
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 1

Data Engineering–Driven World Models for Consequence-Aware Agentic

Systems

Brahma Reddy Katam

Technical Lead, Data Engineering and Advanced Computing

Abstract: Large Language Models (LLMs) have enabled

a new generation of intelligent agents capable of

generating queries, automating workflows, and assisting

data engineering tasks through natural language

interaction. Despite these advances, most LLM-based

agents remain fundamentally reactive, operating by

predicting text rather than anticipating the operational

consequences of their actions. In production-scale data

platforms, actions such as schema changes, table

optimizations, or compute scaling directly impact

performance, cost, and system reliability. Without the

ability to forecast these outcomes, autonomous agents

may introduce failures, inefficiencies, or unsafe

decisions, exposing a critical gap between language

intelligence and system intelligence.

This paper proposes an approach that integrates data

engineering observability with learned transition

modeling to enable consequence-aware agentic behavior.

We introduce Data Engineering–Driven World

Models, where agents learn state-transition behavior of

data platforms using historical telemetry, system metrics,

and action–outcome logs. Instead of executing changes

directly, agents simulate future system states and evaluate

expected impacts before taking action, enabling safer

planning and more reliable automation.

To operationalize this concept, we present the Data

System Digital Twin (DSDT) architecture, which

combines observability pipelines, structured state

encoding, machine learning–based world models, and

planning modules with LLM interfaces. The framework

continuously captures runtime and cost signals, learns

system dynamics, and selects optimal actions through

simulation-based reasoning. A prototype implementation

on a lakehouse environment demonstrates improvements

in runtime efficiency, infrastructure cost, and failure

prevention compared to rule-based and LLM-only

approaches. This work shows that combining world

models with strong data engineering foundations

provides a practical pathway toward safe, self-

optimizing, and autonomous data platforms.

Keywords

Agentic AI, World Models, Data Engineering,

Autonomous Systems, Data System Digital Twin,

Predictive Modeling, Intelligent Agents, Lakehouse

Optimization, Consequence-Aware Planning, Data

Platform Automation

1. Introduction

Recent progress in Artificial Intelligence has accelerated

the adoption of intelligent agents across software and data

engineering ecosystems. In particular, Large Language

Models (LLMs) have demonstrated strong capabilities in

understanding natural language, generating code, writing

queries, and assisting automation tasks. These abilities

have enabled the development of agentic systems that can

interact with users conversationally and perform complex

operations such as creating data pipelines, optimizing

transformations, and managing infrastructure with

minimal human intervention. As a result, many modern

platforms are increasingly integrating LLM-based

assistants to improve productivity and reduce manual

effort.

Despite these advancements, current agentic systems

remain fundamentally limited in their operational

intelligence. Most LLM-driven agents operate by

predicting text outputs rather than modeling how real-

world systems behave. While they can recommend

actions or generate configuration scripts, they do not

inherently understand the consequences of executing

those actions. In other words, they lack an internal

representation of how the environment changes in

response to interventions. This limitation is not critical in

purely conversational settings, but it becomes a

significant challenge when agents are granted control

over production-scale data platforms.

Modern data engineering environments are highly

dynamic and complex. Enterprise lakehouses and

warehouses typically manage thousands of tables, large-

scale distributed jobs, evolving schemas, and fluctuating

workloads. Small operational changes, such as modifying

partitions, scaling compute resources, or adjusting

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 2

storage layouts, can have cascading effects on runtime

performance, infrastructure costs, and downstream

dependencies. Human engineers often rely on experience

and intuition to anticipate these effects before making

changes. They mentally simulate outcomes, evaluate

risks, and select actions that are likely to improve system

behavior. This predictive reasoning is essential for safe

and reliable system management.

LLM-based agents, however, lack this capability.

Because they are trained primarily on language patterns

rather than system dynamics, they cannot accurately

forecast the future state of the platform. Consequently,

actions recommended by such agents may be suboptimal

or even harmful. For example, an automated optimization

may increase data skew, raise compute costs, or disrupt

dependent workflows. These risks highlight a critical gap

between language intelligence and system intelligence. If

agentic systems are to operate autonomously in

production environments, they must be able to predict the

consequences of their decisions before execution.

To address this challenge, we argue that meaningful

agentic intelligence requires the integration of world

models. A world model is a predictive representation that

estimates how an environment transitions from one state

to another after an action is taken. Formally, given the

current state and a candidate action, the model forecasts

the next state of the system. This capability enables

planning, simulation, and consequence-aware decision

making. World models have been successfully applied in

fields such as robotics, control systems, and autonomous

vehicles, where predicting outcomes is essential for safe

operation. However, their application within data

engineering systems remains largely unexplored.

In this work, we introduce a new perspective that

combines data engineering practices with predictive

modeling to build consequence-aware agents for

autonomous data platforms. We propose the concept of a

Data System Digital Twin, a structured and

continuously updated representation of the data

environment that captures telemetry, workload

characteristics, and operational outcomes. By learning

from historical observations of state, action, and result,

agents can model system dynamics and simulate future

behavior before executing changes. This approach

enables safer optimization, reduced operational risk, and

improved resource efficiency.

We present a layered architecture that integrates

observability pipelines, state encoding mechanisms,

machine learning–based world models, and planning

components with LLM interfaces. In this framework,

LLMs provide natural language reasoning and user

interaction, while predictive models guide execution

decisions through simulation. This separation ensures

that language understanding does not directly control

system operations without validation. A prototype

implementation on a modern lakehouse stack

demonstrates that consequence-aware agents can

outperform both manual tuning and LLM-only

automation in terms of runtime efficiency, infrastructure

cost, and reliability.

The primary contributions of this paper are threefold.

First, we formally define world models in the context of

data engineering environments and identify their

importance for agentic systems. Second, we propose the

Data System Digital Twin architecture that enables

predictive planning and safe automation. Third, we

provide an empirical evaluation demonstrating the

practical benefits of integrating data engineering

telemetry with learned predictive models. Together, these

contributions establish a foundation for building the next

generation of intelligent, reliable, and autonomous data

platforms.

2. Literature Review

Recent advancements in artificial intelligence have led to

significant interest in building intelligent agents capable

of automating complex engineering workflows. Research

and industry efforts have primarily focused on leveraging

Large Language Models (LLMs) to enable natural

language interaction, reasoning, and automated code

generation. While these approaches have improved

productivity, they reveal important limitations when

applied to operational system control. This section

reviews existing work in LLM-based agents, agentic

frameworks, world models, digital twins, and data

engineering automation, and identifies the gap addressed

by our proposed approach.

This motivates hybrid architectures that combine

language reasoning with explicit system modeling in

lakehouse-style platforms [11].

2.1 Large Language Model–Based Agents

Large Language Models such as GPT, PaLM, and similar

transformer-based architectures have demonstrated

strong performance in text understanding, generation, and

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 3

reasoning tasks. These capabilities have enabled

conversational assistants that can write SQL queries,

generate scripts, summarize logs, and assist developers.

Several recent systems integrate LLMs with tools and

APIs to create “agentic” behavior, allowing models to

perform multi-step tasks through prompting and tool

invocation.

However, these agents operate primarily through next-

token prediction and pattern matching learned from

textual data. They do not explicitly model causality or

environment dynamics. As a result, decisions are made

based on language correlations rather than predictive

simulations of system behavior. When deployed in

production engineering environments, this limitation can

lead to unsafe or suboptimal actions. Therefore, while

LLMs provide strong reasoning and interaction

capabilities, they lack operational consequence

awareness.

2.2 Agentic AI Frameworks and Tool-Augmented

Systems

To extend LLM capabilities, several frameworks

combine language models with external tools, memory,

and planning components. These systems enable agents

to execute commands, retrieve information, and perform

iterative reasoning. Tool-augmented agents improve task

completion rates compared to standalone models and are

widely used in automation scenarios.

Despite these improvements, most frameworks remain

reactive. They execute actions sequentially without

explicitly predicting future system states. Planning is

often heuristic or rule-based rather than learned from

historical behavior. Consequently, these agents can still

produce unstable or inefficient outcomes when managing

complex infrastructure. The absence of predictive system

modeling limits their reliability for autonomous

operations.

2.3 World Models and Predictive Planning

The concept of world models originates from robotics,

reinforcement learning, and control systems research. A

world model learns the transition dynamics of an

environment, allowing an agent to simulate the effects of

actions before executing them. This approach enables

planning, risk estimation, and safe decision making.

World models have been successfully applied in

autonomous vehicles, robotic manipulation, and game-

playing systems, where anticipating consequences is

critical.

These methods demonstrate that predictive modeling

significantly improves robustness and performance in

dynamic environments. However, their application has

largely been limited to physical or simulated domains.

The adoption of world models for software and data

infrastructure systems has received comparatively little

attention, leaving an opportunity to extend these

principles to data engineering environments.

World models have been widely studied in reinforcement

learning and control systems as a mechanism for

predicting state transitions and enabling planning before

execution [5], [6].

2.4 Digital Twins in System Monitoring

Digital twin technology has been widely used in

manufacturing, IoT, and industrial engineering to create

virtual replicas of physical systems. These replicas enable

simulation, monitoring, and predictive maintenance. By

analyzing telemetry data, digital twins help forecast

failures and optimize performance.

Although digital twins are effective for physical assets,

similar approaches for data platforms are still emerging.

Current observability tools focus on monitoring and

alerting rather than predictive simulation and planning.

As a result, they provide visibility but not autonomous

intelligence.

In contrast, lakehouse systems focus on scalable, unified

analytics and storage foundations [11], but do not

inherently provide predictive state-transition simulation

for operational control.

2.5 Automation in Data Engineering and AIOps

DataOps and AIOps practices aim to automate

deployment, monitoring, and optimization of data

pipelines. Techniques such as rule-based tuning,

heuristics, and threshold alerts are commonly used. While

these approaches reduce manual effort, they depend

heavily on predefined rules and lack adaptive learning.

They do not generalize well to evolving workloads or

unseen conditions.

This limitation suggests the need for data-driven,

learning-based methods that can adapt dynamically to

changing environments.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 4

Lakehouse storage layers and ACID table formats have

made it easier to persist operational signals and

experiment logs at scale, which supports learning-based

optimization pipelines [10], [11].

2.6 Research Gap

From the above review, it is evident that existing

approaches provide either strong language reasoning

(LLMs) or monitoring capabilities (observability tools),

but rarely combine predictive system modeling with

agentic decision-making. Current solutions lack

mechanisms to learn environment dynamics and simulate

consequences before action execution.

To address this gap, we propose integrating data

engineering telemetry with learned world models to

create consequence-aware agents. Our approach bridges

language intelligence and predictive system intelligence

through the Data System Digital Twin framework,

enabling safe, reliable, and autonomous data platform

management.

3. Research Objectives

This study aims to bridge the gap between language-

based intelligent agents and reliable system-level

decision-making in large-scale data engineering

environments. While current LLM-based agents provide

conversational reasoning and task automation, they lack

the ability to predict the operational consequences of their

actions. The primary objective of this research is to

design and evaluate a consequence-aware agentic

framework that integrates predictive world models with

data engineering practices to enable safe and autonomous

platform management.

The specific objectives of this work are as follows:

1. To analyze the limitations of LLM-based

agents in production data platforms, particularly

their inability to model causality, predict state

transitions, and perform safe operational

planning.

2. To formally define world models for data

engineering systems, representing platform

behavior using state–action–outcome

relationships that capture runtime performance,

cost, and reliability characteristics.

3. To design a Data System Digital Twin

architecture that continuously collects

telemetry, encodes system states, and maintains a

structured virtual representation of the data

environment for predictive analysis.

4. To develop predictive machine learning

models that learn environment dynamics and

estimate future system states given candidate

actions, enabling simulation-based decision-

making.

5. To integrate the world model with an agentic

planning framework, where actions are

evaluated through consequence prediction before

execution rather than through reactive or rule-

based approaches.

6. To implement a prototype system using

modern lakehouse technologies and distributed

data processing tools to validate the practical

feasibility of the proposed framework.

7. To experimentally evaluate system

performance, measuring improvements in

runtime efficiency, infrastructure cost, and

operational reliability compared to manual

tuning and LLM-only automation.

8. To demonstrate that combining data

engineering observability with predictive

modeling provides a scalable foundation for

safe, self-optimizing, and autonomous data

platforms.

Through these objectives, the research seeks to establish

a new direction for agentic AI systems that move beyond

language intelligence toward predictive and

consequence-aware operational intelligence.

4. Architecture and System Design

The proposed system is designed to enable consequence-

aware decision making in agentic data engineering

environments by integrating predictive modeling with

traditional data platform observability. Unlike

conventional LLM-based agents that operate reactively

by generating actions directly from textual reasoning, the

proposed architecture introduces a structured mechanism

to simulate and evaluate the operational impact of

candidate actions before execution. This capability is

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 5

achieved through the creation of a virtual and

continuously updated representation of the platform,

referred to in this work as the Data System Digital Twin

(DSDT). The digital twin acts as an abstract model of the

environment and enables agents to reason about system

behavior using learned state transitions rather than

heuristics or language correlations alone.

At a high level, the architecture follows a layered design

in which telemetry collection, state abstraction, predictive

modeling, planning, and language interaction are clearly

separated. This separation ensures that language

intelligence is not directly responsible for operational

control, thereby reducing the risk of unsafe decisions.

Instead, predictive components validate all actions

through simulation prior to deployment. The overall

design emphasizes reliability, scalability, and

compatibility with modern lakehouse and warehouse

ecosystems.

The foundation of the system is the observability layer,

which continuously gathers operational signals from the

data platform. Modern data engineering environments

generate large volumes of telemetry in the form of

execution logs, runtime metrics, resource utilization

statistics, and dependency information. These signals

provide a historical view of how the system behaves

under varying workloads and configurations. The

proposed architecture captures such signals, including job

latency, storage growth, compute consumption, shuffle

volume, partition distribution, and failure events, and

stores them in structured storage for analysis. By

maintaining a persistent historical record, the system

creates the necessary data backbone required to learn

environment behavior over time. Without this telemetry,

predictive modeling of system dynamics would not be

feasible.

Since raw logs are often noisy and high dimensional, the

next stage of the architecture focuses on transforming

telemetry into meaningful and compact state

representations. The state representation layer aggregates

and encodes operational metrics into abstract features that

summarize the health and performance of the system at a

given time. Rather than modeling low-level signals

directly, the system constructs semantic attributes such as

average runtime, cost rate, skew index, failure frequency,

and dependency counts. These abstractions allow the

environment to be represented as structured state vectors

that are easier to learn and simulate. By operating in this

reduced feature space, the architecture achieves both

computational efficiency and better generalization across

workloads.

Figure 1. End-to-End Architecture of the Proposed Data

System Digital Twin Framework.

Built on top of these state representations is the world

model layer, which forms the predictive core of the

system. The world model learns how the environment

transitions from one state to another when specific actions

are applied. Formally, given the current system state and

a candidate action, the model estimates the likely next

state of the platform. This transition function is trained

using historical observations of state, action, and outcome

relationships derived from past executions. Through

supervised learning techniques, the model captures

patterns such as how repartitioning affects runtime, how

scaling compute influences cost, or how configuration

changes impact reliability. By forecasting these effects in

advance, the world model enables the agent to anticipate

consequences rather than relying on trial-and-error

execution.

To utilize these predictions effectively, the architecture

incorporates a planning and optimization layer that

evaluates multiple possible actions before selecting one

for execution. When the agent receives a high-level

objective, several candidate strategies are generated and

individually simulated using the world model. Each

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 6

simulated outcome is scored based on predefined

objectives such as minimizing runtime, reducing

infrastructure cost, or lowering failure risk. The action

associated with the most favorable predicted outcome is

then selected. This simulation-based planning mechanism

resembles model-based control approaches used in

robotics and ensures that decisions are guided by

measurable consequences rather than reactive responses.

The final component of the architecture is the agent

interface layer, which integrates a Large Language Model

to provide natural language interaction and reasoning

capabilities. The LLM interprets user requests, explains

system behavior, and generates potential strategies in an

intuitive manner. However, unlike traditional LLM-

centric agents, it does not directly execute operational

changes. Instead, all proposed actions are validated

through the predictive world model and planning

modules. This design ensures that language

understanding complements, rather than replaces, system

intelligence. By separating reasoning from execution, the

architecture balances usability with safety.

Together, these components form a closed feedback loop

in which telemetry is continuously collected, states are

updated, outcomes are predicted, and decisions are

refined over time. After each action is executed, new

results are recorded and incorporated into the training

data, enabling the world model to improve its accuracy

iteratively. This continuous learning process allows the

system to adapt to evolving workloads and infrastructure

changes. As a result, the proposed architecture transitions

data platforms from reactive automation toward proactive

and autonomous optimization, establishing a practical

foundation for reliable agentic systems.

5. Implementation

To evaluate the practicality of the proposed Data System

Digital Twin (DSDT) architecture, a working prototype

was implemented on a modern lakehouse-based data

engineering environment. The primary objective of the

implementation was to demonstrate that telemetry-driven

world models can be integrated with agentic reasoning to

enable predictive and consequence-aware operational

decisions. Rather than relying on simulated

environments, the prototype was deployed using

commonly adopted enterprise technologies to ensure that

the framework reflects real-world feasibility and

scalability.

The system was developed using distributed storage and

processing components that are widely used in

production data platforms. A lakehouse architecture was

selected to persist telemetry and historical workload

information, while distributed compute engines were

used to perform feature engineering, model training, and

large-scale data processing. PySpark was employed for

transformation logic and pipeline orchestration, and

standard machine learning libraries were used to train

predictive models. An LLM-based interface was

integrated to support natural language interaction and

high-level task interpretation. This technology stack

allowed the proposed framework to operate directly

within existing infrastructure without requiring

specialized hardware or custom runtime environments.

The first stage of the implementation focused on

establishing a comprehensive observability pipeline.

Continuous telemetry collection is critical because

predictive models depend on historical behavior to learn

system dynamics. Operational signals were captured

from batch jobs, streaming processes, and table

operations across the platform. These signals included

execution latency, compute utilization, input and output

data volume, partition distribution, shuffle statistics,

storage consumption, and failure events. Each metric was

recorded with time stamps and contextual identifiers such

as job name or dataset. The collected data was stored in

structured Delta tables, forming a time-series history of

platform activity. This persistent record provides the

empirical foundation required to understand how the

system behaves under varying workloads and

configurations.

Since raw telemetry often contains noise and fine-grained

details that are not directly useful for predictive modeling,

the next step involved constructing compact and

meaningful state representations. Feature engineering

techniques were applied to aggregate metrics over

defined time windows and to compute derived indicators

such as average runtime, growth rate, skew index, cost

estimates, and failure frequency. These aggregated

attributes capture the operational health of each pipeline

or table at a semantic level. The resulting features were

encoded into structured state vectors and stored in a

feature store for reuse during both training and inference.

This abstraction process reduces dimensionality and

improves the stability and generalization capability of the

learning models.

In addition to capturing system states, the implementation

explicitly recorded operational actions performed by

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 7

either users or automated agents. Logging actions is

essential for learning cause-and-effect relationships

between interventions and outcomes. Each configuration

change, optimization step, or scaling decision was

recorded along with its parameters and time of execution.

Typical actions included repartitioning tables, modifying

storage layouts, adjusting cluster sizes, or updating

runtime configurations. By maintaining this action

history, the system was able to construct state–action–

outcome triplets that form the supervised learning dataset

for modeling environment transitions.

Using these historical triplets, the world model was

trained to estimate how the system evolves after specific

actions are applied. Supervised regression techniques

were employed to learn transition functions that map the

current state and a candidate action to a predicted future

state. Separate models were trained to forecast metrics

such as expected runtime, infrastructure cost, and

probability of failure. Structured tabular models,

including tree-based and gradient boosting methods, were

selected due to their robustness and interpretability when

working with operational data. The trained models

effectively captured patterns such as how partition

changes influence runtime or how resource scaling

impacts cost, enabling the system to forecast

consequences before execution.

During runtime, the predictive models are used to

perform simulation-based planning. When an agent

receives a high-level objective, such as improving

performance or reducing cost, it generates multiple

candidate actions. Each candidate is evaluated by passing

the current state and the action parameters to the trained

world model, which predicts the resulting system

behavior. The predicted outcomes are then scored using

an objective function that combines runtime, cost, and

risk metrics. The action with the most favorable predicted

score is selected for execution. This simulation-first

approach ensures that decisions are guided by measurable

forecasts rather than reactive or heuristic reasoning.

To enable user-friendly interaction, an LLM interface

was integrated on top of the predictive system. The

language model interprets natural language requests,

summarizes system conditions, and proposes potential

strategies. However, unlike conventional LLM-only

agents, the model does not directly execute operational

commands. All recommendations are validated through

the predictive world model and planning layer before

deployment. This design choice ensures that language

reasoning enhances usability while maintaining strict

control over system safety.

Finally, the system implements a continuous feedback

mechanism that updates the digital twin after every

execution. Observed outcomes are recorded back into

telemetry storage, and the newly collected data is

periodically incorporated into model retraining. This

closed-loop process allows the world model to improve

over time as it encounters new workloads and

configurations. As the dataset grows, prediction accuracy

increases, resulting in progressively better planning

decisions. Consequently, the system evolves from static

automation toward adaptive and self-optimizing

behavior.

Overall, the implementation demonstrates that the

proposed architecture can be realized using standard data

engineering tools and practices. The integration of

telemetry collection, predictive modeling, and agentic

reasoning is both practical and scalable, confirming that

world-model-based agents can operate effectively in real

production data environments.

6. Data Collection and Preparation

The effectiveness of the proposed Data System Digital

Twin and world-model-based planning framework

depends heavily on the quality and completeness of

historical operational data. Since the objective of the

system is to learn environment dynamics and predict the

consequences of actions, it is essential to construct a

dataset that accurately captures the relationship between

system states, executed interventions, and resulting

outcomes. Therefore, careful attention was given to the

collection, cleaning, and preparation of telemetry data

before model training and evaluation.

Data for this study was collected from a production-style

lakehouse environment executing a mixture of batch

processing, incremental loads, and analytical workloads.

The platform consisted of multiple pipelines operating on

structured datasets of varying sizes and complexities.

Each pipeline execution generated operational signals,

including runtime metrics, resource utilization statistics,

storage characteristics, and success or failure indicators.

These signals were continuously recorded through

automated logging mechanisms integrated within the

execution framework. By capturing telemetry directly

from the running system rather than using synthetic

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 8

benchmarks, the dataset reflects realistic workload

variability and operational behavior.

The collected telemetry includes both system-level and

task-level measurements. System-level metrics capture

overall infrastructure behavior, such as CPU utilization,

memory consumption, and cluster scaling information,

while task-level metrics describe individual job

characteristics, including rows processed, execution

latency, partition distribution, shuffle volume, and I/O

throughput. In addition, metadata such as timestamps,

pipeline identifiers, table names, and configuration

parameters were recorded to provide contextual

information for analysis. This combination of signals

enables the reconstruction of the platform’s operational

state at any given point in time.

Since raw logs often contain redundant, incomplete, or

inconsistent entries, a preprocessing stage was applied to

ensure data reliability. Missing values caused by transient

logging failures were handled through interpolation or

removal, depending on their frequency and impact.

Duplicate records were eliminated, and inconsistent time

formats were standardized to maintain temporal

alignment across datasets. Outlier detection techniques

were also applied to identify abnormal measurements

caused by unexpected infrastructure interruptions or test

runs that did not represent normal workload behavior.

These steps ensured that the training data reflected stable

and representative system operations.

After cleaning, telemetry signals were transformed into

structured state representations suitable for predictive

modeling. Instead of using raw metrics directly,

aggregated and derived features were computed over

defined time windows. For example, average runtime,

maximum resource usage, growth rate of storage, skew

index, and failure frequency were calculated to

summarize operational trends. Normalization techniques

were applied to scale features to comparable ranges,

preventing bias during model training. This abstraction

process reduces dimensionality while preserving

essential behavioral information.

In addition to state information, the preparation phase

included explicit logging of operational actions. Each

system intervention, such as repartitioning tables,

changing cluster size, or modifying configurations, was

recorded with corresponding parameters and timestamps.

Following each action, the resulting system behavior was

measured and associated with the pre-action state. This

process enabled the construction of structured state–

action–outcome triplets, which form the core training

dataset for learning environment transitions. By pairing

actions with observed consequences, the model can

capture causal relationships rather than simple

correlations.

Finally, the prepared dataset was partitioned into training,

validation, and testing subsets using temporal splits to

preserve chronological order. Earlier observations were

used for model training, while later data was reserved for

evaluation. This approach prevents information leakage

and better simulates real-world deployment scenarios,

where future states must be predicted based solely on past

behavior. The resulting dataset provides a comprehensive

and reliable foundation for training the world model and

assessing its predictive performance.

Overall, the data collection and preparation process

ensures that the proposed framework is grounded in

realistic operational evidence. By systematically

capturing, cleaning, and structuring telemetry and action

histories, the system obtains high-quality training data

that enables accurate consequence prediction and reliable

agentic decision-making.

7. Methodology: Data + AI Algorithms

This section describes the methodological approach used

to transform operational telemetry into predictive

intelligence for consequence-aware agentic decision

making. The primary objective of the proposed

methodology is to learn the dynamic behavior of data

engineering systems from historical observations and to

use this knowledge to simulate the outcomes of potential

actions before execution. The overall process combines

structured data engineering practices with machine

learning techniques to construct a world model that

supports planning and optimization.

The methodology begins with the assumption that a data

platform can be represented as a dynamic environment

whose behavior evolves over time in response to both

workload conditions and system interventions. At any

given time step, the environment can be described by a

set of measurable characteristics that capture its

operational health. These characteristics include

performance metrics, cost indicators, and reliability

signals collected through telemetry. Instead of treating

these signals independently, the proposed approach

aggregates them into structured representations that

define the current system state. By encoding the

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 9

environment as states and actions, the problem can be

formulated as a state-transition learning task similar to

those used in reinforcement learning and control systems.

This formulation allows the system to estimate future

behavior without executing the action directly.

To learn this transition function, historical telemetry is

converted into supervised training samples consisting of

state–action–outcome triplets. Each sample captures the

system condition before an intervention, the action

applied, and the resulting measurements observed after

execution. These samples collectively represent empirical

evidence of how the environment responds to changes.

Prior to training, features are normalized and

standardized to ensure consistent scaling, and temporal

ordering is preserved to maintain causality. This

preparation step improves model stability and prevents

information leakage across time.

The predictive component of the methodology uses

regression-based machine learning algorithms to

approximate the transition function. Structured tabular

models such as gradient boosting, random forests, and

other ensemble techniques are selected due to their

robustness, interpretability, and ability to handle

heterogeneous operational data. Separate predictive

models are trained for key objectives including runtime

estimation, cost prediction, and failure probability. By

decomposing predictions into multiple targets, the system

can evaluate trade-offs between performance and

reliability more effectively.

Once the transition function is learned, the methodology

incorporates a simulation-based planning strategy. For a

given state and high-level objective, the agent generates

a set of candidate actions. Each candidate is evaluated by

passing the state–action pair through the learned model to

predict the resulting state. An objective function then

scores each predicted outcome using weighted criteria

such as execution time, infrastructure cost, and risk. The

optimal action is selected by minimizing this objective.

This process effectively performs “what-if” analysis,

enabling the agent to reason about consequences without

incurring operational risk.

In addition to supervised prediction, the methodology

employs a continuous learning mechanism to improve

model accuracy over time. After each executed action, the

observed outcome is logged and appended to the training

dataset. Periodic retraining allows the world model to

adapt to evolving workloads, schema changes, and

infrastructure variations. This feedback loop ensures that

the predictive system remains aligned with real-world

behavior rather than relying on static assumptions.

Overall, the proposed methodology integrates data

engineering pipelines for structured telemetry collection

with machine learning algorithms for predictive modeling

and planning. By treating system optimization as a state-

transition learning problem, the approach moves beyond

reactive automation and enables proactive, consequence-

aware decision making. This combination of data and AI

forms the foundation for reliable and autonomous agentic

systems in modern data platforms.

8. System Integration and Deployment

The practical value of the proposed Data System Digital

Twin framework depends not only on predictive accuracy

but also on its ability to integrate seamlessly with existing

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 10

production data engineering ecosystems. Modern

enterprise data platforms already operate with established

storage layers, compute clusters, orchestration tools, and

monitoring systems. Therefore, the design of the

proposed architecture emphasizes compatibility,

modularity, and incremental deployment rather than

requiring a complete system redesign. The objective is to

ensure that consequence-aware agentic capabilities can

be introduced without disrupting current workflows or

infrastructure investments.

The system was integrated into a lakehouse-based

environment where data storage, telemetry logging,

feature computation, and predictive modeling coexist

within the same distributed ecosystem. Operational logs

and metrics generated by existing pipelines were ingested

directly into the observability layer using scheduled

ingestion jobs and streaming collectors. Because most

modern platforms already produce execution and

performance metrics, no specialized instrumentation was

required. This design choice reduces overhead and allows

organizations to adopt the framework using their current

monitoring mechanisms. The telemetry tables act as a

shared foundation for both analytics and predictive

modeling, ensuring consistency between operational

insights and automated decision-making.

The predictive world model and planning components

were deployed as independent services within the

platform’s compute layer. Separating these components

from the core execution engine enables modular scaling

and fault isolation. During runtime, the planner queries

the latest system state from the feature store, evaluates

candidate actions using the trained predictive models, and

returns an optimized action plan. This process occurs

asynchronously and does not interfere with active

pipeline execution. Such decoupling ensures that

predictive reasoning introduces minimal latency and

avoids creating additional bottlenecks in the system.

To enable user interaction, the agent interface was

exposed through lightweight APIs and notebook-based

environments commonly used by data engineers. Users

can submit high-level goals or optimization requests

using natural language or structured commands. These

requests are interpreted by the LLM layer and translated

into candidate operational strategies. However, all

strategies are validated through the predictive planning

module before execution. This integration pattern

maintains a clear separation between reasoning and

control, preventing unsafe or unverified actions from

directly affecting production workloads. As a result, the

system preserves both usability and operational safety.

From a deployment perspective, the architecture supports

incremental adoption. Organizations can initially deploy

the observability and telemetry collection components to

gather historical data without enabling autonomous

actions. Once sufficient data is collected, predictive

models can be trained offline and evaluated in shadow

mode, where recommendations are generated but not

executed. After validating accuracy and reliability,

automated execution can be gradually enabled for low-

risk tasks before extending to broader optimizations. This

phased rollout reduces operational risk and builds

confidence in the system’s decisions.

Scalability considerations were addressed by leveraging

distributed storage and parallel processing capabilities

inherent to the lakehouse platform. Telemetry datasets

and feature engineering tasks scale horizontally with data

volume, while model training can be parallelized across

compute clusters. Since predictions operate on

aggregated state vectors rather than raw logs, inference

latency remains low even at large scale. This design

ensures that the framework can support thousands of

pipelines and datasets without significant performance

degradation.

Reliability and fault tolerance were also incorporated into

the deployment strategy. All predictive decisions are

logged, versioned, and auditable, allowing engineers to

trace the reasoning behind each automated action.

Rollback mechanisms are provided to revert changes if

unexpected behavior is detected. Additionally, the system

defaults to conservative behavior when confidence in

predictions is low, thereby preventing risky interventions.

These safeguards ensure that automation enhances

system stability rather than introducing new failure

modes.

Overall, the integration and deployment process

demonstrates that the proposed world-model-based

agentic framework can operate effectively within existing

data engineering infrastructures. By leveraging standard

telemetry, modular services, and incremental rollout

strategies, the system provides a practical pathway from

reactive operations toward autonomous and self-

optimizing data platforms. This confirms that

consequence-aware intelligence can be deployed at scale

without requiring disruptive architectural changes.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 11

9. Results and expected outcomes

The proposed Data System Digital Twin framework was

evaluated to assess whether consequence-aware planning

improves the reliability and efficiency of agentic data

engineering operations. The evaluation focused on three

primary objectives: reducing pipeline execution time,

lowering infrastructure cost, and minimizing operational

failures. These metrics were selected because they

directly reflect the practical challenges faced in modern

data platforms and represent measurable indicators of

system performance. The results compare the proposed

world-model-based agent against conventional

approaches, including manual tuning and LLM-only

reactive automation.

Experiments were conducted on representative batch and

incremental workloads operating on structured datasets of

varying sizes. Historical telemetry was first collected to

train the predictive world model. After training, the agent

was allowed to recommend and execute optimization

actions using simulation-based planning. For

comparison, the same workloads were executed under

two alternative configurations: manual configuration by

engineers using heuristics, and automated

recommendations generated solely through language-

based reasoning without predictive validation. Each

configuration was evaluated across multiple runs to

account for workload variability.

The results demonstrate that incorporating predictive

state-transition modeling consistently improves system

behavior. The world-model-based agent was able to

anticipate the impact of partition tuning, resource scaling,

and storage optimizations before execution. As a result,

the system selected actions that balanced runtime

performance and resource utilization more effectively

than heuristic or reactive approaches. In several

scenarios, the agent avoided configuration changes that

appeared beneficial at a surface level but would have

increased downstream costs or failure risks. This

indicates that consequence awareness plays a critical role

in reliable automation.

Quantitatively, the proposed framework achieved

noticeable improvements across all evaluation metrics.

Average pipeline runtime decreased due to better

workload distribution and reduced data skew.

Infrastructure costs were lowered by avoiding over-

provisioning of compute resources and unnecessary

optimization operations. Failure rates also declined

because actions were validated through simulation before

deployment. Table 1 summarizes the comparative

performance across the evaluated methods.

Table 1 summarizes the comparative performance across

the evaluated methods based on repeated prototype

experiments.

The improvements observed with the proposed system

are attributed to its ability to evaluate multiple candidate

actions through predictive simulation rather than

committing to the first plausible solution. While LLM-

only agents provided useful suggestions, they

occasionally introduced inefficient configurations due to

the absence of quantitative reasoning. In contrast, the

world-model-based planner systematically compared

alternatives using measurable objectives, leading to more

consistent outcomes.

Beyond immediate performance gains, several long-term

benefits are expected from continuous deployment of the

framework. As additional telemetry is collected, the

predictive accuracy of the world model is expected to

improve, enabling progressively better decision-making.

This feedback-driven learning mechanism suggests that

optimization quality will increase over time without

manual intervention. Furthermore, the digital twin

enables proactive planning for future workload growth,

allowing teams to anticipate capacity requirements and

avoid sudden performance degradation.

Scalability analysis indicates that the approach remains

computationally efficient even for large environments.

Since predictions operate on aggregated state features

rather than raw logs, inference overhead is minimal. This

allows the system to evaluate multiple candidate actions

in near real time, making it suitable for both scheduled

and interactive optimization tasks. Consequently, the

framework is expected to scale to hundreds or thousands

of pipelines without significant latency.

Overall, the results confirm that integrating data

engineering observability with predictive world models

leads to safer and more efficient autonomous operations.

The proposed framework moves beyond reactive

automation and establishes a foundation for intelligent,

self-optimizing data platforms. These outcomes validate

the central hypothesis of this research: that consequence-

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 12

aware agents outperform language-only systems when

managing complex operational environments.

10. Discussion

The results presented in the previous section demonstrate

that integrating predictive world models with data

engineering observability significantly improves the

reliability and efficiency of agentic systems. These

findings highlight an important shift in how autonomous

behavior should be designed for operational platforms.

Rather than relying solely on language reasoning or

heuristic automation, the proposed approach shows that

consequence-aware planning leads to more stable and

cost-effective decisions. This observation suggests that

predictive system intelligence, not just conversational

intelligence, is essential for real-world autonomy.

A key insight from this work is that Large Language

Models, while highly capable in reasoning and interaction

tasks, are not sufficient for direct operational control.

LLMs excel at interpreting user intent, generating code,

and proposing strategies, but they do not inherently model

causal relationships within infrastructure environments.

The experiments revealed that language-only agents

occasionally recommend actions that appear reasonable

semantically but produce suboptimal outcomes when

executed. This mismatch occurs because language

models optimize for plausibility rather than measurable

system behavior. The introduction of a world model

bridges this gap by grounding decisions in historical

evidence and quantitative prediction. Consequently, the

combination of language understanding and predictive

modeling produces more dependable automation than

either approach alone.

Another important observation is the central role of data

engineering practices in enabling intelligent agents. The

success of the proposed framework depends heavily on

high-quality telemetry, structured logging, and consistent

feature engineering. Without reliable historical records,

the world model cannot accurately learn state transitions.

This finding emphasizes that autonomy is not achieved

purely through advanced AI algorithms but also through

disciplined data infrastructure design. In this sense, data

engineering becomes a foundational component of

agentic intelligence rather than merely a supporting

function. Organizations seeking to adopt autonomous

systems must therefore invest in observability and data

quality alongside model development.

The concept of a Data System Digital Twin also proved

valuable as a unifying abstraction. By representing the

platform as a structured and continuously updated state

space, the system enables simulation-based reasoning

similar to approaches used in robotics and control

systems. This abstraction simplifies complex

environments and allows the agent to evaluate multiple

future scenarios efficiently. The digital twin not only

supports optimization but also enhances transparency, as

predicted outcomes can be inspected before execution.

This improves trust and makes automated decisions

easier to audit and validate, which is particularly

important in enterprise settings.

While the proposed framework demonstrates promising

results, several limitations should be acknowledged.

First, predictive accuracy depends on the diversity and

coverage of historical data. If the system encounters

workloads that differ significantly from past

observations, the world model may produce less reliable

predictions. Second, training and maintaining predictive

models introduces additional computational overhead,

which may require careful resource management in very

large environments. Third, the current implementation

focuses primarily on structured batch workloads;

extending the approach to highly dynamic streaming or

real-time systems may require further adaptations. These

challenges highlight areas where additional research and

engineering effort are needed.

Despite these limitations, the broader implications of this

work are significant. The results suggest that future

agentic platforms should adopt hybrid architectures that

combine language models for reasoning with predictive

models for control. Such systems move beyond reactive

automation toward proactive and self-optimizing

behavior. Over time, as more telemetry is collected and

models improve, these agents can continuously refine

their decisions, reducing the need for manual

intervention. This capability has the potential to

transform data engineering operations by shifting effort

from routine tuning to higher-level design and strategy.

Overall, the discussion reinforces the central thesis of this

paper: meaningful autonomy in data platforms requires

consequence awareness. By integrating world models

with data engineering foundations, agents can plan

actions safely, reduce operational risks, and deliver

measurable efficiency gains. This combination represents

a practical and scalable pathway toward intelligent,

reliable, and truly autonomous data systems.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 13

11. Conclusion

This paper presented a novel approach for building

consequence-aware agentic systems for modern data

engineering platforms. While recent advances in Large

Language Models have enabled significant progress in

conversational automation and task assistance, their

reactive nature limits their suitability for direct

operational control. Language-based agents generate

actions based on textual reasoning but lack the ability to

predict how those actions will affect system behavior. In

production environments, where configuration changes

directly influence runtime performance, infrastructure

cost, and reliability, such limitations can lead to unsafe or

inefficient outcomes. This gap between language

intelligence and operational intelligence motivates the

need for predictive and system-aware decision-making

mechanisms.

To address this challenge, we introduced the concept of

Data Engineering–Driven World Models and proposed

the Data System Digital Twin architecture. The

framework integrates observability pipelines, structured

state representations, predictive transition models, and

simulation-based planning with LLM interfaces. By

learning state–action–outcome relationships from

historical telemetry, the system can forecast the

consequences of candidate actions before execution. This

enables agents to move from reactive automation toward

proactive and risk-aware planning. Rather than relying

solely on heuristics or language plausibility, decisions are

grounded in measurable system behavior.

A prototype implementation demonstrated the practical

feasibility of the proposed approach using a lakehouse-

based environment and standard distributed data

engineering tools. Experimental evaluation showed

consistent improvements in pipeline runtime,

infrastructure cost, and operational stability when

compared with manual tuning and LLM-only automation.

These results validate that predictive world models

enhance both the safety and efficiency of autonomous

systems. Furthermore, the architecture supports

continuous learning, allowing performance to improve

over time as more telemetry becomes available.

In summary, this work establishes that meaningful

autonomy in data platforms requires combining data

engineering foundations with predictive AI models. By

integrating world models with agentic reasoning, the

proposed framework provides a scalable pathway toward

self-optimizing, reliable, and intelligent data systems.

This research lays the groundwork for the next generation

of agentic architectures where decisions are guided not

only by what sounds correct, but by what is predicted to

work.

12. Future Work

While the proposed Data System Digital Twin framework

demonstrates promising results for consequence-aware

agentic decision making, several opportunities remain for

further research and enhancement. The current

implementation focuses primarily on supervised learning

of state-transition behavior using historical telemetry.

Although this approach provides stable and interpretable

predictions, more advanced learning strategies could

further improve adaptability and intelligence in dynamic

environments.

One important direction for future work is the integration

of reinforcement learning techniques. Instead of relying

solely on past observations, agents could continuously

explore new optimization strategies and learn policies

that maximize long-term rewards. Such an approach

would allow the system to autonomously discover actions

that may not exist in historical data and adapt more

effectively to evolving workloads. Combining

reinforcement learning with the existing world model

may enable more robust and self-improving behavior.

Another area of interest is extending the framework to

support real-time and streaming workloads. The current

design primarily targets batch-oriented data pipelines

where decisions can be planned ahead of execution.

Streaming environments introduce stricter latency

requirements and rapidly changing system states, which

may require lightweight online learning models and faster

inference mechanisms. Developing efficient predictive

models for these scenarios would broaden the

applicability of the proposed architecture.

Future research may also explore richer state

representations through causal modeling and graph-based

learning. Modern data platforms involve complex

dependencies between datasets, pipelines, and compute

resources. Capturing these relationships using lineage

graphs or dependency networks could allow the world

model to reason more accurately about cascading effects

of actions across the system. This would improve risk

estimation and prevent unintended downstream impacts.

In addition, incorporating multi-agent coordination

presents another promising direction. Large organizations

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 14

often operate multiple optimization tasks simultaneously

across different teams and workloads. Enabling

collaboration among multiple intelligent agents that share

telemetry and coordinate decisions could lead to globally

optimized resource allocation rather than isolated local

improvements.

Finally, broader evaluation across diverse enterprise

environments and larger datasets would help validate

scalability and generalization. Testing the framework

under varying workload patterns, infrastructure

configurations, and cloud platforms would provide

deeper insights into robustness and deployment

considerations.

Overall, these future directions aim to further strengthen

the reliability, scalability, and autonomy of world-model-

based agentic systems, moving closer toward fully self-

managing data platforms.

13. Case Study Summary

To illustrate the practical applicability of the proposed

Data System Digital Twin framework, a representative

case study was conducted on a production-style data

engineering workload operating in a lakehouse

environment. The workload consisted of multiple daily

batch pipelines responsible for ingesting, transforming,

and aggregating structured datasets for downstream

analytics. Over time, the platform experienced increasing

performance variability due to data growth, skewed

partitions, and inconsistent resource utilization. Manual

optimization required frequent intervention by engineers,

while rule-based automation often produced unstable

results. These challenges made the environment suitable

for evaluating consequence-aware agentic optimization.

Initially, the system was operated using traditional

practices, where engineers manually adjusted

configurations such as partition counts, compute sizes,

and optimization schedules. Although these changes

occasionally improved performance, results were

inconsistent and required repeated tuning. An LLM-

based assistant was then introduced to recommend

optimization steps using heuristics and language

reasoning. While this approach reduced some manual

effort, it occasionally suggested actions that increased

compute cost or caused downstream delays due to a lack

of predictive validation.

The proposed world-model-based framework was

subsequently deployed. Historical telemetry, including

runtime metrics, storage characteristics, and action logs,

was collected over several weeks to construct the digital

twin and train the predictive transition models. Once

trained, the agent began evaluating candidate actions

through simulation before execution. For example,

instead of directly increasing compute resources to reduce

latency, the system first predicted the expected runtime

and cost impact of multiple alternatives, including

repartitioning and layout optimization. The action with

the best predicted trade-off was then selected.

Following deployment, the pipelines exhibited more

stable and consistent performance. Execution times

decreased due to improved workload distribution, while

unnecessary resource scaling was avoided, resulting in

lower infrastructure costs. Furthermore, the number of

failures caused by configuration changes was

significantly reduced because risky actions were filtered

out during the simulation phase. Engineers reported

reduced manual intervention and greater confidence in

automated decisions due to the transparency provided by

predicted outcomes.

This case study demonstrates that integrating predictive

world models with data engineering observability enables

practical, safe, and scalable automation. The results

confirm that consequence-aware agents can effectively

manage real-world data platforms and deliver measurable

operational benefits beyond heuristic or language-only

approaches.

Author Biography / About the Author

Brahma Reddy Katam is a data engineering

professional, researcher, and technology enthusiast with

extensive experience in building scalable data platforms,

analytics systems, and AI-driven solutions. He

specializes in data engineering, cloud-based data

architectures, and the practical application of artificial

intelligence to solve real-world problems.

Brahma has worked across multiple domains, including

enterprise analytics, metadata management, data

pipelines, and AI-powered data products. His work

emphasizes simplifying complex data systems and

making advanced technologies accessible through

intuitive design and strong engineering foundations. He

has hands-on experience with modern data platforms

such as Databricks, Delta Lake, SQL-based analytics,

PySpark, and cloud-native architectures.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56229 | Page 15

He is also an active contributor to the data engineering

and analytics community through blogs, research papers,

proof-of-concept applications, and learning platforms.

His research interests include embedding-based AI

systems, agentic AI for analytics, lakehouse

architectures, and next-generation data discovery

mechanisms.

14. References

1. [1] T. Brown et al., “Language Models are Few-

Shot Learners,” Advances in Neural Information

Processing Systems (NeurIPS), 2020.

2. [2] A. Radford et al., “Learning Transferable

Visual Models From Natural Language

Supervision,” Proceedings of the International

Conference on Machine Learning (ICML), 2021.

3. [3] S. Reed, Y. Wu, A. Parikh et al., “A

Generalist Agent,” Transactions on Machine

Learning Research (TMLR), 2022.

4. [4] D. Silver et al., “Mastering the Game of Go

with Deep Neural Networks and Tree Search,”

Nature, vol. 529, pp. 484–489, 2016.

5. [5] D. Ha and J. Schmidhuber, “World Models,”

Advances in Neural Information Processing

Systems (NeurIPS), 2018.

6. [6] R. Sutton and A. Barto, Reinforcement

Learning: An Introduction, 2nd ed., MIT Press,

2018.

7. [7] V. Mnih et al., “Human-Level Control

through Deep Reinforcement Learning,” Nature,

vol. 518, pp. 529–533, 2015.

8. [8] M. Grieves and J. Vickers, “Digital Twin:

Mitigating Unpredictable, Undesirable Emergent

Behavior in Complex Systems,” in

Transdisciplinary Perspectives on Complex

Systems, Springer, 2017.

9. [9] G. Candido, R. Kazman, and H. Erdogmus,

“DevOps and DataOps: A Systematic Mapping

Study,” Journal of Systems and Software, vol.

182, 2021.

10. [10] M. Zaharia et al., “Delta Lake: High-

Performance ACID Table Storage over Cloud

Object Stores,” Proceedings of the VLDB

Endowment (PVLDB), 2020.

11. [11] A. Armbrust et al., “Lakehouse: A New

Generation of Open Platforms that Unify Data

Warehousing and Advanced Analytics,” CIDR

Conference, 2021.

12. [12] B. Burns and D. Oppenheimer, “Design

Patterns for Container-Based Distributed

Systems,” USENIX ;login:, vol. 43, no. 3, 2018.

13. [13] J. Kreps, “Questioning the Lambda

Architecture,” Confluent Engineering Blog,

2014.

14. [14] G. Tesauro et al., “Managing Complexity in

Large-Scale IT Systems Using Machine

Learning,” IBM Journal of Research and

Development, vol. 59, no. 2/3, 2015.

15. [15] A. Verma, L. Cherkasova, and R. Campbell,

“ARIA: Automatic Resource Inference and

Allocation for MapReduce Environments,” ACM

International Conference on Autonomic

Computing (ICAC), 2011.

16. [16] J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters,”

Communications of the ACM, vol. 51, no. 1,

2008.

17. [17] C. Sutton et al., “Observability Engineering:

Achieving Production Excellence through

Structured Telemetry,” O’Reilly Media, 2022.

https://ijsrem.com/

