" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

Data Engineering—Driven World Models for Consequence-Aware Agentic
Systems

Brahma Reddy Katam

Technical Lead, Data Engineering and Advanced Computing

Abstract: Large Language Models (LLMs) have enabled
a new generation of intelligent agents capable of
generating queries, automating workflows, and assisting
data engineering tasks through natural language
interaction. Despite these advances, most LLM-based
agents remain fundamentally reactive, operating by
predicting text rather than anticipating the operational
consequences of their actions. In production-scale data
platforms, actions such as schema changes, table
optimizations, or compute scaling directly impact
performance, cost, and system reliability. Without the
ability to forecast these outcomes, autonomous agents
may introduce failures, inefficiencies, or unsafe
decisions, exposing a critical gap between language
intelligence and system intelligence.

This paper proposes an approach that integrates data
engineering observability with learned transition
modeling to enable consequence-aware agentic behavior.
Data Engineering-Driven World
Models, where agents learn state-transition behavior of

We introduce

data platforms using historical telemetry, system metrics,
and action—outcome logs. Instead of executing changes
directly, agents simulate future system states and evaluate
expected impacts before taking action, enabling safer
planning and more reliable automation.

To operationalize this concept, we present the Data
System Digital Twin (DSDT) architecture, which
combines observability pipelines,
encoding, machine learning—based world models, and
planning modules with LLM interfaces. The framework

structured state

continuously captures runtime and cost signals, learns
system dynamics, and selects optimal actions through
simulation-based reasoning. A prototype implementation
on a lakehouse environment demonstrates improvements
in runtime efficiency, infrastructure cost, and failure
prevention compared to rule-based and LLM-only
approaches. This work shows that combining world
models with strong data engineering foundations
provides a practical pathway toward
optimizing, and autonomous data platforms.

safe, self-

Keywords

Agentic Al, World Models, Data Engineering,
Autonomous Systems, Data System Digital Twin,
Predictive Modeling, Intelligent Agents, Lakehouse
Optimization, Consequence-Aware Data

Platform Automation

Planning,

1. Introduction

Recent progress in Artificial Intelligence has accelerated
the adoption of intelligent agents across software and data
engineering ecosystems. In particular, Large Language
Models (LLMs) have demonstrated strong capabilities in
understanding natural language, generating code, writing
queries, and assisting automation tasks. These abilities
have enabled the development of agentic systems that can
interact with users conversationally and perform complex
operations such as creating data pipelines, optimizing
transformations, and managing infrastructure with
minimal human intervention. As a result, many modern
platforms are increasingly integrating LLM-based
assistants to improve productivity and reduce manual
effort.

Despite these advancements, current agentic systems
remain fundamentally limited in their operational
intelligence. Most LLM-driven agents operate by
predicting text outputs rather than modeling how real-
world systems behave. While they can recommend
actions or generate configuration scripts, they do not
inherently understand the consequences of executing
those actions. In other words, they lack an internal
representation of how the environment changes in
response to interventions. This limitation is not critical in
purely conversational settings, but it becomes a
significant challenge when agents are granted control
over production-scale data platforms.

Modern data engineering environments are highly
dynamic and complex. Enterprise lakehouses and
warehouses typically manage thousands of tables, large-
scale distributed jobs, evolving schemas, and fluctuating
workloads. Small operational changes, such as modifying
partitions, scaling compute resources, or adjusting

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 1

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

storage layouts, can have cascading effects on runtime
performance, infrastructure costs, and downstream
dependencies. Human engineers often rely on experience
and intuition to anticipate these effects before making
changes. They mentally simulate outcomes, evaluate
risks, and select actions that are likely to improve system
behavior. This predictive reasoning is essential for safe
and reliable system management.

LLM-based agents, however, lack this capability.
Because they are trained primarily on language patterns
rather than system dynamics, they cannot accurately
forecast the future state of the platform. Consequently,
actions recommended by such agents may be suboptimal
or even harmful. For example, an automated optimization
may increase data skew, raise compute costs, or disrupt
dependent workflows. These risks highlight a critical gap
between language intelligence and system intelligence. If
agentic
production environments, they must be able to predict the
consequences of their decisions before execution.

systems are to operate autonomously in

To address this challenge, we argue that meaningful
agentic intelligence requires the integration of world
models. A world model is a predictive representation that
estimates how an environment transitions from one state
to another after an action is taken. Formally, given the
current state and a candidate action, the model forecasts
the next state of the system. This capability enables
planning, simulation, and consequence-aware decision
making. World models have been successfully applied in
fields such as robotics, control systems, and autonomous
vehicles, where predicting outcomes is essential for safe
operation. However, their application within data
engineering systems remains largely unexplored.

In this work, we introduce a new perspective that
combines data engineering practices with predictive
modeling to build consequence-aware agents for
autonomous data platforms. We propose the concept of a
Data System Digital Twin, a structured and
continuously updated representation of the data
environment that captures telemetry, workload
characteristics, and operational outcomes. By learning
from historical observations of state, action, and result,
agents can model system dynamics and simulate future
behavior before executing changes. This approach
enables safer optimization, reduced operational risk, and
improved resource efficiency.

We present a layered architecture that integrates
observability pipelines, state encoding mechanisms,

machine learning—based world models, and planning
components with LLM interfaces. In this framework,
LLMs provide natural language reasoning and user
interaction, while predictive models guide execution
decisions through simulation. This separation ensures
that language understanding does not directly control
system operations without validation. A prototype
lakehouse stack
consequence-aware agents can
outperform both manual tuning and LLM-only
automation in terms of runtime efficiency, infrastructure
cost, and reliability.

implementation on a modern

demonstrates that

The primary contributions of this paper are threefold.
First, we formally define world models in the context of
data engineering environments and identify their
importance for agentic systems. Second, we propose the
Data System Digital Twin architecture that enables
predictive planning and safe automation. Third, we
provide an empirical evaluation demonstrating the
practical benefits of integrating data engineering
telemetry with learned predictive models. Together, these
contributions establish a foundation for building the next
generation of intelligent, reliable, and autonomous data
platforms.

2. Literature Review

Recent advancements in artificial intelligence have led to
significant interest in building intelligent agents capable
of automating complex engineering workflows. Research
and industry efforts have primarily focused on leveraging
Large Language Models (LLMs) to enable natural
language interaction, reasoning, and automated code
generation. While these approaches have improved
productivity, they reveal important limitations when
applied to operational system control. This section
reviews existing work in LLM-based agents, agentic
frameworks, world models, digital twins, and data
engineering automation, and identifies the gap addressed
by our proposed approach.

This motivates hybrid architectures that combine
language reasoning with explicit system modeling in
lakehouse-style platforms [11].

2.1 Large Language Model-Based Agents

Large Language Models such as GPT, PaLM, and similar
transformer-based architectures have demonstrated
strong performance in text understanding, generation, and

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 2

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

reasoning tasks. These capabilities have enabled
conversational assistants that can write SQL queries,
generate scripts, summarize logs, and assist developers.
Several recent systems integrate LLMs with tools and
APIs to create “agentic” behavior, allowing models to
perform multi-step tasks through prompting and tool

invocation.

However, these agents operate primarily through next-
token prediction and pattern matching learned from
textual data. They do not explicitly model causality or
environment dynamics. As a result, decisions are made
based on language correlations rather than predictive
simulations of system behavior. When deployed in
production engineering environments, this limitation can
lead to unsafe or suboptimal actions. Therefore, while

LLMs provide strong reasoning and interaction
capabilities, they lack operational consequence
awareness.

2.2 Agentic Al Frameworks and Tool-Augmented
Systems

To extend LLM capabilities, several frameworks
combine language models with external tools, memory,
and planning components. These systems enable agents
to execute commands, retrieve information, and perform
iterative reasoning. Tool-augmented agents improve task
completion rates compared to standalone models and are

widely used in automation scenarios.

Despite these improvements, most frameworks remain
reactive. They execute actions sequentially without
explicitly predicting future system states. Planning is
often heuristic or rule-based rather than learned from
historical behavior. Consequently, these agents can still
produce unstable or inefficient outcomes when managing
complex infrastructure. The absence of predictive system
their autonomous

modeling limits

operations.

reliability for

2.3 World Models and Predictive Planning

The concept of world models originates from robotics,
reinforcement learning, and control systems research. A
world model learns the transition dynamics of an
environment, allowing an agent to simulate the effects of
actions before executing them. This approach enables
planning, risk estimation, and safe decision making.
World models have been successfully applied in
autonomous vehicles, robotic manipulation, and game-

playing systems, where anticipating consequences is
critical.

These methods demonstrate that predictive modeling
significantly improves robustness and performance in
dynamic environments. However, their application has
largely been limited to physical or simulated domains.
The adoption of world models for software and data
infrastructure systems has received comparatively little
attention, leaving an opportunity to extend these
principles to data engineering environments.

World models have been widely studied in reinforcement
learning and control systems as a mechanism for
predicting state transitions and enabling planning before
execution [5], [6].

2.4 Digital Twins in System Monitoring

Digital twin technology has been widely used in
manufacturing, IoT, and industrial engineering to create
virtual replicas of physical systems. These replicas enable
simulation, monitoring, and predictive maintenance. By
analyzing telemetry data, digital twins help forecast
failures and optimize performance.

Although digital twins are effective for physical assets,
similar approaches for data platforms are still emerging.
Current observability tools focus on monitoring and
alerting rather than predictive simulation and planning.
As a result, they provide visibility but not autonomous
intelligence.

In contrast, lakehouse systems focus on scalable, unified
analytics and storage foundations [11], but do not
inherently provide predictive state-transition simulation
for operational control.

2.5 Automation in Data Engineering and AIOps

DataOps and AIOps practices aim to automate
deployment, monitoring, and optimization of data
pipelines. Techniques such as rule-based tuning,
heuristics, and threshold alerts are commonly used. While
these approaches reduce manual effort, they depend
heavily on predefined rules and lack adaptive learning.
They do not generalize well to evolving workloads or
unseen conditions.

This limitation suggests the need for data-driven,
learning-based methods that can adapt dynamically to
changing environments.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 3

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

Lakehouse storage layers and ACID table formats have
made it easier to persist operational signals and
experiment logs at scale, which supports learning-based
optimization pipelines [10], [11].

2.6 Research Gap

From the above review, it is evident that existing
approaches provide either strong language reasoning
(LLMs) or monitoring capabilities (observability tools),
but rarely combine predictive system modeling with
agentic decision-making. Current solutions lack
mechanisms to learn environment dynamics and simulate
consequences before action execution.

To address this gap, we propose integrating data
engineering telemetry with learned world models to
create consequence-aware agents. Our approach bridges
language intelligence and predictive system intelligence
through the Data System Digital Twin framework,
enabling safe, reliable, and autonomous data platform
management.

3. Research Objectives

This study aims to bridge the gap between language-
based intelligent agents and reliable

decision-making in large-scale data

system-level

engineering
environments. While current LLM-based agents provide
conversational reasoning and task automation, they lack
the ability to predict the operational consequences of their
actions. The primary objective of this research is to
design and evaluate a consequence-aware agentic
framework that integrates predictive world models with
data engineering practices to enable safe and autonomous
platform management.

The specific objectives of this work are as follows:

1. To analyze the limitations of LLM-based
agents in production data platforms, particularly
their inability to model causality, predict state
transitions, and perform safe operational
planning.

2. To formally define world models for data

engineering systems, representing platform
behavior using state—action—outcome
relationships that capture runtime performance,

cost, and reliability characteristics.

3. To design a Data System Digital Twin
architecture that continuously collects
telemetry, encodes system states, and maintains a
structured virtual representation of the data
environment for predictive analysis.

4. To develop predictive machine learning
models that learn environment dynamics and
estimate future system states given candidate
actions, enabling simulation-based decision-
making.

5. To integrate the world model with an agentic
planning framework, where actions are
evaluated through consequence prediction before
execution rather than through reactive or rule-
based approaches.

6. To implement a prototype system using
modern lakehouse technologies and distributed
data processing tools to validate the practical
feasibility of the proposed framework.

7. To experimentally evaluate

performance,

system
measuring improvements in
runtime efficiency, infrastructure cost, and
operational reliability compared to manual

tuning and LLM-only automation.

8. To
engineering observability with predictive

demonstrate that combining data
modeling provides a scalable foundation for
safe, self-optimizing, and autonomous data
platforms.

Through these objectives, the research seeks to establish
a new direction for agentic Al systems that move beyond
language intelligence toward predictive and
consequence-aware operational intelligence.

4. Architecture and System Design

The proposed system is designed to enable consequence-
aware decision making in agentic data engineering
environments by integrating predictive modeling with
traditional data platform observability. Unlike
conventional LLM-based agents that operate reactively
by generating actions directly from textual reasoning, the
proposed architecture introduces a structured mechanism
to simulate and evaluate the operational impact of
candidate actions before execution. This capability is

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 4

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

achieved through the creation of a wvirtual and
continuously updated representation of the platform,
referred to in this work as the Data System Digital Twin
(DSDT). The digital twin acts as an abstract model of the
environment and enables agents to reason about system
behavior using learned state transitions rather than
heuristics or language correlations alone.

At a high level, the architecture follows a layered design
in which telemetry collection, state abstraction, predictive
modeling, planning, and language interaction are clearly
separated. This separation ensures that language
intelligence is not directly responsible for operational
control, thereby reducing the risk of unsafe decisions.
Instead, predictive components validate all actions
through simulation prior to deployment. The overall
design emphasizes reliability, scalability, and
compatibility with modern lakehouse and warehouse
ecosystems.

The foundation of the system is the observability layer,
which continuously gathers operational signals from the
data platform. Modern data engineering environments
generate large volumes of telemetry in the form of
execution logs, runtime metrics, resource utilization
statistics, and dependency information. These signals
provide a historical view of how the system behaves
under varying workloads and configurations. The
proposed architecture captures such signals, including job
latency, storage growth, compute consumption, shuffle
volume, partition distribution, and failure events, and
stores them in structured storage for analysis. By
maintaining a persistent historical record, the system
creates the necessary data backbone required to learn
environment behavior over time. Without this telemetry,
predictive modeling of system dynamics would not be
feasible.

Since raw logs are often noisy and high dimensional, the
next stage of the architecture focuses on transforming
telemetry into meaningful and compact state
representations. The state representation layer aggregates
and encodes operational metrics into abstract features that
summarize the health and performance of the system at a
given time. Rather than modeling low-level signals
directly, the system constructs semantic attributes such as
average runtime, cost rate, skew index, failure frequency,
and dependency counts. These abstractions allow the
environment to be represented as structured state vectors
that are easier to learn and simulate. By operating in this
reduced feature space, the architecture achieves both

computational efficiency and better generalization across
workloads.

Figure 1. End-to-End Architecture of the Proposed Data
System Digital Twin Framework.

“-— .

Built on top of these state representations is the world
model layer, which forms the predictive core of the
system. The world model learns how the environment
transitions from one state to another when specific actions
are applied. Formally, given the current system state and
a candidate action, the model estimates the likely next
state of the platform. This transition function is trained
using historical observations of state, action, and outcome
relationships derived from past executions. Through
supervised learning techniques, the model captures
patterns such as how repartitioning affects runtime, how
scaling compute influences cost, or how configuration
changes impact reliability. By forecasting these effects in
advance, the world model enables the agent to anticipate
consequences rather than relying on trial-and-error
execution.

To utilize these predictions effectively, the architecture
incorporates a planning and optimization layer that
evaluates multiple possible actions before selecting one
for execution. When the agent receives a high-level
objective, several candidate strategies are generated and
individually simulated using the world model. Each

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 5

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

simulated outcome is scored based on predefined
objectives such as minimizing runtime, reducing
infrastructure cost, or lowering failure risk. The action
associated with the most favorable predicted outcome is
then selected. This simulation-based planning mechanism
resembles model-based control approaches used in
robotics and ensures that decisions are guided by
measurable consequences rather than reactive responses.

The final component of the architecture is the agent
interface layer, which integrates a Large Language Model
to provide natural language interaction and reasoning
capabilities. The LLM interprets user requests, explains
system behavior, and generates potential strategies in an
intuitive manner. However, unlike traditional LLM-
centric agents, it does not directly execute operational
changes. Instead, all proposed actions are validated
through the predictive world model and planning
modules. This design ensures that language
understanding complements, rather than replaces, system
intelligence. By separating reasoning from execution, the
architecture balances usability with safety.

Together, these components form a closed feedback loop
in which telemetry is continuously collected, states are
updated, outcomes are predicted, and decisions are
refined over time. After each action is executed, new
results are recorded and incorporated into the training
data, enabling the world model to improve its accuracy
iteratively. This continuous learning process allows the
system to adapt to evolving workloads and infrastructure
changes. As a result, the proposed architecture transitions
data platforms from reactive automation toward proactive
and autonomous optimization, establishing a practical
foundation for reliable agentic systems.

5. Implementation

To evaluate the practicality of the proposed Data System
Digital Twin (DSDT) architecture, a working prototype
was implemented on a modern lakehouse-based data
engineering environment. The primary objective of the
implementation was to demonstrate that telemetry-driven
world models can be integrated with agentic reasoning to
enable predictive and consequence-aware operational
decisions. Rather than relying on simulated
environments, the prototype was deployed using
commonly adopted enterprise technologies to ensure that
the framework reflects real-world feasibility and
scalability.

The system was developed using distributed storage and
processing components that are widely used in
production data platforms. A lakehouse architecture was
selected to persist telemetry and historical workload
information, while distributed compute engines were
used to perform feature engineering, model training, and
large-scale data processing. PySpark was employed for
transformation logic and pipeline orchestration, and
standard machine learning libraries were used to train
predictive models. An LLM-based interface was
integrated to support natural language interaction and
high-level task interpretation. This technology stack
allowed the proposed framework to operate directly
within without requiring

existing infrastructure

specialized hardware or custom runtime environments.

The first stage of the implementation focused on
establishing a comprehensive observability pipeline.
Continuous telemetry collection is critical because
predictive models depend on historical behavior to learn
system dynamics. Operational signals were captured
from batch jobs, streaming processes, and table
operations across the platform. These signals included
execution latency, compute utilization, input and output
data volume, partition distribution, shuffle statistics,
storage consumption, and failure events. Each metric was
recorded with time stamps and contextual identifiers such
as job name or dataset. The collected data was stored in
structured Delta tables, forming a time-series history of
platform activity. This persistent record provides the
empirical foundation required to understand how the
system behaves under varying workloads and
configurations.

Since raw telemetry often contains noise and fine-grained
details that are not directly useful for predictive modeling,
the next step involved constructing compact and
meaningful state representations. Feature engineering
techniques were applied to aggregate metrics over
defined time windows and to compute derived indicators
such as average runtime, growth rate, skew index, cost
estimates, and failure frequency. These aggregated
attributes capture the operational health of each pipeline
or table at a semantic level. The resulting features were
encoded into structured state vectors and stored in a
feature store for reuse during both training and inference.
This abstraction process reduces dimensionality and
improves the stability and generalization capability of the
learning models.

In addition to capturing system states, the implementation
explicitly recorded operational actions performed by

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 6

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

either users or automated agents. Logging actions is
essential for learning cause-and-effect relationships
between interventions and outcomes. Each configuration
change, optimization step, or scaling decision was
recorded along with its parameters and time of execution.
Typical actions included repartitioning tables, modifying
storage layouts, adjusting cluster sizes, or updating
runtime configurations. By maintaining this action
history, the system was able to construct state—action—
outcome triplets that form the supervised learning dataset
for modeling environment transitions.

Using these historical triplets, the world model was
trained to estimate how the system evolves after specific
actions are applied. Supervised regression techniques
were employed to learn transition functions that map the
current state and a candidate action to a predicted future
state. Separate models were trained to forecast metrics
such as expected runtime, infrastructure cost, and
probability of failure. Structured tabular models,
including tree-based and gradient boosting methods, were
selected due to their robustness and interpretability when
working with operational data. The trained models
effectively captured patterns such as how partition
changes influence runtime or how resource scaling
impacts cost, enabling the forecast
consequences before execution.

system to

During runtime, the predictive models are used to
perform simulation-based planning. When an agent
receives a high-level objective, such as improving
performance or reducing cost, it generates multiple
candidate actions. Each candidate is evaluated by passing
the current state and the action parameters to the trained
world model, which predicts the resulting system
behavior. The predicted outcomes are then scored using
an objective function that combines runtime, cost, and
risk metrics. The action with the most favorable predicted
score is selected for execution. This simulation-first
approach ensures that decisions are guided by measurable
forecasts rather than reactive or heuristic reasoning.

To enable user-friendly interaction, an LLM interface
was integrated on top of the predictive system. The
language model interprets natural language requests,
summarizes system conditions, and proposes potential
strategies. However, unlike conventional LLM-only
agents, the model does not directly execute operational
commands. All recommendations are validated through
the predictive world model and planning layer before
deployment. This design choice ensures that language

reasoning enhances usability while maintaining strict
control over system safety.

Finally, the system implements a continuous feedback
mechanism that updates the digital twin after every
execution. Observed outcomes are recorded back into
telemetry storage, and the newly collected data is
periodically incorporated into model retraining. This
closed-loop process allows the world model to improve
over time as it encounters new workloads and
configurations. As the dataset grows, prediction accuracy
increases, resulting in progressively better planning
decisions. Consequently, the system evolves from static
automation toward

behavior.

adaptive and self-optimizing

Overall, the implementation demonstrates that the
proposed architecture can be realized using standard data
engineering tools and practices. The integration of
telemetry collection, predictive modeling, and agentic
reasoning is both practical and scalable, confirming that
world-model-based agents can operate effectively in real
production data environments.

6. Data Collection and Preparation

The effectiveness of the proposed Data System Digital
Twin and world-model-based planning framework
depends heavily on the quality and completeness of
historical operational data. Since the objective of the
system is to learn environment dynamics and predict the
consequences of actions, it is essential to construct a
dataset that accurately captures the relationship between
system states, executed interventions, and resulting
outcomes. Therefore, careful attention was given to the
collection, cleaning, and preparation of telemetry data
before model training and evaluation.

Data for this study was collected from a production-style
lakehouse environment executing a mixture of batch
processing, incremental loads, and analytical workloads.
The platform consisted of multiple pipelines operating on
structured datasets of varying sizes and complexities.
Each pipeline execution generated operational signals,
including runtime metrics, resource utilization statistics,
storage characteristics, and success or failure indicators.
These signals were continuously recorded through
automated logging mechanisms integrated within the
execution framework. By capturing telemetry directly
from the running system rather than using synthetic

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 7

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

benchmarks, the dataset reflects realistic workload
variability and operational behavior.

The collected telemetry includes both system-level and
task-level measurements. System-level metrics capture
overall infrastructure behavior, such as CPU utilization,
memory consumption, and cluster scaling information,
while task-level metrics describe individual job
characteristics, including rows processed, execution
latency, partition distribution, shuffle volume, and I/O
throughput. In addition, metadata such as timestamps,
pipeline identifiers, table names, and configuration
parameters were recorded to provide contextual
information for analysis. This combination of signals
enables the reconstruction of the platform’s operational
state at any given point in time.

Since raw logs often contain redundant, incomplete, or
inconsistent entries, a preprocessing stage was applied to
ensure data reliability. Missing values caused by transient
logging failures were handled through interpolation or
removal, depending on their frequency and impact.
Duplicate records were eliminated, and inconsistent time
formats standardized to maintain temporal
alignment across datasets. Outlier detection techniques

were

were also applied to identify abnormal measurements
caused by unexpected infrastructure interruptions or test
runs that did not represent normal workload behavior.
These steps ensured that the training data reflected stable
and representative system operations.

After cleaning, telemetry signals were transformed into
structured state representations suitable for predictive
modeling. Instead of wusing raw metrics directly,
aggregated and derived features were computed over
defined time windows. For example, average runtime,
maximum resource usage, growth rate of storage, skew
index, and failure frequency were calculated to
summarize operational trends. Normalization techniques
were applied to scale features to comparable ranges,
preventing bias during model training. This abstraction
process
essential behavioral information.

reduces dimensionality while preserving

In addition to state information, the preparation phase
included explicit logging of operational actions. Each
system intervention, such as repartitioning tables,
changing cluster size, or modifying configurations, was
recorded with corresponding parameters and timestamps.
Following each action, the resulting system behavior was
measured and associated with the pre-action state. This

process enabled the construction of structured state—

action—outcome triplets, which form the core training
dataset for learning environment transitions. By pairing
actions with observed consequences, the model can
relationships rather than simple

capture causal

correlations.

Finally, the prepared dataset was partitioned into training,
validation, and testing subsets using temporal splits to
preserve chronological order. Earlier observations were
used for model training, while later data was reserved for
evaluation. This approach prevents information leakage
and better simulates real-world deployment scenarios,
where future states must be predicted based solely on past
behavior. The resulting dataset provides a comprehensive
and reliable foundation for training the world model and
assessing its predictive performance.

Overall, the data collection and preparation process
ensures that the proposed framework is grounded in
realistic operational evidence. By systematically
capturing, cleaning, and structuring telemetry and action
histories, the system obtains high-quality training data
that enables accurate consequence prediction and reliable
agentic decision-making.

7. Methodology: Data + Al Algorithms

This section describes the methodological approach used
to transform operational telemetry into predictive
intelligence for consequence-aware agentic decision
making. The primary objective of the proposed
methodology is to learn the dynamic behavior of data
engineering systems from historical observations and to
use this knowledge to simulate the outcomes of potential
actions before execution. The overall process combines
structured data engineering practices with machine
learning techniques to construct a world model that
supports planning and optimization.

The methodology begins with the assumption that a data
platform can be represented as a dynamic environment
whose behavior evolves over time in response to both
workload conditions and system interventions. At any
given time step, the environment can be described by a
set of measurable characteristics that capture its
operational health. These characteristics include
performance metrics, cost indicators, and reliability
signals collected through telemetry. Instead of treating
these signals independently, the proposed approach
aggregates them into structured representations that
define the current system state. By encoding the

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 8

https://ijsrem.com/

W Volume: 10 Issue: 01 | Jan - 2026

&
International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

environment as states and actions, the problem can be
formulated as a state-transition learning task similar to
those used in reinforcement learning and control systems.

Formaby, 161 the systém stite af Tive { be represerted as a feature vector S, € RBY, whive sach
gleinent comespends 10 a dered operational metric such as average runtime, data size, skew ncex
esowce tlization, or fadum frequency. Actions taken by the Jgent are represantad as A

whare aach action encodes configuation or oplim@ation cecisions sch &3 epantion counts, scaling
parametans, o s0rage Myout adjustments, The otiective of the workd model s 10 Barm o transiticn

function [such that
Sevy = f15), A

where S, .| denates the peadicted next state after 3p0lying action A, to state S,

I Current Systam State (S) |

& =

Gunarate Candidate Actions
£A, .. ALT

]

Wearld Maoadml
Gtmtm Tranxition Predictian
FOs, A

!

Simulate Outcomes

Proedict Next States S°

1

Multi-Objective Scoring
Runtime -~ Cost - Risk

|

l Scloct Optimal Action AW I

|

I Safoty Gatae / Policy |

Vatidation

|

[Execute Action on Platlrfrorm]

il

l Obzmarve Actual Outcoma I

— e

Update Talamatry & Ratrain
Modatl

This formulation allows the system to estimate future
behavior without executing the action directly.

To learn this transition function, historical telemetry is
converted into supervised training samples consisting of
state—action—outcome triplets. Each sample captures the
system condition before an intervention, the action
applied, and the resulting measurements observed after
execution. These samples collectively represent empirical
evidence of how the environment responds to changes.
Prior to training, features are normalized and
standardized to ensure consistent scaling, and temporal
ordering is preserved to maintain causality. This
preparation step improves model stability and prevents
information leakage across time.

The predictive component of the methodology uses
regression-based machine learning algorithms to
approximate the transition function. Structured tabular
models such as gradient boosting, random forests, and
other ensemble techniques are selected due to their
robustness, interpretability, and ability to handle
heterogencous operational data. Separate predictive
models are trained for key objectives including runtime
estimation, cost prediction, and failure probability. By
decomposing predictions into multiple targets, the system
can evaluate trade-offs between performance and
reliability more effectively.

Once the transition function is learned, the methodology
incorporates a simulation-based planning strategy. For a
given state and high-level objective, the agent generates
a set of candidate actions. Each candidate is evaluated by
passing the state—action pair through the learned model to
predict the resulting state. An objective function then
scores each predicted outcome using weighted criteria
such as execution time, infrastructure cost, and risk. The
optimal action is selected by minimizing this objective.
This process effectively performs “what-if” analysis,
enabling the agent to reason about consequences without
incurring operational risk.

In addition to supervised prediction, the methodology
employs a continuous learning mechanism to improve
model accuracy over time. After each executed action, the
observed outcome is logged and appended to the training
dataset. Periodic retraining allows the world model to
adapt to evolving workloads, schema changes, and
infrastructure variations. This feedback loop ensures that
the predictive system remains aligned with real-world
behavior rather than relying on static assumptions.

Overall, the proposed methodology integrates data
engineering pipelines for structured telemetry collection
with machine learning algorithms for predictive modeling
and planning. By treating system optimization as a state-
transition learning problem, the approach moves beyond
reactive automation and enables proactive, consequence-
aware decision making. This combination of data and Al
forms the foundation for reliable and autonomous agentic
systems in modern data platforms.

8. System Integration and Deployment

The practical value of the proposed Data System Digital
Twin framework depends not only on predictive accuracy
but also on its ability to integrate seamlessly with existing

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 9

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

production data engineering ecosystems. Modern
enterprise data platforms already operate with established
storage layers, compute clusters, orchestration tools, and
monitoring systems. Therefore, the design of the
proposed architecture = emphasizes compatibility,
modularity, and incremental deployment rather than
requiring a complete system redesign. The objective is to
ensure that consequence-aware agentic capabilities can
be introduced without disrupting current workflows or
infrastructure investments.

The system was integrated into a lakehouse-based
environment where data storage, telemetry logging,
feature computation, and predictive modeling coexist
within the same distributed ecosystem. Operational logs
and metrics generated by existing pipelines were ingested
directly into the observability layer using scheduled
ingestion jobs and streaming collectors. Because most
modern platforms already produce execution and
performance metrics, no specialized instrumentation was
required. This design choice reduces overhead and allows
organizations to adopt the framework using their current
monitoring mechanisms. The telemetry tables act as a
shared foundation for both analytics and predictive
modeling, ensuring consistency between operational
insights and automated decision-making.

The predictive world model and planning components
were deployed as independent services within the
platform’s compute layer. Separating these components
from the core execution engine enables modular scaling
and fault isolation. During runtime, the planner queries
the latest system state from the feature store, evaluates
candidate actions using the trained predictive models, and
returns an optimized action plan. This process occurs
asynchronously and does not interfere with active
pipeline execution. Such decoupling ensures that
predictive reasoning introduces minimal latency and
avoids creating additional bottlenecks in the system.

To enable user interaction, the agent interface was
exposed through lightweight APIs and notebook-based
environments commonly used by data engineers. Users
can submit high-level goals or optimization requests
using natural language or structured commands. These
requests are interpreted by the LLM layer and translated
into candidate operational strategies. However, all
strategies are validated through the predictive planning
module before execution. This integration pattern
maintains a clear separation between reasoning and
control, preventing unsafe or unverified actions from

directly affecting production workloads. As a result, the
system preserves both usability and operational safety.

From a deployment perspective, the architecture supports
incremental adoption. Organizations can initially deploy
the observability and telemetry collection components to
gather historical data without enabling autonomous
actions. Once sufficient data is collected, predictive
models can be trained offline and evaluated in shadow
mode, where recommendations are generated but not
executed. After validating accuracy and reliability,
automated execution can be gradually enabled for low-
risk tasks before extending to broader optimizations. This
phased rollout reduces operational risk and builds
confidence in the system’s decisions.

Scalability considerations were addressed by leveraging
distributed storage and parallel processing capabilities
inherent to the lakehouse platform. Telemetry datasets
and feature engineering tasks scale horizontally with data
volume, while model training can be parallelized across
compute clusters. Since predictions operate on
aggregated state vectors rather than raw logs, inference
latency remains low even at large scale. This design
ensures that the framework can support thousands of
pipelines and datasets without significant performance

degradation.

Reliability and fault tolerance were also incorporated into
the deployment strategy. All predictive decisions are
logged, versioned, and auditable, allowing engineers to
trace the reasoning behind each automated action.
Rollback mechanisms are provided to revert changes if
unexpected behavior is detected. Additionally, the system
defaults to conservative behavior when confidence in
predictions is low, thereby preventing risky interventions.
These safeguards ensure that automation enhances
system stability rather than introducing new failure
modes.

Overall, the integration and deployment process
demonstrates that the proposed world-model-based
agentic framework can operate effectively within existing
data engineering infrastructures. By leveraging standard
telemetry, modular services, and incremental rollout
strategies, the system provides a practical pathway from
reactive operations toward autonomous and self-

optimizing data platforms. This confirms that
consequence-aware intelligence can be deployed at scale

without requiring disruptive architectural changes.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 10

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

9. Results and expected outcomes

The proposed Data System Digital Twin framework was
evaluated to assess whether consequence-aware planning
improves the reliability and efficiency of agentic data
engineering operations. The evaluation focused on three
primary objectives: reducing pipeline execution time,
lowering infrastructure cost, and minimizing operational
failures. These metrics were selected because they
directly reflect the practical challenges faced in modern
data platforms and represent measurable indicators of
system performance. The results compare the proposed
world-model-based agent against conventional
approaches, including manual tuning and LLM-only
reactive automation.

Experiments were conducted on representative batch and
incremental workloads operating on structured datasets of
varying sizes. Historical telemetry was first collected to
train the predictive world model. After training, the agent
was allowed to recommend and execute optimization
actions simulation-based planning. For
comparison, the same workloads were executed under
two alternative configurations: manual configuration by
engineers heuristics, = and automated

using

using
recommendations generated solely through language-
based reasoning without predictive validation. Each
configuration was evaluated across multiple runs to
account for workload variability.

The results demonstrate that incorporating predictive
state-transition modeling consistently improves system
behavior. The world-model-based agent was able to
anticipate the impact of partition tuning, resource scaling,
and storage optimizations before execution. As a result,
the system selected actions that balanced runtime
performance and resource utilization more effectively
than heuristic or reactive approaches. In several
scenarios, the agent avoided configuration changes that
appeared beneficial at a surface level but would have
increased downstream costs or failure risks. This
indicates that consequence awareness plays a critical role
in reliable automation.

Quantitatively, the proposed framework achieved
noticeable improvements across all evaluation metrics.
Average pipeline runtime decreased due to better
workload distribution and reduced data skew.
Infrastructure costs were lowered by avoiding over-
provisioning of compute resources and unnecessary
optimization operations. Failure rates also declined

because actions were validated through simulation before

deployment. Table 1 summarizes the comparative
performance across the evaluated methods.

Table 1 summarizes the comparative performance across
the evaluated methods based on repeated prototype
experiments.

o

Approach Avg R R Cost Red Fallure R
Manual tuning Bassting Basaine Baseine
LLM-andy agent B8-12% 5-10% 10-15%

4 Proposed worid-modal agent 25-40% 20-35% [40-g0%%

The improvements observed with the proposed system
are attributed to its ability to evaluate multiple candidate
actions through predictive simulation rather than
committing to the first plausible solution. While LLM-
only agents provided wuseful suggestions, they
occasionally introduced inefficient configurations due to
the absence of quantitative reasoning. In contrast, the
world-model-based planner systematically compared
alternatives using measurable objectives, leading to more
consistent outcomes.

Beyond immediate performance gains, several long-term
benefits are expected from continuous deployment of the
framework. As additional telemetry is collected, the
predictive accuracy of the world model is expected to
improve, enabling progressively better decision-making.
This feedback-driven learning mechanism suggests that
optimization quality will increase over time without
manual intervention. Furthermore, the digital twin
enables proactive planning for future workload growth,
allowing teams to anticipate capacity requirements and
avoid sudden performance degradation.

Scalability analysis indicates that the approach remains
computationally efficient even for large environments.
Since predictions operate on aggregated state features
rather than raw logs, inference overhead is minimal. This
allows the system to evaluate multiple candidate actions
in near real time, making it suitable for both scheduled
and interactive optimization tasks. Consequently, the
framework is expected to scale to hundreds or thousands
of pipelines without significant latency.

Overall, the results confirm that integrating data
engineering observability with predictive world models
leads to safer and more efficient autonomous operations.
The proposed framework moves beyond reactive
automation and establishes a foundation for intelligent,
self-optimizing data platforms. These outcomes validate
the central hypothesis of this research: that consequence-

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 11

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

aware agents outperform language-only systems when
managing complex operational environments.

10. Discussion

The results presented in the previous section demonstrate
that integrating predictive world models with data
engineering observability significantly improves the
reliability and efficiency of agentic systems. These
findings highlight an important shift in how autonomous
behavior should be designed for operational platforms.
Rather than relying solely on language reasoning or
heuristic automation, the proposed approach shows that
consequence-aware planning leads to more stable and
cost-effective decisions. This observation suggests that
predictive system intelligence, not just conversational
intelligence, is essential for real-world autonomy.

A key insight from this work is that Large Language
Models, while highly capable in reasoning and interaction
tasks, are not sufficient for direct operational control.
LLMs excel at interpreting user intent, generating code,
and proposing strategies, but they do not inherently model
causal relationships within infrastructure environments.
The experiments revealed that language-only agents
occasionally recommend actions that appear reasonable
semantically but produce suboptimal outcomes when
executed. This mismatch occurs because language
models optimize for plausibility rather than measurable
system behavior. The introduction of a world model
bridges this gap by grounding decisions in historical
evidence and quantitative prediction. Consequently, the
combination of language understanding and predictive
modeling produces more dependable automation than
either approach alone.

Another important observation is the central role of data
engineering practices in enabling intelligent agents. The
success of the proposed framework depends heavily on
high-quality telemetry, structured logging, and consistent
feature engineering. Without reliable historical records,
the world model cannot accurately learn state transitions.
This finding emphasizes that autonomy is not achieved
purely through advanced Al algorithms but also through
disciplined data infrastructure design. In this sense, data
engineering becomes a foundational component of
agentic intelligence rather than merely a supporting
function. Organizations seeking to adopt autonomous
systems must therefore invest in observability and data
quality alongside model development.

The concept of a Data System Digital Twin also proved
valuable as a unifying abstraction. By representing the
platform as a structured and continuously updated state
space, the system enables simulation-based reasoning
similar to approaches used in robotics and control
systems. This abstraction simplifies complex
environments and allows the agent to evaluate multiple
future scenarios efficiently. The digital twin not only
supports optimization but also enhances transparency, as
predicted outcomes can be inspected before execution.
This improves trust and makes automated decisions
easier to audit and wvalidate, which is particularly
important in enterprise settings.

While the proposed framework demonstrates promising
results, several limitations should be acknowledged.
First, predictive accuracy depends on the diversity and
coverage of historical data. If the system encounters
workloads that differ significantly from past
observations, the world model may produce less reliable
predictions. Second, training and maintaining predictive
models introduces additional computational overhead,
which may require careful resource management in very
large environments. Third, the current implementation
focuses primarily on structured batch workloads;
extending the approach to highly dynamic streaming or
real-time systems may require further adaptations. These
challenges highlight areas where additional research and
engineering effort are needed.

Despite these limitations, the broader implications of this
work are significant. The results suggest that future
agentic platforms should adopt hybrid architectures that
combine language models for reasoning with predictive
models for control. Such systems move beyond reactive
automation toward proactive and self-optimizing
behavior. Over time, as more telemetry is collected and
models improve, these agents can continuously refine
their decisions, reducing the need for manual
intervention. This capability has the potential to
transform data engineering operations by shifting effort

from routine tuning to higher-level design and strategy.

Overall, the discussion reinforces the central thesis of this
paper: meaningful autonomy in data platforms requires
consequence awareness. By integrating world models
with data engineering foundations, agents can plan
actions safely, reduce operational risks, and deliver
measurable efficiency gains. This combination represents
a practical and scalable pathway toward intelligent,
reliable, and truly autonomous data systems.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 12

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

11. Conclusion

This paper presented a novel approach for building
consequence-aware agentic systems for modern data
engineering platforms. While recent advances in Large
Language Models have enabled significant progress in
conversational automation and task assistance, their
reactive nature limits their suitability for direct
operational control. Language-based agents generate
actions based on textual reasoning but lack the ability to
predict how those actions will affect system behavior. In
production environments, where configuration changes
directly influence runtime performance, infrastructure
cost, and reliability, such limitations can lead to unsafe or
inefficient outcomes. This gap between language
intelligence and operational intelligence motivates the
need for predictive and system-aware decision-making
mechanisms.

To address this challenge, we introduced the concept of
Data Engineering—Driven World Models and proposed
the Data System Digital Twin architecture. The
framework integrates observability pipelines, structured
state representations, predictive transition models, and
simulation-based planning with LLM interfaces. By
from

learning state—action—outcome

historical telemetry,

relationships
the system can forecast the
consequences of candidate actions before execution. This
enables agents to move from reactive automation toward
proactive and risk-aware planning. Rather than relying
solely on heuristics or language plausibility, decisions are
grounded in measurable system behavior.

A prototype implementation demonstrated the practical
feasibility of the proposed approach using a lakehouse-
based environment and standard distributed data
engineering tools. Experimental evaluation showed
consistent ~improvements in pipeline runtime,
infrastructure cost, and operational stability when
compared with manual tuning and LLM-only automation.
These results validate that predictive world models
enhance both the safety and efficiency of autonomous
systems. Furthermore, the architecture supports
continuous learning, allowing performance to improve
over time as more telemetry becomes available.

In summary, this work establishes that meaningful
autonomy in data platforms requires combining data
engineering foundations with predictive Al models. By
integrating world models with agentic reasoning, the
proposed framework provides a scalable pathway toward
self-optimizing, reliable, and intelligent data systems.

This research lays the groundwork for the next generation
of agentic architectures where decisions are guided not
only by what sounds correct, but by what is predicted to
work.

12. Future Work

While the proposed Data System Digital Twin framework
demonstrates promising results for consequence-aware
agentic decision making, several opportunities remain for
further research and enhancement. The
implementation focuses primarily on supervised learning
of state-transition behavior using historical telemetry.
Although this approach provides stable and interpretable

current

predictions, more advanced learning strategies could
further improve adaptability and intelligence in dynamic
environments.

One important direction for future work is the integration
of reinforcement learning techniques. Instead of relying
solely on past observations, agents could continuously
explore new optimization strategies and learn policies
that maximize long-term rewards. Such an approach
would allow the system to autonomously discover actions
that may not exist in historical data and adapt more
effectively to evolving workloads. Combining
reinforcement learning with the existing world model
may enable more robust and self-improving behavior.

Another area of interest is extending the framework to
support real-time and streaming workloads. The current
design primarily targets batch-oriented data pipelines
where decisions can be planned ahead of execution.
Streaming environments introduce stricter latency
requirements and rapidly changing system states, which
may require lightweight online learning models and faster
inference mechanisms. Developing efficient predictive
scenarios would broaden the

models for these

applicability of the proposed architecture.

Future research may also explore richer state
representations through causal modeling and graph-based
learning. Modern data platforms involve complex
dependencies between datasets, pipelines, and compute
resources. Capturing these relationships using lineage
graphs or dependency networks could allow the world
model to reason more accurately about cascading effects
of actions across the system. This would improve risk

estimation and prevent unintended downstream impacts.

In addition, incorporating multi-agent coordination
presents another promising direction. Large organizations

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 13

https://ijsrem.com/

" International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586 ISSN: 2582-3930

often operate multiple optimization tasks simultaneously
across different teams and workloads. Enabling
collaboration among multiple intelligent agents that share
telemetry and coordinate decisions could lead to globally
optimized resource allocation rather than isolated local
improvements.

Finally, broader evaluation across diverse enterprise
environments and larger datasets would help validate
scalability and generalization. Testing the framework
under varying workload patterns, infrastructure
configurations, and cloud platforms would provide
deeper insights into robustness and deployment
considerations.

Overall, these future directions aim to further strengthen
the reliability, scalability, and autonomy of world-model-
based agentic systems, moving closer toward fully self-
managing data platforms.

13. Case Study Summary

To illustrate the practical applicability of the proposed
Data System Digital Twin framework, a representative
case study was conducted on a production-style data
engineering workload operating in a lakehouse
environment. The workload consisted of multiple daily
batch pipelines responsible for ingesting, transforming,
and aggregating structured datasets for downstream
analytics. Over time, the platform experienced increasing
performance variability due to data growth, skewed
partitions, and inconsistent resource utilization. Manual
optimization required frequent intervention by engineers,
while rule-based automation often produced unstable
results. These challenges made the environment suitable
for evaluating consequence-aware agentic optimization.

Initially, the system was operated using traditional

practices, where engineers manually adjusted
configurations such as partition counts, compute sizes,
and optimization schedules. Although these changes
occasionally improved performance, results were
inconsistent and required repeated tuning. An LLM-
based assistant was then introduced to recommend
optimization steps using heuristics and language
reasoning. While this approach reduced some manual
effort, it occasionally suggested actions that increased
compute cost or caused downstream delays due to a lack

of predictive validation.

The proposed world-model-based framework was
subsequently deployed. Historical telemetry, including

runtime metrics, storage characteristics, and action logs,
was collected over several weeks to construct the digital
twin and train the predictive transition models. Once
trained, the agent began evaluating candidate actions
through simulation before execution. For example,
instead of directly increasing compute resources to reduce
latency, the system first predicted the expected runtime
and cost impact of multiple alternatives, including
repartitioning and layout optimization. The action with
the best predicted trade-off was then selected.

Following deployment, the pipelines exhibited more
stable and consistent performance. Execution times
decreased due to improved workload distribution, while
unnecessary resource scaling was avoided, resulting in
lower infrastructure costs. Furthermore, the number of
failures caused by configuration changes was
significantly reduced because risky actions were filtered
out during the simulation phase. Engineers reported
reduced manual intervention and greater confidence in
automated decisions due to the transparency provided by
predicted outcomes.

This case study demonstrates that integrating predictive
world models with data engineering observability enables
practical, safe, and scalable automation. The results
confirm that consequence-aware agents can effectively
manage real-world data platforms and deliver measurable
operational benefits beyond heuristic or language-only
approaches.

Author Biography / About the Author

Brahma Reddy Katam is

professional, researcher, and technology enthusiast with

a data engineering

extensive experience in building scalable data platforms,
analytics and Al-driven solutions. He
specializes cloud-based data
architectures, and the practical application of artificial
intelligence to solve real-world problems.

systems,
in data engineering,

Brahma has worked across multiple domains, including
enterprise metadata management, data
pipelines, and Al-powered data products. His work

analytics,

emphasizes simplifying complex data systems and
making advanced technologies accessible through
intuitive design and strong engineering foundations. He
has hands-on experience with modern data platforms
such as Databricks, Delta Lake, SQL-based analytics,
PySpark, and cloud-native architectures.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 14

https://ijsrem.com/

.;!-’ ‘3;\‘
o A
@.’fy International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 10 Issue: 01 | Jan - 2026

SJIF Rating: 8.586

ISSN: 2582-3930

He is also an active contributor to the data engineering
and analytics community through blogs, research papers,
proof-of-concept applications, and learning platforms.
His research interests include embedding-based Al

systems, agentic Al for analytics, lakehouse
architectures, and next-generation data discovery
mechanisms.

14. References

1. [1] T. Brown et al., “Language Models are Few-
Shot Learners,” Advances in Neural Information
Processing Systems (NeurIPS), 2020.

2. [2] A. Radford et al.,, “Learning Transferable

Models Language
Supervision,” Proceedings of the International
Conference on Machine Learning (ICML), 2021.

3. [3] S. Reed, Y. Wu, A. Parikh et al., “A
Generalist Agent,” Transactions on Machine
Learning Research (TMLR), 2022.

4. [4] D. Silver et al., “Mastering the Game of Go
with Deep Neural Networks and Tree Search,”
Nature, vol. 529, pp. 484-489, 2016.

5. [5] D. Ha and J. Schmidhuber, “World Models,”
Advances in Neural Information Processing
Systems (NeurIPS), 2018.

6. [6] R. Sutton and A. Barto, Reinforcement
Learning: An Introduction, 2nd ed., MIT Press,
2018.

7. [7] V. Mnih et al.,
through Deep Reinforcement Learning,” Nature,
vol. 518, pp. 529-533, 2015.

8. [8] M. Grieves and J. Vickers, “Digital Twin:
Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems,” in

Visual From Natural

“Human-Level Control

Transdisciplinary Perspectives on Complex
Systems, Springer, 2017.

9. [9] G. Candido, R. Kazman, and H. Erdogmus,
“DevOps and DataOps: A Systematic Mapping
Study,” Journal of Systems and Software, vol.
182, 2021.

10. [10] M. Zaharia et al., “Delta Lake: High-
Performance ACID Table Storage over Cloud
Object Stores,” Proceedings of the VLDB
Endowment (PVLDB), 2020.

11. [11] A. Armbrust et al., “Lakehouse: A New
Generation of Open Platforms that Unify Data
Warehousing and Advanced Analytics,” CIDR
Conference, 2021.

12.

13.

14.

15.

16.

17.

[12] B. Burns and D. Oppenheimer, “Design
Patterns for Container-Based Distributed
Systems,” USENIX ;login:, vol. 43, no. 3, 2018.
[13] J. Kreps, “Questioning the Lambda
Architecture,” Confluent Engineering Blog,
2014.

[14] G. Tesauro et al., “Managing Complexity in
Large-Scale IT Systems Using Machine
Learning,” IBM Journal of Research and
Development, vol. 59, no. 2/3, 2015.

[15] A. Verma, L. Cherkasova, and R. Campbell,
“ARIA: Automatic Resource Inference and
Allocation for MapReduce Environments,” 4CM
International ~ Conference on Autonomic
Computing (ICAC), 2011.

[16] J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,”
Communications of the ACM, vol. 51, no. 1,
2008.

[17] C. Sutton et al., “Observability Engineering:
Achieving Production Excellence through
Structured Telemetry,” O’Reilly Media, 2022.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56229 |

Page 15

https://ijsrem.com/

