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Abstract— 

Clustering is an important tool in artificial intelligence, 

machine learning, and data mining, which is used for pattern 

recognition, decision making, and exploratory data analysis. In 

this paper we provide a comprehensive analysis to using five of 

the most popular clustering algorithms - K-Means, DBSCAN, 

Agglomerative Hierarchical Clustering, GMM, and FCM. The 

concept of each algorithm, its advantages and area of 

applications are discussed in this review. The paper discusses 

their performance on AI based automation, big data analytics, 

anomaly detection and text mining. Cluster evaluation criteria 

along with internal and external validation methods are 

considered for evaluating clustering performance. And in 

addition, we will shine a spotlight on the real-world applications 

of these clustering techniques and the situations which are most 

appropriate to use each one of them when working with AI, ML, 

as well as data mining. We conclude the paper by discussing the 

critical challenges associated with high-dimensional data, 

optimal model building, and model interpretability, and provide 

insights on the future directions of research in clustering 

 

I. INTRODUCTION 

 
We live in an age driven by data, with oceans of data — you 

may call it “data lakes” — from clickstreams on e-commerce 

websites to sensor readings in smart cities. But raw data by itself is 

like a jumble of yarn spaghetti: teeming with stories but impossible 

to make any sense of without some kind of structure. This principle 

is motivated by the process of data clustering. This is due to 

automatically categorizing similar items — be it images, customer 

behaviors, or readings from a biomedical sensor etc., clustering is 

what helps us make sense of the patterns that lie hidden within the 

corpus of life, and in the process, take better decisions and gain more 

understanding. 

 

Clustering, at its core, is unsupervised learning: you don’t tell 

it the “right answers” beforehand. Instead, the algorithm is trying to 

discover some sort of structure by saying "Which points act naturally 

together?" or “Where am I getting very tight groups and where would 

I like for there to be more spread?” Over the last few decades, there 

have been several proposals, put forward by researchers, to answer 

these questions, each with its own advantages, limitations and trade-

offs. 

 

In this work, we will take five of the most popular clustering 

families: 

• K-Means: Simple and intuitive, k-means divides the data into 

K groups (K = 3 in this case) by iteratively re-assigning points 

to the closest “centroid.” 

• DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise): Can discover clusters of points in any form and 

can separate out noise by growing regions of high density. 

• Agglomerative Hierarchical Clustering: Clusters are 

generated by Combining Small Clusters into Larger Ones. The 

output of matrix factorization is passed to a cascade of 

clustering’s thus obtaining a multilevel structure of the data. 

• Gaussian Mixture Models (GMMs): Assume that each 

cluster can be described as a “bell curve”, and give soft, 

probabilistic (instead of hard categorical) assignments of the 

belonging to other clusters. 

• Fuzzy C-Means (FCM): Similar to GMM but aims at 

minimizing a fuzzy objective function where each data point 

can be contained in all the clusters with certain degrees. 

• We’ll look at them here “under the hood,” 

 

We’ll explore how these methods work “under the hood,” 

compare their pros and cons, and show where each one shines — 

whether that’s in applications ranging from how anomaly detection 

is performed in the world of cybersecurity, to how customer 

profiling is done in the world of marketing. 

And, without a way of determining how successful the 

clustering has been, it would of course be of little use. We will use 

both internal validation measures such as Silhouette Score and 

Davies–Bouldin Index, and external ones; such as Adjusted Rand 

Index and Normalized Mutual Information to validate that the 

clusters we have selected capture some meaningful real structure. 

We conclude by discussing limitations and future directions; 

problems related to high dimensions, selecting the number of 

clusters, sensitivity to noise and initialization, and by signaling the 

arrival of new directions, such as deep clustering, adaptive 

approaches and interpretable cluster analysis. When you’re done 

reading this paper, you’ll not only understand how clustering 

algorithms work, but you will also know when and why to use each 

of eight different types — and how to transform all that hairball data 

into clean, actionable intelligence. 

 

II. OVERVIEW OF CLUSTERING 

ALGORITHMS 

 
One of the most basic unsupervised learning methods, i.e., 

cluster analysis, includes four key families according to its 

methodology: Partition based methods, Density based methods, 

Hierarchical methods, and Probabilistic (soft) based methods. In this 

paper, we review five model-based techniques: 

1. K-Means (Partition-Based) 

 
Overview: 

Imagine K-Means as… The Party Planner I like to think of k-

means as the party panner of the data clustering world: You pick out 

K tables (clusters) and you seat one random guest (centroid) at each 

table. Each guest (data point) is standing far from some table and 

close to some other table in such a way that the "distance" between 
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the guest and the table is based on their perception. When everyone 

is seated, the host of each table goes to the center of the guests seated 

there. Guests then reevaluate and some may reshuffle and move over 

to a closer table, and hosts reorient themselves, around their new true 

center. 

 

Steps Involved: 

1. Randomly initialize K cluster centroids. 

2. Assign each point to the nearest centroid. 

3. Re-calculate the centroid which is the average of the points. 

4. Repeat steps 2-3 until convergence. 

Advantages: 

 Effective on big data. 

 Effective on dense and well separated clusters. 

 Basic and easy to apply. 

Limitations: 

 Needs K a priori predetermined. 

 Sensitive to initialization of the centroids. 

 Nymph struggles are with NSC and noise. 

Applications: 

• Customer segmentation in marketing. 

• Image compression and segmentation. 

• Anomaly detection in financial transactions. 

 

 
Fig1. K-Means Clustering of Medical Data: Classification of 

Metabolic, Cardiovascular, and Genetic Disorders 

2. DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) 

 
Overview: 

Imagine DBSCAN as a neighborhood watch looking out for 

places where neighbors gather together and constantly pointing out 

loners. Instead of guessing cluster counts, DBSCAN sort of clumps 

points surrounded by enough friends in a radius, and leaves any 

leftovers as noise. It bends naturally to shapes of any type, while 

unstructured densities are handled with strength and grace. You only 

have to decide a distance and a minimum number of friends; in the 

end, the clusters and outliers appear automatically in the different 

datasets. 

Steps Involved: 

1. Take any unvisited point, if it has a greater number of 

neighbors within a defined distance (ε). 

2. If so, enlarge the cluster with the density-reachable points. 

3. Continue repeating until all points are either core, border, or 

noise. 

Advantages: 

 Identifies clumps of any form. 

 Noisy environment and Outliers proofness. 

 Does not K a priori. 

Limitations: 

 It’s not easy to selectc the best ε and MinPts. 

 They are less efficient in capturing clusters of different 

densities. 

Applications: 

• Anomaly detection in the field of cybersecurity. 

• Geospatial clustering of data. 

• Bank fraud detection. 

3. Agglomerative Hierarchical Clustering 

 
Overview: 

Picture agglomerative hierarchy clustering as a party where 

all the guests come alone and the most similar guests are paired up. 

These pairs then aggregate with other pairs or individuals one by 

one, thereby building up increasingly larger groups according to 

proximity. You can cease the process at any time in order to view 

different levels of social circles. The end result is a tree, diagram of 

clusters, showing you relationships from best buddies to big friend 

circles. 

Steps Involved (Agglomerative Approach): 

1. Begin with each datum in its own cluster. 

2. Combine the two most similar using a linkage mechanism 

(e.g., single, complete, average linkage). 

3. Continue until only one cluster remains. 

Advantages: 

 No need to fix K in advance. 

 Generates a single hierarchy capable of being studied at 

different levels. 

Limitations: 

 Computationally intensive for large datasets (O(n² log n) time 

complexity). 

 Sensitive in noise and outliers. 

Applications: 

• Clustering text document in NLP. 

• Social network analysis. 

• Medical data classification (such as disease clustering). 

4. Gaussian Mixture Model (GMM) 

 
Overview: 

Suppose you are throwing a raucous bash, but nobody has an 

assigned seat — everybody roams food in hand, half loitering near 

the snack table and half bombarding the dance floor. Each party has 

its own mood, such as the laid-back snack group, or the energetic 

group that danced, characterized by a bell curve of personalities. 

While you’re mingling (the “expectation” step), you feel who fits 

where and you adjust the vibes of the groups (the “maximization” 

step). Little by little the circle becomes defined, and everyone 

simply assumes the correct. 

Steps Involved: 

1. Initialize Gaussian parameters (mean, covariance, weight). 

2. Use the Expectation-Maximization (EM) algorithm to 

estimate probabilities. 

3. Assign data points to the Gaussian distribution with the highest 

probability. 

Advantages: 

 Can model elliptical clusters. 

 Works well for overlapping clusters. 

 Provides a probability measure for cluster assignments. 

Limitations: 

 Computationally expensive for large datasets. 

 Requires careful tuning of parameters. 

Applications: 

• Speaker recognition in AI. 

• Image segmentation. 

• Financial risk modeling. 
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5. Fuzzy C-Means (FCM) 

 
Overview: 

Unlike traditional clustering methods where a point belongs to 

only one cluster, FCM is a soft clustering algorithm where each 

data point can belong to multiple clusters with different degrees of 

membership. 

Steps Involved: 

1. Initialize cluster centers and fuzzy membership matrix. 

2. Compute new cluster centers by minimizing the objective 

function. 

3. Update membership values iteratively until convergence. 

Advantages: 

 Suitable for datasets where boundaries between clusters are 

not well-defined. 

 Provides more flexibility than hard clustering methods like K-

Means. 

Limitations: 

 Sensitive to initialization and choice of fuzziness parameter m. 

 Computationally intensive. 

Applications: 

• Image segmentation in AI. 

• Medical image classification. 

• Pattern recognition tasks. 

III. EVALUATION METRICS FOR 

CLUSTERING 

 
Performance evaluation of clustering methods is an essential 

part in order to understand how good they work in different 

applications. As clustering is unsupervised, the traditional metrics 

based on accuracy are inapplicable. Instead, clustering validation is 

based on internal, external and relative measures of quality, 

cohesion and separation of clusters. 

This section describes major clustering evaluation measures 

which can be categorized according to: 

• Internal Evaluation Metrics: value the quality of clusters 

formed based on some intrinsic properties (cohesion, 

separation) without using external labels 

• External Evaluation Metrics: Compare clustering results 

with the pre-defined ground truth (if exists). 

• Relative Evaluation Metrics: The reference framework 

against which to measure all clustering solutions for choosing 

the best one. 

 

1. Internal Evaluation Metrics 

Internal evaluation criteria are used to assess clustering quality 

in an unsupervised fashion, i.e., without ground truth labels. These 

are both measures of the tightness (cohesion) within, and the distance 

between the clusters 

1.1 Silhouette Score 

The Silhouette Score quantifies how close each point in one cluster 

is to the points in the neighboring clusters. It is calculated as: 

 

𝑺(𝒊) =
𝒃(𝒊) − 𝒂(𝒊)

𝐦𝐚𝐱⁡(𝒂(𝒊), 𝒃(𝒊))
 

 

Where: 

• a(i) = Average distance of point iii from all other points in the 

same cluster. 

• b(i) = Average distance of point iii from the nearest 

neighboring cluster. 

✔ Values range from -1 to 1: A higher value indicates better 

clustering. 

     Best for: Comparing cluster quality across different algorithms. 

 
1.2 Davies-Bouldin Index (DBI) 

Picture yourself sitting in judgment for a talent show, with 

performers walking on and off the stage. For each act compare how 

closely its performers huddle together (cluster “width”) with how far 

apart they stand from the next act (cluster “distance”). The DBI is the 

equivalent of taking an average of those “width-to-gap” ratios for all 

acts — low scores indicate that acts are cosy and nicely separated, 

and so your talent shows lineup feels crisp and clear. 

 

𝑫𝑩𝑰 =
𝟏

𝑵
∑𝐦𝐚𝐱

𝒋≠𝟏

𝝈𝒊 + 𝝈𝒋

ⅆ(𝑪𝒊, 𝑪𝒋)

𝑵

𝒊=𝟏

 

 

Where: 

• σi and σj = Cluster spread (average distance between points 

and centroid). 

• d(ci, cj) = Distance between cluster centroids ci and cj. 

✔ Lower values indicate better clustering performance. 

     Best for: Evaluating clusters in high-dimensional data. 

 
1.3 Dunn Index 

Imagine laying out tables at a party. These are the minimum distance 

between any two tables (inter-table distance) and the maximum 

number of guests at a single table (intra-table spread). The Dunn 

Index is that gap to spread ratio—higher scores represent tables that 

are far apart with guests relatively crowding in at each table. It 

rewards cozy party groups that actually are distinguishable from one 

another: 

 

𝑫 =
𝐦𝐢𝐧ⅆ(𝒊, 𝒋)

𝒎𝒂𝒙⁡⁡𝑫𝑲
 

 

Where: 

• d (i, j) = Minimum distance between points in different 

clusters. 

• Dk = Maximum intra-cluster distance. 

✔ Higher values indicate better clustering with well-separated 

clusters. 

     Best for: Clustering with widely varying densities. 

 

2.  External Evaluation Metrics 
External evaluation metrics compare clustering results with 

ground truth labels, which are available in some datasets. These 

metrics measure how well clustering replicates predefined 

categories.  

2.1 Adjusted Rand Index (ARI) 

The ARI quantifies the similarity between the computed clustering 

and the true class labels by considering correct and incorrect 

assignments. 

✔ Values range from -1 (random assignment) to 1 (perfect 

clustering). 

     Best for: Assessing clustering performance when labeled data is 

available. 

 
2.2 Normalized Mutual Information (NMI) 

The NMI evaluates how much information is shared between 

clusters and ground truth labels. It is defined as: 

 

𝐍𝐌𝐈 =
𝟐⁡ × (𝑪, 𝑻)

𝐇(𝐂) + 𝐇(𝐓)
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Where: 

• I(C, T) = Mutual information between clustering and ground 

truth labels. 

• H(C) and H(T) = Entropies of clustering and ground truth 

labels. 

✔ Values range from 0 (no mutual information) to 1 (perfect 

clustering). 

     Best for: Measuring clustering effectiveness when labeled data 

is available. 

 

3.  Relative Evaluation Metrics 
Finally, to select the best configuration, several clustering 

results are compared by relative measures. These are especially 

helpful for selecting the right number of clusters (K). 

3.1 Elbow Method 

The best number of clusters in partition-based clustering (e.g., K-

Means) can be obtained via the Elbow Method. It takes the wcss 

(within-cluster sum of squares) on y axis and the number of 

clusters on x axis and it shows the "elbow point" where adding 

clusters no longer appreciably decreases the wcss. 

     Best for: Selecting the right number of clusters in K-Means. 

 
3.2 Gap Statistic 

You can think of the Gap Statistic as testing your party’s way to 

decide where everyone sits against a random shuffle. You cluster 

together your real guests, create a set of people who wander in the 

style of one of your real guests, and cluster with them. The Gap is a 

measure of how much better your real clusters are than noise: how 

much more compact and clearer. The largest “gap” tells you the 

optimal number of tables (clusters) for your gathering. 

✔ A higher gap value indicates better clustering separation. 

     Best for: Cluster selection in diverse datasets. 

4.  Choosing the Right Evaluation Metric 

The choice of evaluation metric depends on the clustering 

algorithm and the availability of labeled data: 

 

Algorithm 
Best Internal 

Metric 

Best External 

Metric 

Best Relative 

Metric 

K-Means 
Silhouette 

Score 

Adjusted Rand 

Index 

Elbow 

Method 

DBSCAN 
Davies-

Bouldin Index 

Normalized Mutual 

Information 
Dunn Index 

Hierarchical Dunn Index ARI Gap Statistic 

GMM 
Silhouette 

Score 
NMI 

Elbow 

Method 

Fuzzy C-

Means 

Silhouette 

Score 
ARI Gap Statistic 

 
Conclusion  

This section reviewed key clustering evaluation metrics that help 

assess cluster quality, separation, and accuracy. Internal metrics 

(Silhouette Score, DBI, Dunn Index) evaluate clustering 

performance without labels, external metrics (ARI, NMI) assess 

clustering accuracy against ground truth labels, and relative metrics 

(Elbow Method, Gap Statistic) guide optimal cluster selection. 

 

 

 

 

 

IV. APPLICATIONS OF DATA CLUSTERING 

ALGORITHMS 
Data clustering has been commonly applied in various domains with 

the aim of finding better data organization, pattern recognition and 

decision-making. For a particular application, particular clustering 

algorithms are chosen to achieve the demands. In this section, we 

present the most relevant real-world applications of clustering 

algorithms in fields related to AI, ML, and Data Mining, identifying 

the algorithms which are the most appropriate for each of these 

domains 

 

1.  Clustering in Computer Science and Artificial 

Intelligence (AI) 
Clustering based techniques are widely used in the field of Artificial 

Intelligence to improve computer vision, speech recognition, 

anomaly detection and others. 

1.1 Image Segmentation 

• Objective: To segment an image into semantic segments and 

to use a classifier to classify the segments. 

• Best Algorithm: K-Means (color-based segmentation), 

DBSCAN (for irregular shapes), and Gaussian Mixture 

Model (GMM) (for soft segmentation). 

• Use Case: Autonomous Vehicles (self-driving cars) employ 

image segmentation to detect pedestrians, lanes, obstacles etc. 

1.2 Speech and Audio Processing 

• Objective: Lumping similar speakers based on their voice 

patterns for identity verification and emotions identification in 

speech 

• Best Algorithm: GMM (to model voice features), Fuzzy C-

Means (FCM) (to overlap sound patterns). 

• Use Case: Voice assistants like Alexa and Siri use clustering 

for speaker recognition. 

1.3 Anomaly Detection in AI Systems 

• Objective: Detect unusual patterns in AI-powered systems, 

such as fraud detection and cybersecurity threats. 

• Best Algorithm: DBSCAN (for noise identification), 

Hierarchical Clustering (for hierarchical fraud patterns). 

• Use Case: Financial fraud detection applies clustering to 

cluster potentially fraudulent transactions. 

 

2. Clustering in Machine Learning (ML) 
Clustering is a fundamental problem in unsupervised learning in 

machine learning whereby, the recommendation systems and pattern 

recognition are derived 

2.1 E-Commerce Customer Segmentation  

• Objective: Use purchase behavior to classify customers for 

better marketing strategy. 

• Best Algorithm: K-Means (for segmenting heavy datasets), 

GMM (for soft clustering in the customer preference areas). 

• Use Case: Clustering is used by Amazon.com and Netflix to 

recommend products and movies that you might like. 

2.2 Feature Engineering and Dimensionality Reduction 

• Objective: Only preserve meaningful information while 

keeping LAT features intact (Krauss and Gentner, 2007). 

• Best Algorithm: Hierarchical Clustering (for grouping 

similar features), DBSCAN (for noise removal in feature 

selection). 
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• Use Case: Clustering to enhance the performance of the ML 

model for that subset of featurescoopera- 1.1.1 Clustering to 

Enhance the Performance of the ML Model clustering 

methods and to select the most relevant features. 

2.3 Clustering of Medical Data 

• Objective: Characterization of disease distribution and 

categorization of patient into risk profiles. 

• Best Algorithm: Fuzzy C-Means (for overlapping medical 

conditions), Hierarchical Clustering (for structured medical 

classifications). 

• Use Case: Applied in disease outbreak detection and cancer 

subtype identification. 

 

3. Clustering in Data Mining 
Clustering technique is employed in data mining to gain insights 

from huge datasets in meaningful way. 

3.1 Big Data Analytics 

• Objective: To efficiently process and analyze largescale data 

recursively for trend detection. 

• Best Algorithm: K-Means (for fast clustering), DBSCAN 

(for noise handling). 

• Use Case: Clustering is deployed in social media platforms to 

identify sentiment of user. 

3.2 Document and Text Clustering 

• Objective: Organize large text datasets into meaningful 

topics. 

• Best Algorithm: Hierarchical Clustering (topic modeling), 

GMM (soft text categorization). 

• Use Case: News agencies use cluster analysis for automatic 

classification of the articles. 

3.3 Market Basket Analysis 

• Objective: Knowing what people are buying to make better 

inventory. 

• Best Algorithm: K-Means (for clustering frequent itemset), 

DBSCAN (for outlier detection in transactions). 

• Use Case: Retailers leverage clustering for recommendation 

engines and for supply chain optimization. 

 

4. Summary of Algorithm Usage Across Domains 
 

Domain 
Best Clustering 

Algorithm 
Use Case 

AI DBSCAN 
Fraud Detection, Image 

Segmentation 

AI GMM 
Speech Recognition, Soft 

Clustering 

ML K-Means 
Customer Segmentation, 

Feature Engineering 

ML Hierarchical 
Medical Diagnosis, Feature 

Selection 

Data 

Mining 
Fuzzy C-Means 

Text Clustering, Market Basket 

Analysis 

 
Conclusion 

Clustering algorithms play a fundamental role in AI, ML, and data 

mining applications. K-Means, DBSCAN, GMM, Hierarchical 

Clustering, and Fuzzy C-Means are the most widely used 

algorithms, each suited to different types of data structures and real-

world problems. The next section will discuss challenges in 

clustering and potential future research directions. 

 

 

V. CHALLENGES AND FUTURE 

DIRECTIONS IN CLUSTERING 

 
Although clustering algorithms are popular and widely used and 

also perform well in different application, several limitations still 

exist which affect the performance and usefulness. This subsection 

presents the main limitations regarding the problem of clustering and 

possible future research direction to overcome these problems. 

 

1. Challenges in Clustering Algorithms 

V.1. Determining the Optimal Number of Clusters 

• Problem: With the exception of most popular clustering 

algorithms like K-Means and GMM, we need to know the 

number of clusters a priori, and it is most of the times not that 

straight forward to figure out. 

• Impact: Wrong choice of clusters can result in less predictive 

models and inappropriate classification. 

• Possible Solution: Automated cluster selection methods such 

as Elbow Method, Silhouette Score and Bayesian 

Information Criterion (BIC) can be used to decide on the 

most appropriate number of clusters. 

V.2. Handling High-Dimensional Data 

• Problem: Many of the real-world datasets, such as genetic and 

text data, come with hundreds or thousands of features which 

complicates the clustering problem. 

• Impact: High-dimensional data increases computational 

burden, and algorithms are less efficient for clustering. 

• Possible Solution: Techniques like PCA (Principal 

Component Analysis) and t-SNE (to name a few) can be 

employed to better cluster the similar vs. dissimilar entities. 

V.3. Sensitivity to Initialization and Noise 

• Problem: Algorithms like K-Means are sensitive to choice of 

initial cluster centroids and outliers, thus, producing 

inconsistent results. 

• Impact: Insufficient initialization might cause suboptimal 

clustering, and noise might blur cluster structures. 

• Possible Solution: Initialize better by K-Means++ and noise 

can be address by DBSCAN for better robustness. 

 

V.4. Scalability and Computational Complexity 

• Problem: With the increasing size of datasets, clustering 

becomes inefficient, in particular hierarchical clustering. 

• Impact: We cannot directly apply traditional clustering 

methods, as their computational complexity limits the real-

time operation of data clustering. 

• Possible Solution: Scalability can be improved by Using 

parallelized clustering algorithms and distributed 

computing (e.g. Apache Spark, Hadoop). 

V.5. Interpretability versus Explainability 

• Problem: The outcomes of clustering are usually difficult or 

impossible to interpret, which is a major shortcoming in 

critical domains such as healthcare, where clustering decisions 

http://www.ijsrem.com/
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need to be justifiable. 

• Impact: Obfuscation can result in distrust in AI applications 

using clustering. 

• Possible Solution: Creating explainable AI methods for 

clustering to increase explainability, including visualization 

tools and decision-tree based clustering. 

 

2. Future Research Directions 

VI.1. Deep Learning and clustering combined 

• Advancement: Techniques of deep learning like autoencoders 

and self-supervised learning can improve clustering. 

• Example: Deep Embedded Clustering (DEC) combines 

neural networks and clustering to enhance feature extraction. 

VI.2. Methods that adapt to clustering and are Dynamic 

• Advancement: Designing algorithms which allows for 

dynamic determination of the number of clusters relative to the 

patterns exhibited by the data. 

• Example: Adaptive K-Means or online clustering algorithms 

for growing datasets. 

VI.3. Interpretable and Fair Clustering 

• Advancement: Enhancing interpretability in clustering 

models for ethical AI use cases. 

• Example: Developing fairness-aware clustering algorithms 

to carry out fair customer segmentation. 

VI.4. Clustering on Data Streams and Realtime Data 

• Advancement: U sed clustering models on streaming data to 

process the data in real time. 

• Example: Incremental DBSCAN for dynamic reevaluation of 

clusters in traffic observation 
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