top of it.

The shell’s prompt system was intentionally minimal. No

fancy glyphs or animations, just ‘rayshell’. The intention

was to keep the experience grounded and stable,

especially since the system was intentionally stripped-

down during installation. RayShell ultimately became a

small, explicit, transparent shell. No layers of abstraction,

no unnecessary complexity, and no dependency bloat. Its

behavior is deterministic because everything it does is

visible: when it runs a command, it directly hands

execution to the OS; when something breaks, the cause is

obvious.

This simplicity is what made it fit neatly into the rest of

Cypher’s system architecture. The shell didn’t need to be

clever; it only needed to be solid enough to stand as the

user’s primary interface and flexible enough to coexist

with the GUI layer without conflicting with the base

system.

4.3 Features of Rayshell

Rayshell supports the essential Unix shell workflow:

executing binaries, managing working directories,

inspecting the environment, and running basic system

utilities. Commands such as cd, exit, and environment

variable manipulation are handled internally so execution

does not break the shell’s own process context.

Everything else is dispatched directly to system binaries

through execvp, allowing RayShell to behave like a

conventional POSIX shell without re-implementing core

tools.

Control structures (if and while) were developed with an

easier syntax rather than copying bash. The syntax, as

shown in Fig. 4.3 and 4.4, is closer to a programming

language’s syntax, so anyone who has a basic

Fig -4.1: Terminal with Rayshell

Fig -4.3: Working of If block

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 5

understanding of programming languages can use

Rayshell without having to deal with complex semantics.

History support was added for usability, mostly out of

frustration. Without it, even trivial mistakes required

retyping long commands. RayShell loads a history file on

startup, appends every executed line, and exposes it

interactively.

Job control was the most technically demanding feature

but also the most important for interactivity. A shell is

supposed to let programs run in the background, bring

them back, and keep track of what’s alive. RayShell

manages this using direct calls to fork(), exec*(), and

waitpid() through Python’s os module. The shell creates

process groups, monitors them, and lets users suspend and

resume tasks.

The final but crucial feature was signal handling, because

without it the shell behaves like a fragile demonstration

rather than a real interactive environment. As soon as

RayShell started running external programs, the

limitations became obvious: pressing Ctrl-C would either

kill the entire shell or fail to interrupt the running

command, depending on how Python chose to react.

Neither outcome is acceptable in anything calling itself a

shell. To fix this, Rayshell has explicit handlers for

signals such as SIGINT and SIGTSTP and routes them to

the correct process group instead of letting Python’s

default behavior take over. This required tying together

RayShell’s job-control system with low-level UNIX

primitives so the foreground job responds instantly to user

interruptions while the shell itself remains unaffected. In

practice, this means users can halt a runaway command,

stop a long-running job, or resume it later without

destabilizing the shell.

Fig -4.5: Working of While Block

4.4 Graphical Interface

The graphical interface of Cypher was designed to be

simple, functional, and lightweight, emphasizing usability

without unnecessary complexity. Window management is

handled by Hyprland, a modern dynamic tiling

compositor for Linux, selected for its speed, minimal

resource usage, and straightforward integration with

custom components.

A custom taskbar was developed using the PyQt5

framework in Python. This taskbar allows easy access to

open workspaces, and other basic features. A complete

desktop of Cypher is shown in Fig. 4.2.

Initially, a custom terminal emulator was attempted to

unify the interface experience, but achieving stable

performance was challenging. Hence, Kitty, a fast and

feature-rich terminal emulator, was incorporated as the

default terminal. Kitty integrates seamlessly with

Hyprland and the taskbar, offering reliable command-line

access while maintaining the visual and functional goals

of the interface.

Fig -4.4: Working of History command

Fig -4.6: Working of Script file

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54569 | Page 6

The graphical environment was designed to work hand-in-

hand with Rayshell, offering a smooth and intuitive user

experience. The goal was to keep it stable, minimal, and

flexible, reflecting Cypher’s lightweight philosophy,

while leaving space for future improvements and

additions.

5. CONCLUSION

Cypher demonstrates how a Linux-based operating

system can be customized around a lightweight,

educational shell and a minimal graphical interface.

Rayshell showcases a clear and structured approach to

command interpretation, with features such as custom

control structures, job management, history tracking, and

signal handling, all built without relying on external

subprocess frameworks. The graphical environment

complements this by providing a stable, responsive

interface through Hyprland, a PyQt5-based taskbar, and a

reliable terminal emulator in Kitty.

Within the wider ecosystem of Linux-based operating

systems, Cypher occupies a very different role compared

to projects such as EndeavourOS or Omarchy. Both of

them prioritize approachability and a complete desktop

environment. Cypher, in contrast, integrates its own

command interpreter which focuses on experimentation

alongside usability. Future work could expand both the

shell and interface capabilities, exploring custom terminal

features, enhanced GUI elements, or deeper integration

with system services, while maintaining the lightweight

and modular philosophy that Cypher embodies.

ACKNOWLEDGMENT

We deeply express our sincere gratitude to our guide,

Mrs. Ashwini R, Asst. prof, Department of ISE, EWIT for

her guidance throughout the development of this work.

REFERENCES

[1] G. Beekmans, Linux From Scratch, LFS

Community.

[2] ASH OS: A Comprehensive Linux Based

Operating System with Optimized User Interface, by

Arvind Kumar, M. Iyyappan, S. Priyan, Abhijat,

Sourabh Kumar Jha, and Himanshu Gaikward,

International Journal of Advanced Computer Science

and Applications, vol. 14, no. 2, 2023.

[3] Linux-Based OS Prototypes, by Kumar et al.,

Journal of Emerging Computing Systems, 2023.

[4] The Linux Community Documentation, by The

Linux Foundation.

[5] OSDev Wiki: Operating System Development

Community.

https://ijsrem.com/

