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Abstract: Large Language Models (LLMs) have enabled 

a new generation of intelligent agents capable of 

generating queries, automating workflows, and assisting 

data engineering tasks through natural language 

interaction. Despite these advances, most LLM-based 

agents remain fundamentally reactive, operating by 

predicting text rather than anticipating the operational 

consequences of their actions. In production-scale data 

platforms, actions such as schema changes, table 

optimizations, or compute scaling directly impact 

performance, cost, and system reliability. Without the 

ability to forecast these outcomes, autonomous agents 

may introduce failures, inefficiencies, or unsafe 

decisions, exposing a critical gap between language 

intelligence and system intelligence. 

This paper proposes an approach that integrates data 

engineering observability with learned transition 

modeling to enable consequence-aware agentic behavior. 

We introduce Data Engineering–Driven World 

Models, where agents learn state-transition behavior of 

data platforms using historical telemetry, system metrics, 

and action–outcome logs. Instead of executing changes 

directly, agents simulate future system states and evaluate 

expected impacts before taking action, enabling safer 

planning and more reliable automation. 

To operationalize this concept, we present the Data 

System Digital Twin (DSDT) architecture, which 

combines observability pipelines, structured state 

encoding, machine learning–based world models, and 

planning modules with LLM interfaces. The framework 

continuously captures runtime and cost signals, learns 

system dynamics, and selects optimal actions through 

simulation-based reasoning. A prototype implementation 

on a lakehouse environment demonstrates improvements 

in runtime efficiency, infrastructure cost, and failure 

prevention compared to rule-based and LLM-only 

approaches. This work shows that combining world 

models with strong data engineering foundations 

provides a practical pathway toward safe, self-

optimizing, and autonomous data platforms. 
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1. Introduction 

Recent progress in Artificial Intelligence has accelerated 

the adoption of intelligent agents across software and data 

engineering ecosystems. In particular, Large Language 

Models (LLMs) have demonstrated strong capabilities in 

understanding natural language, generating code, writing 

queries, and assisting automation tasks. These abilities 

have enabled the development of agentic systems that can 

interact with users conversationally and perform complex 

operations such as creating data pipelines, optimizing 

transformations, and managing infrastructure with 

minimal human intervention. As a result, many modern 

platforms are increasingly integrating LLM-based 

assistants to improve productivity and reduce manual 

effort. 

Despite these advancements, current agentic systems 

remain fundamentally limited in their operational 

intelligence. Most LLM-driven agents operate by 

predicting text outputs rather than modeling how real-

world systems behave. While they can recommend 

actions or generate configuration scripts, they do not 

inherently understand the consequences of executing 

those actions. In other words, they lack an internal 

representation of how the environment changes in 

response to interventions. This limitation is not critical in 

purely conversational settings, but it becomes a 

significant challenge when agents are granted control 

over production-scale data platforms. 

Modern data engineering environments are highly 

dynamic and complex. Enterprise lakehouses and 

warehouses typically manage thousands of tables, large-

scale distributed jobs, evolving schemas, and fluctuating 

workloads. Small operational changes, such as modifying 

partitions, scaling compute resources, or adjusting 
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storage layouts, can have cascading effects on runtime 

performance, infrastructure costs, and downstream 

dependencies. Human engineers often rely on experience 

and intuition to anticipate these effects before making 

changes. They mentally simulate outcomes, evaluate 

risks, and select actions that are likely to improve system 

behavior. This predictive reasoning is essential for safe 

and reliable system management. 

LLM-based agents, however, lack this capability. 

Because they are trained primarily on language patterns 

rather than system dynamics, they cannot accurately 

forecast the future state of the platform. Consequently, 

actions recommended by such agents may be suboptimal 

or even harmful. For example, an automated optimization 

may increase data skew, raise compute costs, or disrupt 

dependent workflows. These risks highlight a critical gap 

between language intelligence and system intelligence. If 

agentic systems are to operate autonomously in 

production environments, they must be able to predict the 

consequences of their decisions before execution. 

To address this challenge, we argue that meaningful 

agentic intelligence requires the integration of world 

models. A world model is a predictive representation that 

estimates how an environment transitions from one state 

to another after an action is taken. Formally, given the 

current state and a candidate action, the model forecasts 

the next state of the system. This capability enables 

planning, simulation, and consequence-aware decision 

making. World models have been successfully applied in 

fields such as robotics, control systems, and autonomous 

vehicles, where predicting outcomes is essential for safe 

operation. However, their application within data 

engineering systems remains largely unexplored. 

In this work, we introduce a new perspective that 

combines data engineering practices with predictive 

modeling to build consequence-aware agents for 

autonomous data platforms. We propose the concept of a 

Data System Digital Twin, a structured and 

continuously updated representation of the data 

environment that captures telemetry, workload 

characteristics, and operational outcomes. By learning 

from historical observations of state, action, and result, 

agents can model system dynamics and simulate future 

behavior before executing changes. This approach 

enables safer optimization, reduced operational risk, and 

improved resource efficiency. 

We present a layered architecture that integrates 

observability pipelines, state encoding mechanisms, 

machine learning–based world models, and planning 

components with LLM interfaces. In this framework, 

LLMs provide natural language reasoning and user 

interaction, while predictive models guide execution 

decisions through simulation. This separation ensures 

that language understanding does not directly control 

system operations without validation. A prototype 

implementation on a modern lakehouse stack 

demonstrates that consequence-aware agents can 

outperform both manual tuning and LLM-only 

automation in terms of runtime efficiency, infrastructure 

cost, and reliability. 

The primary contributions of this paper are threefold. 

First, we formally define world models in the context of 

data engineering environments and identify their 

importance for agentic systems. Second, we propose the 

Data System Digital Twin architecture that enables 

predictive planning and safe automation. Third, we 

provide an empirical evaluation demonstrating the 

practical benefits of integrating data engineering 

telemetry with learned predictive models. Together, these 

contributions establish a foundation for building the next 

generation of intelligent, reliable, and autonomous data 

platforms. 

2. Literature Review 

Recent advancements in artificial intelligence have led to 

significant interest in building intelligent agents capable 

of automating complex engineering workflows. Research 

and industry efforts have primarily focused on leveraging 

Large Language Models (LLMs) to enable natural 

language interaction, reasoning, and automated code 

generation. While these approaches have improved 

productivity, they reveal important limitations when 

applied to operational system control. This section 

reviews existing work in LLM-based agents, agentic 

frameworks, world models, digital twins, and data 

engineering automation, and identifies the gap addressed 

by our proposed approach. 

This motivates hybrid architectures that combine 

language reasoning with explicit system modeling in 

lakehouse-style platforms [11]. 

2.1 Large Language Model–Based Agents 

Large Language Models such as GPT, PaLM, and similar 

transformer-based architectures have demonstrated 

strong performance in text understanding, generation, and 
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reasoning tasks. These capabilities have enabled 

conversational assistants that can write SQL queries, 

generate scripts, summarize logs, and assist developers. 

Several recent systems integrate LLMs with tools and 

APIs to create “agentic” behavior, allowing models to 

perform multi-step tasks through prompting and tool 

invocation. 

However, these agents operate primarily through next-

token prediction and pattern matching learned from 

textual data. They do not explicitly model causality or 

environment dynamics. As a result, decisions are made 

based on language correlations rather than predictive 

simulations of system behavior. When deployed in 

production engineering environments, this limitation can 

lead to unsafe or suboptimal actions. Therefore, while 

LLMs provide strong reasoning and interaction 

capabilities, they lack operational consequence 

awareness. 

2.2 Agentic AI Frameworks and Tool-Augmented 

Systems 

To extend LLM capabilities, several frameworks 

combine language models with external tools, memory, 

and planning components. These systems enable agents 

to execute commands, retrieve information, and perform 

iterative reasoning. Tool-augmented agents improve task 

completion rates compared to standalone models and are 

widely used in automation scenarios. 

Despite these improvements, most frameworks remain 

reactive. They execute actions sequentially without 

explicitly predicting future system states. Planning is 

often heuristic or rule-based rather than learned from 

historical behavior. Consequently, these agents can still 

produce unstable or inefficient outcomes when managing 

complex infrastructure. The absence of predictive system 

modeling limits their reliability for autonomous 

operations. 

2.3 World Models and Predictive Planning 

The concept of world models originates from robotics, 

reinforcement learning, and control systems research. A 

world model learns the transition dynamics of an 

environment, allowing an agent to simulate the effects of 

actions before executing them. This approach enables 

planning, risk estimation, and safe decision making. 

World models have been successfully applied in 

autonomous vehicles, robotic manipulation, and game-

playing systems, where anticipating consequences is 

critical. 

These methods demonstrate that predictive modeling 

significantly improves robustness and performance in 

dynamic environments. However, their application has 

largely been limited to physical or simulated domains. 

The adoption of world models for software and data 

infrastructure systems has received comparatively little 

attention, leaving an opportunity to extend these 

principles to data engineering environments. 

World models have been widely studied in reinforcement 

learning and control systems as a mechanism for 

predicting state transitions and enabling planning before 

execution [5], [6]. 

2.4 Digital Twins in System Monitoring 

Digital twin technology has been widely used in 

manufacturing, IoT, and industrial engineering to create 

virtual replicas of physical systems. These replicas enable 

simulation, monitoring, and predictive maintenance. By 

analyzing telemetry data, digital twins help forecast 

failures and optimize performance. 

Although digital twins are effective for physical assets, 

similar approaches for data platforms are still emerging. 

Current observability tools focus on monitoring and 

alerting rather than predictive simulation and planning. 

As a result, they provide visibility but not autonomous 

intelligence. 

In contrast, lakehouse systems focus on scalable, unified 

analytics and storage foundations [11], but do not 

inherently provide predictive state-transition simulation 

for operational control. 

2.5 Automation in Data Engineering and AIOps 

DataOps and AIOps practices aim to automate 

deployment, monitoring, and optimization of data 

pipelines. Techniques such as rule-based tuning, 

heuristics, and threshold alerts are commonly used. While 

these approaches reduce manual effort, they depend 

heavily on predefined rules and lack adaptive learning. 

They do not generalize well to evolving workloads or 

unseen conditions. 

This limitation suggests the need for data-driven, 

learning-based methods that can adapt dynamically to 

changing environments. 
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Lakehouse storage layers and ACID table formats have 

made it easier to persist operational signals and 

experiment logs at scale, which supports learning-based 

optimization pipelines [10], [11]. 

2.6 Research Gap 

From the above review, it is evident that existing 

approaches provide either strong language reasoning 

(LLMs) or monitoring capabilities (observability tools), 

but rarely combine predictive system modeling with 

agentic decision-making. Current solutions lack 

mechanisms to learn environment dynamics and simulate 

consequences before action execution. 

To address this gap, we propose integrating data 

engineering telemetry with learned world models to 

create consequence-aware agents. Our approach bridges 

language intelligence and predictive system intelligence 

through the Data System Digital Twin framework, 

enabling safe, reliable, and autonomous data platform 

management. 

3. Research Objectives 

This study aims to bridge the gap between language-

based intelligent agents and reliable system-level 

decision-making in large-scale data engineering 

environments. While current LLM-based agents provide 

conversational reasoning and task automation, they lack 

the ability to predict the operational consequences of their 

actions. The primary objective of this research is to 

design and evaluate a consequence-aware agentic 

framework that integrates predictive world models with 

data engineering practices to enable safe and autonomous 

platform management. 

The specific objectives of this work are as follows: 

1. To analyze the limitations of LLM-based 

agents in production data platforms, particularly 

their inability to model causality, predict state 

transitions, and perform safe operational 

planning. 

 

2. To formally define world models for data 

engineering systems, representing platform 

behavior using state–action–outcome 

relationships that capture runtime performance, 

cost, and reliability characteristics. 

 

3. To design a Data System Digital Twin 

architecture that continuously collects 

telemetry, encodes system states, and maintains a 

structured virtual representation of the data 

environment for predictive analysis. 

 

4. To develop predictive machine learning 

models that learn environment dynamics and 

estimate future system states given candidate 

actions, enabling simulation-based decision-

making. 

 

5. To integrate the world model with an agentic 

planning framework, where actions are 

evaluated through consequence prediction before 

execution rather than through reactive or rule-

based approaches. 

 

6. To implement a prototype system using 

modern lakehouse technologies and distributed 

data processing tools to validate the practical 

feasibility of the proposed framework. 

 

7. To experimentally evaluate system 

performance, measuring improvements in 

runtime efficiency, infrastructure cost, and 

operational reliability compared to manual 

tuning and LLM-only automation. 

 

8. To demonstrate that combining data 

engineering observability with predictive 

modeling provides a scalable foundation for 

safe, self-optimizing, and autonomous data 

platforms. 

Through these objectives, the research seeks to establish 

a new direction for agentic AI systems that move beyond 

language intelligence toward predictive and 

consequence-aware operational intelligence. 

4. Architecture and System Design 

The proposed system is designed to enable consequence-

aware decision making in agentic data engineering 

environments by integrating predictive modeling with 

traditional data platform observability. Unlike 

conventional LLM-based agents that operate reactively 

by generating actions directly from textual reasoning, the 

proposed architecture introduces a structured mechanism 

to simulate and evaluate the operational impact of 

candidate actions before execution. This capability is 
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achieved through the creation of a virtual and 

continuously updated representation of the platform, 

referred to in this work as the Data System Digital Twin 

(DSDT). The digital twin acts as an abstract model of the 

environment and enables agents to reason about system 

behavior using learned state transitions rather than 

heuristics or language correlations alone. 

At a high level, the architecture follows a layered design 

in which telemetry collection, state abstraction, predictive 

modeling, planning, and language interaction are clearly 

separated. This separation ensures that language 

intelligence is not directly responsible for operational 

control, thereby reducing the risk of unsafe decisions. 

Instead, predictive components validate all actions 

through simulation prior to deployment. The overall 

design emphasizes reliability, scalability, and 

compatibility with modern lakehouse and warehouse 

ecosystems. 

The foundation of the system is the observability layer, 

which continuously gathers operational signals from the 

data platform. Modern data engineering environments 

generate large volumes of telemetry in the form of 

execution logs, runtime metrics, resource utilization 

statistics, and dependency information. These signals 

provide a historical view of how the system behaves 

under varying workloads and configurations. The 

proposed architecture captures such signals, including job 

latency, storage growth, compute consumption, shuffle 

volume, partition distribution, and failure events, and 

stores them in structured storage for analysis. By 

maintaining a persistent historical record, the system 

creates the necessary data backbone required to learn 

environment behavior over time. Without this telemetry, 

predictive modeling of system dynamics would not be 

feasible. 

Since raw logs are often noisy and high dimensional, the 

next stage of the architecture focuses on transforming 

telemetry into meaningful and compact state 

representations. The state representation layer aggregates 

and encodes operational metrics into abstract features that 

summarize the health and performance of the system at a 

given time. Rather than modeling low-level signals 

directly, the system constructs semantic attributes such as 

average runtime, cost rate, skew index, failure frequency, 

and dependency counts. These abstractions allow the 

environment to be represented as structured state vectors 

that are easier to learn and simulate. By operating in this 

reduced feature space, the architecture achieves both 

computational efficiency and better generalization across 

workloads. 

Figure 1. End-to-End Architecture of the Proposed Data 

System Digital Twin Framework. 

 

Built on top of these state representations is the world 

model layer, which forms the predictive core of the 

system. The world model learns how the environment 

transitions from one state to another when specific actions 

are applied. Formally, given the current system state and 

a candidate action, the model estimates the likely next 

state of the platform. This transition function is trained 

using historical observations of state, action, and outcome 

relationships derived from past executions. Through 

supervised learning techniques, the model captures 

patterns such as how repartitioning affects runtime, how 

scaling compute influences cost, or how configuration 

changes impact reliability. By forecasting these effects in 

advance, the world model enables the agent to anticipate 

consequences rather than relying on trial-and-error 

execution. 

To utilize these predictions effectively, the architecture 

incorporates a planning and optimization layer that 

evaluates multiple possible actions before selecting one 

for execution. When the agent receives a high-level 

objective, several candidate strategies are generated and 

individually simulated using the world model. Each 
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simulated outcome is scored based on predefined 

objectives such as minimizing runtime, reducing 

infrastructure cost, or lowering failure risk. The action 

associated with the most favorable predicted outcome is 

then selected. This simulation-based planning mechanism 

resembles model-based control approaches used in 

robotics and ensures that decisions are guided by 

measurable consequences rather than reactive responses. 

The final component of the architecture is the agent 

interface layer, which integrates a Large Language Model 

to provide natural language interaction and reasoning 

capabilities. The LLM interprets user requests, explains 

system behavior, and generates potential strategies in an 

intuitive manner. However, unlike traditional LLM-

centric agents, it does not directly execute operational 

changes. Instead, all proposed actions are validated 

through the predictive world model and planning 

modules. This design ensures that language 

understanding complements, rather than replaces, system 

intelligence. By separating reasoning from execution, the 

architecture balances usability with safety. 

Together, these components form a closed feedback loop 

in which telemetry is continuously collected, states are 

updated, outcomes are predicted, and decisions are 

refined over time. After each action is executed, new 

results are recorded and incorporated into the training 

data, enabling the world model to improve its accuracy 

iteratively. This continuous learning process allows the 

system to adapt to evolving workloads and infrastructure 

changes. As a result, the proposed architecture transitions 

data platforms from reactive automation toward proactive 

and autonomous optimization, establishing a practical 

foundation for reliable agentic systems. 

5. Implementation 

To evaluate the practicality of the proposed Data System 

Digital Twin (DSDT) architecture, a working prototype 

was implemented on a modern lakehouse-based data 

engineering environment. The primary objective of the 

implementation was to demonstrate that telemetry-driven 

world models can be integrated with agentic reasoning to 

enable predictive and consequence-aware operational 

decisions. Rather than relying on simulated 

environments, the prototype was deployed using 

commonly adopted enterprise technologies to ensure that 

the framework reflects real-world feasibility and 

scalability. 

The system was developed using distributed storage and 

processing components that are widely used in 

production data platforms. A lakehouse architecture was 

selected to persist telemetry and historical workload 

information, while distributed compute engines were 

used to perform feature engineering, model training, and 

large-scale data processing. PySpark was employed for 

transformation logic and pipeline orchestration, and 

standard machine learning libraries were used to train 

predictive models. An LLM-based interface was 

integrated to support natural language interaction and 

high-level task interpretation. This technology stack 

allowed the proposed framework to operate directly 

within existing infrastructure without requiring 

specialized hardware or custom runtime environments. 

The first stage of the implementation focused on 

establishing a comprehensive observability pipeline. 

Continuous telemetry collection is critical because 

predictive models depend on historical behavior to learn 

system dynamics. Operational signals were captured 

from batch jobs, streaming processes, and table 

operations across the platform. These signals included 

execution latency, compute utilization, input and output 

data volume, partition distribution, shuffle statistics, 

storage consumption, and failure events. Each metric was 

recorded with time stamps and contextual identifiers such 

as job name or dataset. The collected data was stored in 

structured Delta tables, forming a time-series history of 

platform activity. This persistent record provides the 

empirical foundation required to understand how the 

system behaves under varying workloads and 

configurations. 

Since raw telemetry often contains noise and fine-grained 

details that are not directly useful for predictive modeling, 

the next step involved constructing compact and 

meaningful state representations. Feature engineering 

techniques were applied to aggregate metrics over 

defined time windows and to compute derived indicators 

such as average runtime, growth rate, skew index, cost 

estimates, and failure frequency. These aggregated 

attributes capture the operational health of each pipeline 

or table at a semantic level. The resulting features were 

encoded into structured state vectors and stored in a 

feature store for reuse during both training and inference. 

This abstraction process reduces dimensionality and 

improves the stability and generalization capability of the 

learning models. 

In addition to capturing system states, the implementation 

explicitly recorded operational actions performed by 
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either users or automated agents. Logging actions is 

essential for learning cause-and-effect relationships 

between interventions and outcomes. Each configuration 

change, optimization step, or scaling decision was 

recorded along with its parameters and time of execution. 

Typical actions included repartitioning tables, modifying 

storage layouts, adjusting cluster sizes, or updating 

runtime configurations. By maintaining this action 

history, the system was able to construct state–action–

outcome triplets that form the supervised learning dataset 

for modeling environment transitions. 

Using these historical triplets, the world model was 

trained to estimate how the system evolves after specific 

actions are applied. Supervised regression techniques 

were employed to learn transition functions that map the 

current state and a candidate action to a predicted future 

state. Separate models were trained to forecast metrics 

such as expected runtime, infrastructure cost, and 

probability of failure. Structured tabular models, 

including tree-based and gradient boosting methods, were 

selected due to their robustness and interpretability when 

working with operational data. The trained models 

effectively captured patterns such as how partition 

changes influence runtime or how resource scaling 

impacts cost, enabling the system to forecast 

consequences before execution. 

During runtime, the predictive models are used to 

perform simulation-based planning. When an agent 

receives a high-level objective, such as improving 

performance or reducing cost, it generates multiple 

candidate actions. Each candidate is evaluated by passing 

the current state and the action parameters to the trained 

world model, which predicts the resulting system 

behavior. The predicted outcomes are then scored using 

an objective function that combines runtime, cost, and 

risk metrics. The action with the most favorable predicted 

score is selected for execution. This simulation-first 

approach ensures that decisions are guided by measurable 

forecasts rather than reactive or heuristic reasoning. 

To enable user-friendly interaction, an LLM interface 

was integrated on top of the predictive system. The 

language model interprets natural language requests, 

summarizes system conditions, and proposes potential 

strategies. However, unlike conventional LLM-only 

agents, the model does not directly execute operational 

commands. All recommendations are validated through 

the predictive world model and planning layer before 

deployment. This design choice ensures that language 

reasoning enhances usability while maintaining strict 

control over system safety. 

Finally, the system implements a continuous feedback 

mechanism that updates the digital twin after every 

execution. Observed outcomes are recorded back into 

telemetry storage, and the newly collected data is 

periodically incorporated into model retraining. This 

closed-loop process allows the world model to improve 

over time as it encounters new workloads and 

configurations. As the dataset grows, prediction accuracy 

increases, resulting in progressively better planning 

decisions. Consequently, the system evolves from static 

automation toward adaptive and self-optimizing 

behavior. 

Overall, the implementation demonstrates that the 

proposed architecture can be realized using standard data 

engineering tools and practices. The integration of 

telemetry collection, predictive modeling, and agentic 

reasoning is both practical and scalable, confirming that 

world-model-based agents can operate effectively in real 

production data environments. 

6. Data Collection and Preparation 

The effectiveness of the proposed Data System Digital 

Twin and world-model-based planning framework 

depends heavily on the quality and completeness of 

historical operational data. Since the objective of the 

system is to learn environment dynamics and predict the 

consequences of actions, it is essential to construct a 

dataset that accurately captures the relationship between 

system states, executed interventions, and resulting 

outcomes. Therefore, careful attention was given to the 

collection, cleaning, and preparation of telemetry data 

before model training and evaluation. 

Data for this study was collected from a production-style 

lakehouse environment executing a mixture of batch 

processing, incremental loads, and analytical workloads. 

The platform consisted of multiple pipelines operating on 

structured datasets of varying sizes and complexities. 

Each pipeline execution generated operational signals, 

including runtime metrics, resource utilization statistics, 

storage characteristics, and success or failure indicators. 

These signals were continuously recorded through 

automated logging mechanisms integrated within the 

execution framework. By capturing telemetry directly 

from the running system rather than using synthetic 
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benchmarks, the dataset reflects realistic workload 

variability and operational behavior. 

The collected telemetry includes both system-level and 

task-level measurements. System-level metrics capture 

overall infrastructure behavior, such as CPU utilization, 

memory consumption, and cluster scaling information, 

while task-level metrics describe individual job 

characteristics, including rows processed, execution 

latency, partition distribution, shuffle volume, and I/O 

throughput. In addition, metadata such as timestamps, 

pipeline identifiers, table names, and configuration 

parameters were recorded to provide contextual 

information for analysis. This combination of signals 

enables the reconstruction of the platform’s operational 

state at any given point in time. 

Since raw logs often contain redundant, incomplete, or 

inconsistent entries, a preprocessing stage was applied to 

ensure data reliability. Missing values caused by transient 

logging failures were handled through interpolation or 

removal, depending on their frequency and impact. 

Duplicate records were eliminated, and inconsistent time 

formats were standardized to maintain temporal 

alignment across datasets. Outlier detection techniques 

were also applied to identify abnormal measurements 

caused by unexpected infrastructure interruptions or test 

runs that did not represent normal workload behavior. 

These steps ensured that the training data reflected stable 

and representative system operations. 

After cleaning, telemetry signals were transformed into 

structured state representations suitable for predictive 

modeling. Instead of using raw metrics directly, 

aggregated and derived features were computed over 

defined time windows. For example, average runtime, 

maximum resource usage, growth rate of storage, skew 

index, and failure frequency were calculated to 

summarize operational trends. Normalization techniques 

were applied to scale features to comparable ranges, 

preventing bias during model training. This abstraction 

process reduces dimensionality while preserving 

essential behavioral information. 

In addition to state information, the preparation phase 

included explicit logging of operational actions. Each 

system intervention, such as repartitioning tables, 

changing cluster size, or modifying configurations, was 

recorded with corresponding parameters and timestamps. 

Following each action, the resulting system behavior was 

measured and associated with the pre-action state. This 

process enabled the construction of structured state–

action–outcome triplets, which form the core training 

dataset for learning environment transitions. By pairing 

actions with observed consequences, the model can 

capture causal relationships rather than simple 

correlations. 

Finally, the prepared dataset was partitioned into training, 

validation, and testing subsets using temporal splits to 

preserve chronological order. Earlier observations were 

used for model training, while later data was reserved for 

evaluation. This approach prevents information leakage 

and better simulates real-world deployment scenarios, 

where future states must be predicted based solely on past 

behavior. The resulting dataset provides a comprehensive 

and reliable foundation for training the world model and 

assessing its predictive performance. 

Overall, the data collection and preparation process 

ensures that the proposed framework is grounded in 

realistic operational evidence. By systematically 

capturing, cleaning, and structuring telemetry and action 

histories, the system obtains high-quality training data 

that enables accurate consequence prediction and reliable 

agentic decision-making. 

7. Methodology: Data + AI Algorithms 

This section describes the methodological approach used 

to transform operational telemetry into predictive 

intelligence for consequence-aware agentic decision 

making. The primary objective of the proposed 

methodology is to learn the dynamic behavior of data 

engineering systems from historical observations and to 

use this knowledge to simulate the outcomes of potential 

actions before execution. The overall process combines 

structured data engineering practices with machine 

learning techniques to construct a world model that 

supports planning and optimization. 

The methodology begins with the assumption that a data 

platform can be represented as a dynamic environment 

whose behavior evolves over time in response to both 

workload conditions and system interventions. At any 

given time step, the environment can be described by a 

set of measurable characteristics that capture its 

operational health. These characteristics include 

performance metrics, cost indicators, and reliability 

signals collected through telemetry. Instead of treating 

these signals independently, the proposed approach 

aggregates them into structured representations that 

define the current system state. By encoding the 
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environment as states and actions, the problem can be 

formulated as a state-transition learning task similar to 

those used in reinforcement learning and control systems. 

 

 

This formulation allows the system to estimate future 

behavior without executing the action directly. 

To learn this transition function, historical telemetry is 

converted into supervised training samples consisting of 

state–action–outcome triplets. Each sample captures the 

system condition before an intervention, the action 

applied, and the resulting measurements observed after 

execution. These samples collectively represent empirical 

evidence of how the environment responds to changes. 

Prior to training, features are normalized and 

standardized to ensure consistent scaling, and temporal 

ordering is preserved to maintain causality. This 

preparation step improves model stability and prevents 

information leakage across time. 

The predictive component of the methodology uses 

regression-based machine learning algorithms to 

approximate the transition function. Structured tabular 

models such as gradient boosting, random forests, and 

other ensemble techniques are selected due to their 

robustness, interpretability, and ability to handle 

heterogeneous operational data. Separate predictive 

models are trained for key objectives including runtime 

estimation, cost prediction, and failure probability. By 

decomposing predictions into multiple targets, the system 

can evaluate trade-offs between performance and 

reliability more effectively. 

Once the transition function is learned, the methodology 

incorporates a simulation-based planning strategy. For a 

given state and high-level objective, the agent generates 

a set of candidate actions. Each candidate is evaluated by 

passing the state–action pair through the learned model to 

predict the resulting state. An objective function then 

scores each predicted outcome using weighted criteria 

such as execution time, infrastructure cost, and risk. The 

optimal action is selected by minimizing this objective. 

This process effectively performs “what-if” analysis, 

enabling the agent to reason about consequences without 

incurring operational risk. 

In addition to supervised prediction, the methodology 

employs a continuous learning mechanism to improve 

model accuracy over time. After each executed action, the 

observed outcome is logged and appended to the training 

dataset. Periodic retraining allows the world model to 

adapt to evolving workloads, schema changes, and 

infrastructure variations. This feedback loop ensures that 

the predictive system remains aligned with real-world 

behavior rather than relying on static assumptions. 

Overall, the proposed methodology integrates data 

engineering pipelines for structured telemetry collection 

with machine learning algorithms for predictive modeling 

and planning. By treating system optimization as a state-

transition learning problem, the approach moves beyond 

reactive automation and enables proactive, consequence-

aware decision making. This combination of data and AI 

forms the foundation for reliable and autonomous agentic 

systems in modern data platforms. 

8. System Integration and Deployment 

The practical value of the proposed Data System Digital 

Twin framework depends not only on predictive accuracy 

but also on its ability to integrate seamlessly with existing 
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production data engineering ecosystems. Modern 

enterprise data platforms already operate with established 

storage layers, compute clusters, orchestration tools, and 

monitoring systems. Therefore, the design of the 

proposed architecture emphasizes compatibility, 

modularity, and incremental deployment rather than 

requiring a complete system redesign. The objective is to 

ensure that consequence-aware agentic capabilities can 

be introduced without disrupting current workflows or 

infrastructure investments. 

The system was integrated into a lakehouse-based 

environment where data storage, telemetry logging, 

feature computation, and predictive modeling coexist 

within the same distributed ecosystem. Operational logs 

and metrics generated by existing pipelines were ingested 

directly into the observability layer using scheduled 

ingestion jobs and streaming collectors. Because most 

modern platforms already produce execution and 

performance metrics, no specialized instrumentation was 

required. This design choice reduces overhead and allows 

organizations to adopt the framework using their current 

monitoring mechanisms. The telemetry tables act as a 

shared foundation for both analytics and predictive 

modeling, ensuring consistency between operational 

insights and automated decision-making. 

The predictive world model and planning components 

were deployed as independent services within the 

platform’s compute layer. Separating these components 

from the core execution engine enables modular scaling 

and fault isolation. During runtime, the planner queries 

the latest system state from the feature store, evaluates 

candidate actions using the trained predictive models, and 

returns an optimized action plan. This process occurs 

asynchronously and does not interfere with active 

pipeline execution. Such decoupling ensures that 

predictive reasoning introduces minimal latency and 

avoids creating additional bottlenecks in the system. 

To enable user interaction, the agent interface was 

exposed through lightweight APIs and notebook-based 

environments commonly used by data engineers. Users 

can submit high-level goals or optimization requests 

using natural language or structured commands. These 

requests are interpreted by the LLM layer and translated 

into candidate operational strategies. However, all 

strategies are validated through the predictive planning 

module before execution. This integration pattern 

maintains a clear separation between reasoning and 

control, preventing unsafe or unverified actions from 

directly affecting production workloads. As a result, the 

system preserves both usability and operational safety. 

From a deployment perspective, the architecture supports 

incremental adoption. Organizations can initially deploy 

the observability and telemetry collection components to 

gather historical data without enabling autonomous 

actions. Once sufficient data is collected, predictive 

models can be trained offline and evaluated in shadow 

mode, where recommendations are generated but not 

executed. After validating accuracy and reliability, 

automated execution can be gradually enabled for low-

risk tasks before extending to broader optimizations. This 

phased rollout reduces operational risk and builds 

confidence in the system’s decisions. 

Scalability considerations were addressed by leveraging 

distributed storage and parallel processing capabilities 

inherent to the lakehouse platform. Telemetry datasets 

and feature engineering tasks scale horizontally with data 

volume, while model training can be parallelized across 

compute clusters. Since predictions operate on 

aggregated state vectors rather than raw logs, inference 

latency remains low even at large scale. This design 

ensures that the framework can support thousands of 

pipelines and datasets without significant performance 

degradation. 

Reliability and fault tolerance were also incorporated into 

the deployment strategy. All predictive decisions are 

logged, versioned, and auditable, allowing engineers to 

trace the reasoning behind each automated action. 

Rollback mechanisms are provided to revert changes if 

unexpected behavior is detected. Additionally, the system 

defaults to conservative behavior when confidence in 

predictions is low, thereby preventing risky interventions. 

These safeguards ensure that automation enhances 

system stability rather than introducing new failure 

modes. 

Overall, the integration and deployment process 

demonstrates that the proposed world-model-based 

agentic framework can operate effectively within existing 

data engineering infrastructures. By leveraging standard 

telemetry, modular services, and incremental rollout 

strategies, the system provides a practical pathway from 

reactive operations toward autonomous and self-

optimizing data platforms. This confirms that 

consequence-aware intelligence can be deployed at scale 

without requiring disruptive architectural changes. 
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9. Results and expected outcomes 

The proposed Data System Digital Twin framework was 

evaluated to assess whether consequence-aware planning 

improves the reliability and efficiency of agentic data 

engineering operations. The evaluation focused on three 

primary objectives: reducing pipeline execution time, 

lowering infrastructure cost, and minimizing operational 

failures. These metrics were selected because they 

directly reflect the practical challenges faced in modern 

data platforms and represent measurable indicators of 

system performance. The results compare the proposed 

world-model-based agent against conventional 

approaches, including manual tuning and LLM-only 

reactive automation. 

Experiments were conducted on representative batch and 

incremental workloads operating on structured datasets of 

varying sizes. Historical telemetry was first collected to 

train the predictive world model. After training, the agent 

was allowed to recommend and execute optimization 

actions using simulation-based planning. For 

comparison, the same workloads were executed under 

two alternative configurations: manual configuration by 

engineers using heuristics, and automated 

recommendations generated solely through language-

based reasoning without predictive validation. Each 

configuration was evaluated across multiple runs to 

account for workload variability. 

The results demonstrate that incorporating predictive 

state-transition modeling consistently improves system 

behavior. The world-model-based agent was able to 

anticipate the impact of partition tuning, resource scaling, 

and storage optimizations before execution. As a result, 

the system selected actions that balanced runtime 

performance and resource utilization more effectively 

than heuristic or reactive approaches. In several 

scenarios, the agent avoided configuration changes that 

appeared beneficial at a surface level but would have 

increased downstream costs or failure risks. This 

indicates that consequence awareness plays a critical role 

in reliable automation. 

Quantitatively, the proposed framework achieved 

noticeable improvements across all evaluation metrics. 

Average pipeline runtime decreased due to better 

workload distribution and reduced data skew. 

Infrastructure costs were lowered by avoiding over-

provisioning of compute resources and unnecessary 

optimization operations. Failure rates also declined 

because actions were validated through simulation before 

deployment. Table 1 summarizes the comparative 

performance across the evaluated methods. 

Table 1 summarizes the comparative performance across 

the evaluated methods based on repeated prototype 

experiments. 

 

The improvements observed with the proposed system 

are attributed to its ability to evaluate multiple candidate 

actions through predictive simulation rather than 

committing to the first plausible solution. While LLM-

only agents provided useful suggestions, they 

occasionally introduced inefficient configurations due to 

the absence of quantitative reasoning. In contrast, the 

world-model-based planner systematically compared 

alternatives using measurable objectives, leading to more 

consistent outcomes. 

Beyond immediate performance gains, several long-term 

benefits are expected from continuous deployment of the 

framework. As additional telemetry is collected, the 

predictive accuracy of the world model is expected to 

improve, enabling progressively better decision-making. 

This feedback-driven learning mechanism suggests that 

optimization quality will increase over time without 

manual intervention. Furthermore, the digital twin 

enables proactive planning for future workload growth, 

allowing teams to anticipate capacity requirements and 

avoid sudden performance degradation. 

Scalability analysis indicates that the approach remains 

computationally efficient even for large environments. 

Since predictions operate on aggregated state features 

rather than raw logs, inference overhead is minimal. This 

allows the system to evaluate multiple candidate actions 

in near real time, making it suitable for both scheduled 

and interactive optimization tasks. Consequently, the 

framework is expected to scale to hundreds or thousands 

of pipelines without significant latency. 

Overall, the results confirm that integrating data 

engineering observability with predictive world models 

leads to safer and more efficient autonomous operations. 

The proposed framework moves beyond reactive 

automation and establishes a foundation for intelligent, 

self-optimizing data platforms. These outcomes validate 

the central hypothesis of this research: that consequence-
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aware agents outperform language-only systems when 

managing complex operational environments. 

10. Discussion 

The results presented in the previous section demonstrate 

that integrating predictive world models with data 

engineering observability significantly improves the 

reliability and efficiency of agentic systems. These 

findings highlight an important shift in how autonomous 

behavior should be designed for operational platforms. 

Rather than relying solely on language reasoning or 

heuristic automation, the proposed approach shows that 

consequence-aware planning leads to more stable and 

cost-effective decisions. This observation suggests that 

predictive system intelligence, not just conversational 

intelligence, is essential for real-world autonomy. 

A key insight from this work is that Large Language 

Models, while highly capable in reasoning and interaction 

tasks, are not sufficient for direct operational control. 

LLMs excel at interpreting user intent, generating code, 

and proposing strategies, but they do not inherently model 

causal relationships within infrastructure environments. 

The experiments revealed that language-only agents 

occasionally recommend actions that appear reasonable 

semantically but produce suboptimal outcomes when 

executed. This mismatch occurs because language 

models optimize for plausibility rather than measurable 

system behavior. The introduction of a world model 

bridges this gap by grounding decisions in historical 

evidence and quantitative prediction. Consequently, the 

combination of language understanding and predictive 

modeling produces more dependable automation than 

either approach alone. 

Another important observation is the central role of data 

engineering practices in enabling intelligent agents. The 

success of the proposed framework depends heavily on 

high-quality telemetry, structured logging, and consistent 

feature engineering. Without reliable historical records, 

the world model cannot accurately learn state transitions. 

This finding emphasizes that autonomy is not achieved 

purely through advanced AI algorithms but also through 

disciplined data infrastructure design. In this sense, data 

engineering becomes a foundational component of 

agentic intelligence rather than merely a supporting 

function. Organizations seeking to adopt autonomous 

systems must therefore invest in observability and data 

quality alongside model development. 

The concept of a Data System Digital Twin also proved 

valuable as a unifying abstraction. By representing the 

platform as a structured and continuously updated state 

space, the system enables simulation-based reasoning 

similar to approaches used in robotics and control 

systems. This abstraction simplifies complex 

environments and allows the agent to evaluate multiple 

future scenarios efficiently. The digital twin not only 

supports optimization but also enhances transparency, as 

predicted outcomes can be inspected before execution. 

This improves trust and makes automated decisions 

easier to audit and validate, which is particularly 

important in enterprise settings. 

While the proposed framework demonstrates promising 

results, several limitations should be acknowledged. 

First, predictive accuracy depends on the diversity and 

coverage of historical data. If the system encounters 

workloads that differ significantly from past 

observations, the world model may produce less reliable 

predictions. Second, training and maintaining predictive 

models introduces additional computational overhead, 

which may require careful resource management in very 

large environments. Third, the current implementation 

focuses primarily on structured batch workloads; 

extending the approach to highly dynamic streaming or 

real-time systems may require further adaptations. These 

challenges highlight areas where additional research and 

engineering effort are needed. 

Despite these limitations, the broader implications of this 

work are significant. The results suggest that future 

agentic platforms should adopt hybrid architectures that 

combine language models for reasoning with predictive 

models for control. Such systems move beyond reactive 

automation toward proactive and self-optimizing 

behavior. Over time, as more telemetry is collected and 

models improve, these agents can continuously refine 

their decisions, reducing the need for manual 

intervention. This capability has the potential to 

transform data engineering operations by shifting effort 

from routine tuning to higher-level design and strategy. 

Overall, the discussion reinforces the central thesis of this 

paper: meaningful autonomy in data platforms requires 

consequence awareness. By integrating world models 

with data engineering foundations, agents can plan 

actions safely, reduce operational risks, and deliver 

measurable efficiency gains. This combination represents 

a practical and scalable pathway toward intelligent, 

reliable, and truly autonomous data systems. 
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11. Conclusion 

This paper presented a novel approach for building 

consequence-aware agentic systems for modern data 

engineering platforms. While recent advances in Large 

Language Models have enabled significant progress in 

conversational automation and task assistance, their 

reactive nature limits their suitability for direct 

operational control. Language-based agents generate 

actions based on textual reasoning but lack the ability to 

predict how those actions will affect system behavior. In 

production environments, where configuration changes 

directly influence runtime performance, infrastructure 

cost, and reliability, such limitations can lead to unsafe or 

inefficient outcomes. This gap between language 

intelligence and operational intelligence motivates the 

need for predictive and system-aware decision-making 

mechanisms. 

To address this challenge, we introduced the concept of 

Data Engineering–Driven World Models and proposed 

the Data System Digital Twin architecture. The 

framework integrates observability pipelines, structured 

state representations, predictive transition models, and 

simulation-based planning with LLM interfaces. By 

learning state–action–outcome relationships from 

historical telemetry, the system can forecast the 

consequences of candidate actions before execution. This 

enables agents to move from reactive automation toward 

proactive and risk-aware planning. Rather than relying 

solely on heuristics or language plausibility, decisions are 

grounded in measurable system behavior. 

A prototype implementation demonstrated the practical 

feasibility of the proposed approach using a lakehouse-

based environment and standard distributed data 

engineering tools. Experimental evaluation showed 

consistent improvements in pipeline runtime, 

infrastructure cost, and operational stability when 

compared with manual tuning and LLM-only automation. 

These results validate that predictive world models 

enhance both the safety and efficiency of autonomous 

systems. Furthermore, the architecture supports 

continuous learning, allowing performance to improve 

over time as more telemetry becomes available. 

In summary, this work establishes that meaningful 

autonomy in data platforms requires combining data 

engineering foundations with predictive AI models. By 

integrating world models with agentic reasoning, the 

proposed framework provides a scalable pathway toward 

self-optimizing, reliable, and intelligent data systems. 

This research lays the groundwork for the next generation 

of agentic architectures where decisions are guided not 

only by what sounds correct, but by what is predicted to 

work. 

12. Future Work 

While the proposed Data System Digital Twin framework 

demonstrates promising results for consequence-aware 

agentic decision making, several opportunities remain for 

further research and enhancement. The current 

implementation focuses primarily on supervised learning 

of state-transition behavior using historical telemetry. 

Although this approach provides stable and interpretable 

predictions, more advanced learning strategies could 

further improve adaptability and intelligence in dynamic 

environments. 

One important direction for future work is the integration 

of reinforcement learning techniques. Instead of relying 

solely on past observations, agents could continuously 

explore new optimization strategies and learn policies 

that maximize long-term rewards. Such an approach 

would allow the system to autonomously discover actions 

that may not exist in historical data and adapt more 

effectively to evolving workloads. Combining 

reinforcement learning with the existing world model 

may enable more robust and self-improving behavior. 

Another area of interest is extending the framework to 

support real-time and streaming workloads. The current 

design primarily targets batch-oriented data pipelines 

where decisions can be planned ahead of execution. 

Streaming environments introduce stricter latency 

requirements and rapidly changing system states, which 

may require lightweight online learning models and faster 

inference mechanisms. Developing efficient predictive 

models for these scenarios would broaden the 

applicability of the proposed architecture. 

Future research may also explore richer state 

representations through causal modeling and graph-based 

learning. Modern data platforms involve complex 

dependencies between datasets, pipelines, and compute 

resources. Capturing these relationships using lineage 

graphs or dependency networks could allow the world 

model to reason more accurately about cascading effects 

of actions across the system. This would improve risk 

estimation and prevent unintended downstream impacts. 

In addition, incorporating multi-agent coordination 

presents another promising direction. Large organizations 
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often operate multiple optimization tasks simultaneously 

across different teams and workloads. Enabling 

collaboration among multiple intelligent agents that share 

telemetry and coordinate decisions could lead to globally 

optimized resource allocation rather than isolated local 

improvements. 

Finally, broader evaluation across diverse enterprise 

environments and larger datasets would help validate 

scalability and generalization. Testing the framework 

under varying workload patterns, infrastructure 

configurations, and cloud platforms would provide 

deeper insights into robustness and deployment 

considerations. 

Overall, these future directions aim to further strengthen 

the reliability, scalability, and autonomy of world-model-

based agentic systems, moving closer toward fully self-

managing data platforms. 

13. Case Study Summary 

To illustrate the practical applicability of the proposed 

Data System Digital Twin framework, a representative 

case study was conducted on a production-style data 

engineering workload operating in a lakehouse 

environment. The workload consisted of multiple daily 

batch pipelines responsible for ingesting, transforming, 

and aggregating structured datasets for downstream 

analytics. Over time, the platform experienced increasing 

performance variability due to data growth, skewed 

partitions, and inconsistent resource utilization. Manual 

optimization required frequent intervention by engineers, 

while rule-based automation often produced unstable 

results. These challenges made the environment suitable 

for evaluating consequence-aware agentic optimization. 

Initially, the system was operated using traditional 

practices, where engineers manually adjusted 

configurations such as partition counts, compute sizes, 

and optimization schedules. Although these changes 

occasionally improved performance, results were 

inconsistent and required repeated tuning. An LLM-

based assistant was then introduced to recommend 

optimization steps using heuristics and language 

reasoning. While this approach reduced some manual 

effort, it occasionally suggested actions that increased 

compute cost or caused downstream delays due to a lack 

of predictive validation. 

The proposed world-model-based framework was 

subsequently deployed. Historical telemetry, including 

runtime metrics, storage characteristics, and action logs, 

was collected over several weeks to construct the digital 

twin and train the predictive transition models. Once 

trained, the agent began evaluating candidate actions 

through simulation before execution. For example, 

instead of directly increasing compute resources to reduce 

latency, the system first predicted the expected runtime 

and cost impact of multiple alternatives, including 

repartitioning and layout optimization. The action with 

the best predicted trade-off was then selected. 

Following deployment, the pipelines exhibited more 

stable and consistent performance. Execution times 

decreased due to improved workload distribution, while 

unnecessary resource scaling was avoided, resulting in 

lower infrastructure costs. Furthermore, the number of 

failures caused by configuration changes was 

significantly reduced because risky actions were filtered 

out during the simulation phase. Engineers reported 

reduced manual intervention and greater confidence in 

automated decisions due to the transparency provided by 

predicted outcomes. 

This case study demonstrates that integrating predictive 

world models with data engineering observability enables 

practical, safe, and scalable automation. The results 

confirm that consequence-aware agents can effectively 

manage real-world data platforms and deliver measurable 

operational benefits beyond heuristic or language-only 

approaches. 
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