
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 1

Database Query and Reasoning
1Gowtham Naidu Y,2Sasivaran Reddy K,3Fairoz Khan P, 4Abhinay K,5Kayal Vizhi

1,2,3,4Student Dept. Of CS&E, 5Assistant professor Dept. Of CS&E

1,2,3,4Presidency University, bangalore-560064
1yalamandalagowthamnaidu@gmail.com,2sasivaranreddy@gmail.com,

3fairoz9603@gmail.com,4abhikoditala@gmail.com,5kayalvizhi.v@presidencyuniversity.in

Abstract--The rapid evolution of data-driven decision-making

has highlighted the need for systems capable of seamlessly

bridging the gap between natural human language and structured

query languages like SQL. Traditional database systems often

demand a technical understanding of SQL syntax and database

schemas, creating significant barriers for non-technical users. To

address this challenge, the "Database Query and Reasoning"

project introduces an intelligent system designed to interpret

natural language inputs, convert them into accurate SQL queries,

and deliver both query results and explanatory reasoning for the

outputs. This approach empowers users, regardless of technical

expertise, to interact with complex databases effectively and

derive actionable insights.

Keywords: Natural Language Processing (NLP),AI Model

Integration, CSV-to-Database Conversion, Reasoning

Module,Query Result Visualization

I. INTRODUCTION

The exponential growth of financial data has created both

opportunities and challenges for businesses, investors, and

individuals. Making informed financial decisions requires the

ability to query and analyze vast amounts of data quickly and

effectively. However, many existing systems require users to

have technical expertise in SQL or other query languages,

making them inaccessible to non-technical users.

This project, Database Query and Reasoning for Financial QA,

bridges the gap between technical financial data systems and

user-friendly interfaces. It allows users to ask financial questions

in natural language, which the system processes to generate SQL

queries, retrieve relevant data, and apply reasoning techniques to

provide insights.

The project's scope includes developing an intelligent,

automated system that supports querying, reasoning, and

decision-making by leveraging modern technologies such as

Natural Language Processing (NLP), machine learning, and

database systems.

The reasoning module is a pivotal component of the "Database

Query and Reasoning" system, designed to enhance the

transparency and user-friendliness of the query generation

process. Its primary function is to explain the transformation of

a user's natural language query into a corresponding SQL

statement and to provide insights into the results retrieved from

the database. This module leverages the generative capabilities

of Google’s Gemini AI model to generate comprehensive,

human-readable explanations. The reasoning process begins

with the system analyzing the input question, the generated SQL

query, and the query results. A carefully engineered prompt is

then used to guide the AI model in creating a detailed

explanation, covering how the input question was understood,

why specific SQL elements were included, and how the returned

data aligns with the query. This not only builds user confidence

in the system’s outputs but also serves as an educational tool,

helping users understand the intricacies of SQL and database

operations.

 II. RELATED WORK

Natural Language Interfaces for Databases (NLIDB)

Natural language interfaces to databases (NLIDBs) have been a

focus of research for decades, aiming to bridge the gap between

non-technical users and database systems. Early works like

Androutsopoulos et al. (1995) explored rule-based systems for

translating English queries into SQL. Recent advancements

leverage machine learning and transformer models for enhanced

accuracy and context understanding.

SQL Query Generation Using Neural Models

Recent research emphasizes using neural networks and

transformer-based architectures for SQL query generation.

Works like Dong and Lapata (2018) introduced Seq2SQL, which

translates natural language questions to SQL, demonstrating

significant improvement in accuracy. Similarly, Finegan-Dollak

et al. (2018) evaluated various models for SQL synthesis,

highlighting the challenges of generalizing across diverse

datasets.

Explainable AI in Query Systems

The demand for transparency in AI-driven systems has given rise

to research on explainable AI (XAI). Ribeiro et al. (2016)

introduced frameworks like LIME for explaining black-box

models, which are now being adapted to provide reasoning for

query results in NLIDB systems. Such reasoning enhances user

trust and system adoption.

Schema-Aware SQL Generation

Works like Yu et al. (2018) on Spider, a large-scale complex and

http://www.ijsrem.com/
mailto:1yalamandalagowthamnaidu@gmail.com,3chandraprajwal0209@gmail.com
mailto:1yalamandalagowthamnaidu@gmail.com,3chandraprajwal0209@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 2

cross-domain dataset for text-to-SQL systems, focus on

leveraging database schemas during query generation. Schema

awareness improves the relevance and accuracy of generated

queries, which is crucial for real-world applications.

AI-Driven Query Optimization

Combining natural language processing with database

optimization techniques has shown promise in recent studies.

Researchers such as Krishnan et al. (2020) introduced AI models

that not only generate SQL queries but also optimize them for

efficient execution in large-scale databases.

 III. PROPOSED SYSTEM

The methodology for the "Database Query and Reasoning"

system bridges the gap between natural language queries and

structured SQL statements through a structured approach that

integrates advanced natural language processing (NLP),

database management, and reasoning capabilities. This multi-

stage methodology ensures a comprehensive solution for

intuitive and accurate database querying.

Data Ingestion and Preprocessing:

The system begins by allowing users to upload datasets in CSV

format, ensuring flexibility in handling diverse data types and

structures. The datasets are parsed using Python’s Pandas library

for efficient handling and preprocessing before being stored in

an SQLite database. The schema, including table names, column

names, and data types, is extracted using SQLite’s PRAGMA

commands and presented to the user for clarity. This schema

awareness establishes a foundation for accurate SQL query

generation.

Natural Language Query Input:

The user interface, developed using Streamlit, enables users to

input queries in natural language, promoting accessibility for

non-technical users. The input is processed by a prompt-

engineering module that combines the schema, user query, and

specific SQL generation guidelines into a structured instruction

set. This ensures that the generated SQL queries are syntactically

correct, semantically meaningful, and tailored to the dataset

structure.

Query Generation Using Gemini AI:

The system utilizes Google’s Gemini AI model to convert

natural language inputs into SQL queries. Prompt engineering

integrates schema details, column types, and the user query to

ensure alignment with the database structure. The generated

SQL queries undergo optimization to validate syntax, ensure

logical consistency, and enhance performance.

Query Execution:

Validated SQL queries are executed on the SQLite database

using Python’s sqlite3 library. For SELECT queries, results are

formatted into a tabular structure using Pandas and displayed to

the user. For other query types, feedback is provided on the

success of the operation.

Reasoning and Explanation Module:

A key differentiator of the system is its reasoning module, which

explains the query and its results. Using a reasoning-specific

prompt with the Gemini AI model, the system provides

interpretations of the user query, the structure of the SQL query,

and an analysis of the results. This enhances transparency and

usability by helping users understand both the technical and

logical aspects of the process.

Error Handling and Validation:

Robust error-handling mechanisms address issues such as

invalid SQL generation, schema mismatches, and ambiguous

queries. The system provides feedback for non-existent columns,

requests clarification for ambiguous inputs, and ensures schema

compatibility by validating user-uploaded datasets.

User Interface and Experience:

The methodology is encapsulated in a user-friendly web

application built with Streamlit. Key features include a file

uploader for dataset integration, schema visualization for

transparency, and input fields for natural language queries. Real-

time query generation, execution, and reasoning results enhance

the user experience, catering to both non-technical and advanced

users.

Testing and Evaluation:

Comprehensive testing ensures accuracy, scalability, and

robustness. Test cases include diverse query types, dataset

structures, and ambiguous inputs. User feedback informs

iterative improvements in prompt engineering, error handling,

and reasoning explanations.

By implementing this methodology, the system bridges the gap

between non-technical users and complex databases, offering

fast, accurate, and accessible data-driven insights to support

decision-making processes.

Figure 1: Class Diagram of the proposed methodology

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 3

 IV. Model Architecture

The architecture of the proposed system for "Database Query

and Reasoning" is designed to seamlessly convert natural

language inputs into SQL queries, execute those queries on a

database, and provide detailed reasoning about the results. The

system consists of five main components: the User Interface,

Data Handling Module, Query Processor, AI Model, and

Reasoning Module, each interacting cohesively to deliver a

robust and user-friendly experience.

User Interface (UI)

The User Interface (UI) is the primary interaction layer of the

system, designed to simplify the interaction between users and

the underlying database architecture. It offers multiple

functionalities, including a file uploader for CSV datasets, a text

input field for natural language queries, and displays for query

results and reasoning explanations. The UI ensures that users,

regardless of their technical expertise, can easily upload datasets,

understand database schemas, and interact with the system

intuitively. It provides real-time feedback, such as confirming

successful data uploads or notifying users about errors in query

execution. Furthermore, the interface integrates with backend

modules to retrieve database schema details, results, and

reasoning explanations, presenting them in a clean and organized

layout. The design focuses on user accessibility, with features

like clear prompts, error messages, and responsive visuals,

ensuring a smooth and efficient experience.

Data Handling Module

The Data Handling Module is responsible for managing and

structuring the user-uploaded datasets. When a user uploads a

CSV file, this module converts it into a SQLite database table

while preserving data integrity and structure. Additionally, it

extracts the schema of the database, detailing table names,

column names, and data types. This schema is crucial for the

subsequent SQL query generation process, as it guides the AI

model in aligning user queries with the database’s structure. The

module also performs data validation, ensuring that the uploaded

file is in the correct format and compatible with database

operations. By centralizing all data management activities, the

Data Handling Module serves as a bridge between raw user input

and the database-ready structure, enabling smooth interaction

with other system components.

Query Processor

The Query Processor acts as the central computational hub,

orchestrating the conversion of user inputs into actionable SQL

commands and retrieving the corresponding results. Upon

receiving a natural language query, the processor first identifies

the relevant schema information from the database and then

forwards the input to the AI model for SQL generation. After

obtaining the SQL query, the processor executes it on the SQLite

database to fetch the results. It handles both read operations, such

as SELECT queries, and write operations like INSERT or

UPDATE commands, depending on the user’s input. Error

handling is a critical feature of this component—if the generated

SQL query fails to execute, the Query Processor diagnoses the

issue and provides feedback to the user. This module also

formats query results into a user-friendly structure, making them

ready for display on the UI.

AI Model

The AI Model is the system's brain, transforming user-provided

natural language questions into precise SQL queries. Leveraging

state-of-the-art NLP techniques, the AI Model integrates with

advanced models like Google Gemini, specifically trained for

text-to-SQL tasks. The model uses schema-aware processing,

which means it takes database schema details as additional input

to ensure that the generated SQL aligns with the database

structure. Built on a transformer-based architecture, the AI

Model excels at understanding the semantics of user queries,

resolving ambiguities, and constructing syntactically correct

SQL commands. Its training involves vast datasets of natural

language questions paired with corresponding SQL queries,

making it robust and reliable across varied user inputs.

Additionally, the model incorporates context awareness,

ensuring it can handle complex queries involving nested

conditions, joins, and aggregate functions.

Reasoning Module

The Reasoning Module enhances the system’s transparency by

explaining the SQL generation and query execution process. It

receives inputs such as the user’s natural language query, the

generated SQL command, and the query results. Based on this

information, the module generates detailed explanations about

how the SQL query was derived, the rationale behind its

structure, and how the results align with the user’s intent. This

module utilizes AI-driven text generation techniques to produce

human-readable reasoning. It also highlights key insights, such

as identifying relevant columns, explaining filters applied, and

clarifying why certain results were fetched or excluded. By

providing this reasoning, the module fosters user trust and helps

non-technical users better understand the system's operations.

Additionally, it acts as a feedback loop, helping users refine their

queries for more precise results.

Integration of Components

The seamless integration of these modules ensures that the

system functions as a cohesive unit. The User Interface collects

and forwards user input to the Query Processor, which interacts

with both the Data Handling Module and the AI Model. The AI

Model generates SQL queries, which the Query Processor

executes on the SQLite database. The results are then passed to

the Reasoning Module for explanation before being displayed

back to the user on the UI. Each module is designed to function

independently yet collaboratively, ensuring scalability and

robustness. Together, these components form a well-structured

architecture that efficiently handles the complete workflow,

from natural language query input to detailed result reasoning.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 4

Figure 2: Empower your data exploration with sql using Gemini,

designed by Muhammad Waqas Ali

 V. MATHEMATICAL MODEL

The mathematical model for the proposed system revolves

around three core components: natural language understanding,

SQL query generation, and reasoning explanation. The model

combines concepts from machine learning, natural language

processing (NLP), and database management to ensure accurate

translation of user input into actionable database queries. Below,

we break down the mathematical underpinnings of each stage in

the process.

Natural Language Understanding

The first step in the system involves understanding the natural

language query posed by the user. This task can be modeled as a

sequence-to-sequence transformation problem. Given a user

query Q, the objective is to map it into an intermediate

representation III, which captures its intent.

The NLP model, such as a transformer-based architecture,

processes the input query using tokenization and embedding

techniques. Let Q=[q1,q2,...,qn] , where qi represents the tokens

in the query. The token embeddings E(qi) are passed through

multiple transformer layers, each represented mathematically as:

H(l)=TransformerLayer(H(l−1)),

where H(0)=E(Q) and H(l) denotes the hidden state at layer l.

Attention mechanisms are applied in each layer:

Attention(Q,K,V)=softmax(QKT/sqrt(dk))V,

where Q,K,V are the query, key, and value matrices derived from

the input embeddings, and dk is the dimensionality of the key

vectors. The final output H(L) represents the intent of the query

in a vectorized form.

SQL Query Generation

The next step involves generating an SQL query S based on the

extracted intent I. This process is modeled as a conditional

sequence generation task, where the likelihood of generating an

SQL query S=[s1,s2,...,sm] is maximized given the input query Q:

P(S∣Q)=∏i=1mP(si∣s<i,Q),

where s<i represents the sequence of SQL tokens generated up

to the i-th step.

The decoding process employs beam search to ensure the

generated query is both syntactically and semantically valid:

S^=arg maxs P(S∣Q).

The model also incorporates schema-awareness by integrating

database schema information D into the decoding process. This

ensures that column names, table names, and data types are

correctly referenced in the SQL query.

Reasoning Explanation

The reasoning module generates explanations for the generated

query and its results. This is modeled as a text generation task,

where the goal is to produce a reasoning response RRR

conditioned on the query QQQ, the SQL SSS, and the results Rs:

P(R∣Q,S,Rs)=∏j=1
k P(rj∣r<j,Q,S,Rs),

where r<j represents the reasoning tokens generated up to step j.

The reasoning model leverages the embeddings of Q, S, and Rs

to produce a coherent and detailed explanation.

Database Query Execution

Once the SQL query SSS is generated, it is executed on the

database. The database schema DDD is defined as a set of tables

T={T1,T2,...,Tp}, where each table Ti contains columns

Ci={Ci1,Ci2,...,Cin}. The execution of SSS retrieves results Rs

based on the relational algebra operations:

Selection (σ): Filters rows based on conditions.

Projection (π): Selects specific columns.

Join (⋈): Combines rows from two or more tables.

The results Rs are returned as a structured dataset.

Optimization and Loss Function

The training of the NLP model for query generation involves

optimizing a loss function, typically the negative log-likelihood

of the target SQL query:

L=−∑i=1
m log P(si∣s<i,Q).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 5

For reasoning generation, a similar loss function is employed to

ensure coherent explanations:

Lreasoning=−∑j=1
k log P(rj∣r<j,Q,S,Rs).

Evaluation Metrics

The model's performance is evaluated using metrics such as:

SQL Accuracy: Measures the exact match between the

generated SQL and the ground truth.

Execution Accuracy: Assesses whether the generated SQL

produces the correct results when executed.

BLEU/ROUGE Scores: Evaluates the fluency and relevance of

the reasoning explanations.

In conclusion, the mathematical model integrates sequence-to-

sequence learning, schema-aware query generation, and

reasoning mechanisms to deliver a comprehensive system for

natural language-to-database interaction.

 VI. Results and Analysis:

Figure 3.1: output

Figure 3.2: output

The result analysis demonstrates that the proposed ITTA system

delivers high-quality translations across diverse languages and

domains. The instruction-tuning methodology significantly

enhances the model's performance by improving contextual

understanding and adaptability. While there are areas for further

optimization, such as handling rare linguistic structures and

improving efficiency for low-resource languages, the system

offers a robust foundation for advanced natural language

translation tasks. Future enhancements could focus on refining

the feedback loop and incorporating additional datasets to

expand language coverage.

 VII. CHALLENGES

Developing a robust system for converting natural language

queries into SQL queries and providing reasoning for the results

involved several challenges across different stages of the project.

These challenges were technical, conceptual, and operational in

nature, and addressing them required a combination of

innovative approaches and careful design choices. Below, the

key challenges faced during the project are outlined.

1. Natural Language Understanding

One of the primary challenges was accurately interpreting the

user's natural language input. Natural language is inherently

ambiguous, with users often posing queries in a variety of

formats, contexts, and levels of detail. This ambiguity posed

challenges in: Synonym Recognition ,Users might use synonyms

or domain-specific terminology not explicitly mapped to the

database schema. Grammatical Errors, Queries with typos or

improper grammar needed to be correctly interpreted without

losing context. Context Understanding, Multi-turn conversations

or follow-up questions lacked explicit references, requiring the

model to infer missing context. Overcoming these challenges

necessitated the use of advanced language models capable of

context-aware understanding and a preprocessing pipeline to

normalize inputs.

2. Schema Awareness and SQL Mapping

Mapping natural language inputs to SQL queries posed

significant difficulties due to the following reasons: Database

Schema Complexity, The system had to dynamically adapt to

diverse database schemas, including different table structures,

column names, and data types. Query Completeness, Ensuring

the generated SQL queries covered all aspects of the user query

was challenging, especially for complex queries involving joins,

nested queries, and aggregate functions. Error Propagation,

Minor misinterpretations in the natural language input often led

to invalid SQL queries or queries retrieving incomplete results.

The implementation of schema-aware mechanisms and careful

validation of SQL queries helped mitigate these issues.

3. Reasoning and Explanation

Providing reasoning for both the generated SQL query and the

query results added an additional layer of complexity Alignment

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 6

of Reasoning with Query, Ensuring that the reasoning accurately

reflected the logic behind the generated SQL query was difficult,

particularly for advanced queries with multiple conditions or

subqueries. Clarity and Coherence,Generating explanations that

were both technically accurate and easy for non-technical users

to understand was a significant challenge. Handling Empty

Results, When the query returned no results, the system needed

to generate a meaningful explanation that accounted for the

absence of data without confusing the user. Developing a

reasoning module with a detailed understanding of SQL

operations and user intent required a fine balance between

technical accuracy and user comprehension.

4. Integration of Machine Learning Models

The integration of large language models (LLMs) into the system

for both query generation and reasoning presented its own

challenges Performance and Latency, LLMs are computationally

intensive, and ensuring real-time responses without significant

delays required optimization of the pipeline. Model

Adaptability, Pretrained models were not always perfectly suited

for specific database schemas or user intents, necessitating fine-

tuning or prompt engineering. Error Handling, In cases where

the model generated incorrect or incomplete queries, detecting

and correcting these errors programmatically was a major

challenge. To address these issues, the system incorporated

fallback mechanisms and iterative query refinement techniques.

5. Dataset and Training Challenges

Training the system to handle diverse natural language queries

and database schemas required a comprehensive dataset. Data

Collection, Curating a dataset that covered a wide range of query

types, schemas, and natural language variations was time-

consuming.Generalization, Ensuring the model generalized well

across unseen schemas and queries was difficult, as overfitting

to specific datasets could limit performance. Evaluation Metrics,

Defining meaningful metrics to evaluate the accuracy of

generated SQL queries and the quality of reasoning explanations

posed a significant challenge. These issues were addressed

through data augmentation techniques, schema-agnostic

training, and careful evaluation metric design.

6. User Experience and Interface Design

Designing a user-friendly interface for the system required

overcoming several hurdles.Simplified Interaction, Balancing

simplicity with functionality to cater to both technical and non-

technical users was challenging. Error Feedback, Providing

meaningful feedback to users in case of invalid inputs or errors

required robust error-handling mechanisms. Visualization of

Results, Presenting complex query results in an intuitive and

visually appealing manner posed additional design challenges.

Iterative testing and feedback from users helped refine the

interface to address these concerns.

7. System Scalability and Maintenance

As the system was designed to handle various datasets and

schema structures, scalability and maintainability were critical

concerns: Dynamic Schema Adaptation: The system needed to

adapt to different database schemas dynamically without

requiring manual intervention. Database Size: Handling large

databases with millions of records without performance

degradation was challenging. Future Model Updates: Integrating

updates to the underlying LLMs or database technologies

without disrupting the existing workflow required modular

design. Addressing these challenges involved designing a

flexible architecture with modular components and efficient

database query mechanisms.

 VIII. CONCLUSION

In this project, we successfully developed a robust system that

bridges the gap between natural language processing and

database querying by leveraging advanced AI models and SQL

integration. The system empowers users to interact with complex

databases through simple, intuitive natural language inputs,

automating the generation of SQL queries and providing detailed

reasoning for the results. This combination of query generation,

execution, and interpretability enhances accessibility for non-

technical users while maintaining technical rigor for advanced

applications. Throughout the development process, several

challenges were addressed, including natural language

ambiguity, schema awareness, and integration of machine

learning models. The proposed architecture, grounded in

modular design and advanced reasoning capabilities, ensures

scalability, adaptability, and security, making the system suitable

for diverse datasets and use cases. The outcomes of this project

demonstrate its potential to revolutionize data interaction by

simplifying query processes, reducing dependency on technical

expertise, and enabling informed decision-making. This work

lays the foundation for further exploration in intelligent query

systems, particularly in enhancing reasoning capabilities and

expanding domain adaptability.

 IX. REFERENCES

[1] Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995).

"Natural Language Interfaces to Databases – An Introduction."

Journal of Natural Language Engineering.

[2] Dong, L., & Lapata, M. (2018). "Coarse-to-Fine Decoding

for Neural Semantic Parsing." Proceedings of the Association for

Computational Linguistics (ACL).

[3]Finegan-Dollak, C., et al. (2018). "Improving Text-to-SQL

Evaluation Methodology." Proceedings of the Annual Meeting

of the Association for Computational Linguistics (ACL).

[4]Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why

Should I Trust You? Explaining the Predictions of Any

Classifier." Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

©2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40897 | Page 7

[5] Yu, T., et al. (2018). "Spider: A Large-Scale Human-Labeled

Dataset for Complex and Cross-Domain Semantic Parsing and

Text-to-SQL Task." Proceedings of the Empirical Methods in

Natural Language Processing (EMNLP).

[6] Sebastian Ruder, “An Overview of Multi-Task Learning in

Deep Neural Networks,” arXiv preprint arXiv:1706.05098, 2017.

[7] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the

Knowledge in a Neural Network,” Advances in Neural

Information Processing Systems, 2015.

[8] Priyanka Agrawal, Khyati Mahajan, and Vaibhav Kumar,

“Eliciting Translation Ability of Large Language Models Using

Multilingual Fine-Tuning,” Transactions of the Association for

Computational Linguistics, 2023.

[9] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,

Omer Levy, and Samuel Bowman, “GLUE: A Multi-Task

Benchmark and Analysis Platform for Natural Language

Understanding,” Proceedings of ICLR 2019, 2019.

[10] Goyal, Angela Fan, and Philipp Koehn, “FLORES-101:

Evaluating Multilingual Translation Ability,” Proceedings of

EMNLP 2021, 2021.

http://www.ijsrem.com/

