
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 01 | Jan - 2025                               SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                         
 

©2025, IJSREM | www.ijsrem.com                                 DOI: 10.55041/IJSREM40897                                                 |        Page 1 
 

Database Query and Reasoning 
1Gowtham Naidu Y,2Sasivaran Reddy K,3Fairoz Khan P, 4Abhinay K,5Kayal Vizhi 

1,2,3,4Student Dept. Of CS&E, 5Assistant professor Dept. Of  CS&E 

1,2,3,4Presidency University, bangalore-560064 
1yalamandalagowthamnaidu@gmail.com,2sasivaranreddy@gmail.com, 

3fairoz9603@gmail.com,4abhikoditala@gmail.com,5kayalvizhi.v@presidencyuniversity.in 

 

 

Abstract--The rapid evolution of data-driven decision-making 

has highlighted the need for systems capable of seamlessly 

bridging the gap between natural human language and structured 

query languages like SQL. Traditional database systems often 

demand a technical understanding of SQL syntax and database 

schemas, creating significant barriers for non-technical users. To 

address this challenge, the "Database Query and Reasoning" 

project introduces an intelligent system designed to interpret 

natural language inputs, convert them into accurate SQL queries, 

and deliver both query results and explanatory reasoning for the 

outputs. This approach empowers users, regardless of technical 

expertise, to interact with complex databases effectively and 

derive actionable insights. 
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I. INTRODUCTION 

The exponential growth of financial data has created both 

opportunities and challenges for businesses, investors, and 

individuals. Making informed financial decisions requires the 

ability to query and analyze vast amounts of data quickly and 

effectively. However, many existing systems require users to 

have technical expertise in SQL or other query languages, 

making them inaccessible to non-technical users. 

This project, Database Query and Reasoning for Financial QA, 

bridges the gap between technical financial data systems and 

user-friendly interfaces. It allows users to ask financial questions 

in natural language, which the system processes to generate SQL 

queries, retrieve relevant data, and apply reasoning techniques to 

provide insights. 

The project's scope includes developing an intelligent, 

automated system that supports querying, reasoning, and 

decision-making by leveraging modern technologies such as 

Natural Language Processing (NLP), machine learning, and 

database systems. 

 

The reasoning module is a pivotal component of the "Database 

Query and Reasoning" system, designed to enhance the 

transparency and user-friendliness of the query generation 

process. Its primary function is to explain the transformation of 

a user's natural language query into a corresponding SQL 

statement and to provide insights into the results retrieved from 

the database. This module leverages the generative capabilities 

of Google’s Gemini AI model to generate comprehensive, 

human-readable explanations. The reasoning process begins 

with the system analyzing the input question, the generated SQL 

query, and the query results. A carefully engineered prompt is 

then used to guide the AI model in creating a detailed 

explanation, covering how the input question was understood, 

why specific SQL elements were included, and how the returned 

data aligns with the query. This not only builds user confidence 

in the system’s outputs but also serves as an educational tool, 

helping users understand the intricacies of SQL and database 

operations. 

                           II. RELATED WORK 

Natural Language Interfaces for Databases (NLIDB) 

Natural language interfaces to databases (NLIDBs) have been a 

focus of research for decades, aiming to bridge the gap between 

non-technical users and database systems. Early works like 

Androutsopoulos et al. (1995) explored rule-based systems for 

translating English queries into SQL. Recent advancements 

leverage machine learning and transformer models for enhanced 

accuracy and context understanding. 

SQL Query Generation Using Neural Models 

Recent research emphasizes using neural networks and 

transformer-based architectures for SQL query generation. 

Works like Dong and Lapata (2018) introduced Seq2SQL, which 

translates natural language questions to SQL, demonstrating 

significant improvement in accuracy. Similarly, Finegan-Dollak 

et al. (2018) evaluated various models for SQL synthesis, 

highlighting the challenges of generalizing across diverse 

datasets. 

Explainable AI in Query Systems 

The demand for transparency in AI-driven systems has given rise 

to research on explainable AI (XAI). Ribeiro et al. (2016) 

introduced frameworks like LIME for explaining black-box 

models, which are now being adapted to provide reasoning for 

query results in NLIDB systems. Such reasoning enhances user 

trust and system adoption. 

Schema-Aware SQL Generation 

Works like Yu et al. (2018) on Spider, a large-scale complex and 
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cross-domain dataset for text-to-SQL systems, focus on 

leveraging database schemas during query generation. Schema 

awareness improves the relevance and accuracy of generated 

queries, which is crucial for real-world applications. 

AI-Driven Query Optimization 

Combining natural language processing with database 

optimization techniques has shown promise in recent studies. 

Researchers such as Krishnan et al. (2020) introduced AI models 

that not only generate SQL queries but also optimize them for 

efficient execution in large-scale databases. 

                           III. PROPOSED SYSTEM 

The methodology for the "Database Query and Reasoning" 

system bridges the gap between natural language queries and 

structured SQL statements through a structured approach that 

integrates advanced natural language processing (NLP), 

database management, and reasoning capabilities. This multi-

stage methodology ensures a comprehensive solution for 

intuitive and accurate database querying. 

Data Ingestion and Preprocessing: 

The system begins by allowing users to upload datasets in CSV 

format, ensuring flexibility in handling diverse data types and 

structures. The datasets are parsed using Python’s Pandas library 

for efficient handling and preprocessing before being stored in 

an SQLite database. The schema, including table names, column 

names, and data types, is extracted using SQLite’s PRAGMA 

commands and presented to the user for clarity. This schema 

awareness establishes a foundation for accurate SQL query 

generation. 

Natural Language Query Input: 

The user interface, developed using Streamlit, enables users to 

input queries in natural language, promoting accessibility for 

non-technical users. The input is processed by a prompt-

engineering module that combines the schema, user query, and 

specific SQL generation guidelines into a structured instruction 

set. This ensures that the generated SQL queries are syntactically 

correct, semantically meaningful, and tailored to the dataset 

structure. 

Query Generation Using Gemini AI: 

The system utilizes Google’s Gemini AI model to convert 

natural language inputs into SQL queries. Prompt engineering 

integrates schema details, column types, and the user query to 

ensure alignment with the database structure. The generated 

SQL queries undergo optimization to validate syntax, ensure 

logical consistency, and enhance performance. 

Query Execution: 

Validated SQL queries are executed on the SQLite database 

using Python’s sqlite3 library. For SELECT queries, results are 

formatted into a tabular structure using Pandas and displayed to 

the user. For other query types, feedback is provided on the 

success of the operation. 

Reasoning and Explanation Module: 

A key differentiator of the system is its reasoning module, which 

explains the query and its results. Using a reasoning-specific 

prompt with the Gemini AI model, the system provides 

interpretations of the user query, the structure of the SQL query, 

and an analysis of the results. This enhances transparency and 

usability by helping users understand both the technical and 

logical aspects of the process. 

Error Handling and Validation: 

Robust error-handling mechanisms address issues such as 

invalid SQL generation, schema mismatches, and ambiguous 

queries. The system provides feedback for non-existent columns, 

requests clarification for ambiguous inputs, and ensures schema 

compatibility by validating user-uploaded datasets. 

User Interface and Experience: 

The methodology is encapsulated in a user-friendly web 

application built with Streamlit. Key features include a file 

uploader for dataset integration, schema visualization for 

transparency, and input fields for natural language queries. Real-

time query generation, execution, and reasoning results enhance 

the user experience, catering to both non-technical and advanced 

users. 

Testing and Evaluation: 

Comprehensive testing ensures accuracy, scalability, and 

robustness. Test cases include diverse query types, dataset 

structures, and ambiguous inputs. User feedback informs 

iterative improvements in prompt engineering, error handling, 

and reasoning explanations. 

By implementing this methodology, the system bridges the gap 

between non-technical users and complex databases, offering 

fast, accurate, and accessible data-driven insights to support 

decision-making processes. 

    

   
Figure 1: Class Diagram of the proposed methodology 
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             IV. Model Architecture    

The architecture of the proposed system for "Database Query 

and Reasoning" is designed to seamlessly convert natural 

language inputs into SQL queries, execute those queries on a 

database, and provide detailed reasoning about the results. The 

system consists of five main components: the User Interface, 

Data Handling Module, Query Processor, AI Model, and 

Reasoning Module, each interacting cohesively to deliver a 

robust and user-friendly experience. 

User Interface (UI) 

The User Interface (UI) is the primary interaction layer of the 

system, designed to simplify the interaction between users and 

the underlying database architecture. It offers multiple 

functionalities, including a file uploader for CSV datasets, a text 

input field for natural language queries, and displays for query 

results and reasoning explanations. The UI ensures that users, 

regardless of their technical expertise, can easily upload datasets, 

understand database schemas, and interact with the system 

intuitively. It provides real-time feedback, such as confirming 

successful data uploads or notifying users about errors in query 

execution. Furthermore, the interface integrates with backend 

modules to retrieve database schema details, results, and 

reasoning explanations, presenting them in a clean and organized 

layout. The design focuses on user accessibility, with features 

like clear prompts, error messages, and responsive visuals, 

ensuring a smooth and efficient experience. 

Data Handling Module 

The Data Handling Module is responsible for managing and 

structuring the user-uploaded datasets. When a user uploads a 

CSV file, this module converts it into a SQLite database table 

while preserving data integrity and structure. Additionally, it 

extracts the schema of the database, detailing table names, 

column names, and data types. This schema is crucial for the 

subsequent SQL query generation process, as it guides the AI 

model in aligning user queries with the database’s structure. The 

module also performs data validation, ensuring that the uploaded 

file is in the correct format and compatible with database 

operations. By centralizing all data management activities, the 

Data Handling Module serves as a bridge between raw user input 

and the database-ready structure, enabling smooth interaction 

with other system components. 

Query Processor 

The Query Processor acts as the central computational hub, 

orchestrating the conversion of user inputs into actionable SQL 

commands and retrieving the corresponding results. Upon 

receiving a natural language query, the processor first identifies 

the relevant schema information from the database and then 

forwards the input to the AI model for SQL generation. After 

obtaining the SQL query, the processor executes it on the SQLite 

database to fetch the results. It handles both read operations, such 

as SELECT queries, and write operations like INSERT or 

UPDATE commands, depending on the user’s input. Error 

handling is a critical feature of this component—if the generated 

SQL query fails to execute, the Query Processor diagnoses the 

issue and provides feedback to the user. This module also 

formats query results into a user-friendly structure, making them 

ready for display on the UI. 

AI Model 

The AI Model is the system's brain, transforming user-provided 

natural language questions into precise SQL queries. Leveraging 

state-of-the-art NLP techniques, the AI Model integrates with 

advanced models like Google Gemini, specifically trained for 

text-to-SQL tasks. The model uses schema-aware processing, 

which means it takes database schema details as additional input 

to ensure that the generated SQL aligns with the database 

structure. Built on a transformer-based architecture, the AI 

Model excels at understanding the semantics of user queries, 

resolving ambiguities, and constructing syntactically correct 

SQL commands. Its training involves vast datasets of natural 

language questions paired with corresponding SQL queries, 

making it robust and reliable across varied user inputs. 

Additionally, the model incorporates context awareness, 

ensuring it can handle complex queries involving nested 

conditions, joins, and aggregate functions. 

 

Reasoning Module 

The Reasoning Module enhances the system’s transparency by 

explaining the SQL generation and query execution process. It 

receives inputs such as the user’s natural language query, the 

generated SQL command, and the query results. Based on this 

information, the module generates detailed explanations about 

how the SQL query was derived, the rationale behind its 

structure, and how the results align with the user’s intent. This 

module utilizes AI-driven text generation techniques to produce 

human-readable reasoning. It also highlights key insights, such 

as identifying relevant columns, explaining filters applied, and 

clarifying why certain results were fetched or excluded. By 

providing this reasoning, the module fosters user trust and helps 

non-technical users better understand the system's operations. 

Additionally, it acts as a feedback loop, helping users refine their 

queries for more precise results. 

Integration of Components 

The seamless integration of these modules ensures that the 

system functions as a cohesive unit. The User Interface collects 

and forwards user input to the Query Processor, which interacts 

with both the Data Handling Module and the AI Model. The AI 

Model generates SQL queries, which the Query Processor 

executes on the SQLite database. The results are then passed to 

the Reasoning Module for explanation before being displayed 

back to the user on the UI. Each module is designed to function 

independently yet collaboratively, ensuring scalability and 

robustness. Together, these components form a well-structured 

architecture that efficiently handles the complete workflow, 

from natural language query input to detailed result reasoning. 
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Figure 2: Empower your data exploration with sql using Gemini, 

designed by Muhammad Waqas Ali 

 

 

                  V. MATHEMATICAL MODEL 

The mathematical model for the proposed system revolves 

around three core components: natural language understanding, 

SQL query generation, and reasoning explanation. The model 

combines concepts from machine learning, natural language 

processing (NLP), and database management to ensure accurate 

translation of user input into actionable database queries. Below, 

we break down the mathematical underpinnings of each stage in 

the process. 

Natural Language Understanding 

The first step in the system involves understanding the natural 

language query posed by the user. This task can be modeled as a 

sequence-to-sequence transformation problem. Given a user 

query Q, the objective is to map it into an intermediate 

representation III, which captures its intent. 

The NLP model, such as a transformer-based architecture, 

processes the input query using tokenization and embedding 

techniques. Let Q=[q1,q2,...,qn] , where qi represents the tokens 

in the query. The token embeddings E(qi) are passed through 

multiple transformer layers, each represented mathematically as: 

H(l)=TransformerLayer(H(l−1)), 

where H(0)=E(Q) and H(l) denotes the hidden state at layer l. 

Attention mechanisms are applied in each layer: 

Attention(Q,K,V)=softmax(QKT/sqrt(dk))V, 

where Q,K,V are the query, key, and value matrices derived from 

the input embeddings, and dk is the dimensionality of the key 

vectors. The final output H(L) represents the intent of the query 

in a vectorized form. 

SQL Query Generation 

The next step involves generating an SQL query S based on the 

extracted intent I. This process is modeled as a conditional 

sequence generation task, where the likelihood of generating an 

SQL query S=[s1,s2,...,sm] is maximized given the input query Q: 

P(S∣Q)=∏i=1mP(si∣s<i,Q), 

where s<i represents the sequence of SQL tokens generated up 

to the i-th step. 

The decoding process employs beam search to ensure the 

generated query is both syntactically and semantically valid: 

S^=arg maxs P(S∣Q). 

The model also incorporates schema-awareness by integrating 

database schema information D into the decoding process. This 

ensures that column names, table names, and data types are 

correctly referenced in the SQL query. 

Reasoning Explanation 

The reasoning module generates explanations for the generated 

query and its results. This is modeled as a text generation task, 

where the goal is to produce a reasoning response RRR 

conditioned on the query QQQ, the SQL SSS, and the results Rs: 

P(R∣Q,S,Rs)=∏j=1
k P(rj∣r<j,Q,S,Rs), 

where r<j represents the reasoning tokens generated up to step j. 

The reasoning model leverages the embeddings of Q, S, and Rs 

to produce a coherent and detailed explanation. 

Database Query Execution 

Once the SQL query SSS is generated, it is executed on the 

database. The database schema DDD is defined as a set of tables 

T={T1,T2,...,Tp}, where each table Ti contains columns 

Ci={Ci1,Ci2,...,Cin}. The execution of SSS retrieves results Rs 

based on the relational algebra operations: 

Selection (σ): Filters rows based on conditions. 

Projection (π): Selects specific columns. 

Join (⋈): Combines rows from two or more tables. 

The results Rs are returned as a structured dataset. 

Optimization and Loss Function 

The training of the NLP model for query generation involves 

optimizing a loss function, typically the negative log-likelihood 

of the target SQL query: 

L=−∑i=1
m log P(si∣s<i,Q). 

http://www.ijsrem.com/
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For reasoning generation, a similar loss function is employed to 

ensure coherent explanations: 

Lreasoning=−∑j=1
k log P(rj∣r<j,Q,S,Rs). 

Evaluation Metrics 

The model's performance is evaluated using metrics such as:  

SQL Accuracy: Measures the exact match between the 

generated SQL and the ground truth. 

Execution Accuracy: Assesses whether the generated SQL 

produces the correct results when executed. 

BLEU/ROUGE Scores: Evaluates the fluency and relevance of 

the reasoning explanations. 

In conclusion, the mathematical model integrates sequence-to-

sequence learning, schema-aware query generation, and 

reasoning mechanisms to deliver a comprehensive system for 

natural language-to-database interaction. 

                    VI. Results and Analysis: 

 

Figure 3.1: output 

 

Figure 3.2: output 

The result analysis demonstrates that the proposed ITTA system 

delivers high-quality translations across diverse languages and 

domains. The instruction-tuning methodology significantly 

enhances the model's performance by improving contextual 

understanding and adaptability. While there are areas for further 

optimization, such as handling rare linguistic structures and 

improving efficiency for low-resource languages, the system 

offers a robust foundation for advanced natural language 

translation tasks. Future enhancements could focus on refining 

the feedback loop and incorporating additional datasets to 

expand language coverage. 

                      VII. CHALLENGES 

Developing a robust system for converting natural language 

queries into SQL queries and providing reasoning for the results 

involved several challenges across different stages of the project. 

These challenges were technical, conceptual, and operational in 

nature, and addressing them required a combination of 

innovative approaches and careful design choices. Below, the 

key challenges faced during the project are outlined. 

1. Natural Language Understanding 

One of the primary challenges was accurately interpreting the 

user's natural language input. Natural language is inherently 

ambiguous, with users often posing queries in a variety of 

formats, contexts, and levels of detail. This ambiguity posed 

challenges in: Synonym Recognition ,Users might use synonyms 

or domain-specific terminology not explicitly mapped to the 

database schema. Grammatical Errors, Queries with typos or 

improper grammar needed to be correctly interpreted without 

losing context. Context Understanding, Multi-turn conversations 

or follow-up questions lacked explicit references, requiring the 

model to infer missing context. Overcoming these challenges 

necessitated the use of advanced language models capable of 

context-aware understanding and a preprocessing pipeline to 

normalize inputs. 

2. Schema Awareness and SQL Mapping 

Mapping natural language inputs to SQL queries posed 

significant difficulties due to the following reasons: Database 

Schema Complexity, The system had to dynamically adapt to 

diverse database schemas, including different table structures, 

column names, and data types. Query Completeness, Ensuring 

the generated SQL queries covered all aspects of the user query 

was challenging, especially for complex queries involving joins, 

nested queries, and aggregate functions. Error Propagation, 

Minor misinterpretations in the natural language input often led 

to invalid SQL queries or queries retrieving incomplete results. 

The implementation of schema-aware mechanisms and careful 

validation of SQL queries helped mitigate these issues. 

3. Reasoning and Explanation 

Providing reasoning for both the generated SQL query and the 

query results added an additional layer of complexity Alignment 

http://www.ijsrem.com/
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of Reasoning with Query, Ensuring that the reasoning accurately 

reflected the logic behind the generated SQL query was difficult, 

particularly for advanced queries with multiple conditions or 

subqueries. Clarity and Coherence,Generating explanations that 

were both technically accurate and easy for non-technical users 

to understand was a significant challenge. Handling Empty 

Results, When the query returned no results, the system needed 

to generate a meaningful explanation that accounted for the 

absence of data without confusing the user. Developing a 

reasoning module with a detailed understanding of SQL 

operations and user intent required a fine balance between 

technical accuracy and user comprehension. 

4. Integration of Machine Learning Models 

The integration of large language models (LLMs) into the system 

for both query generation and reasoning presented its own 

challenges Performance and Latency, LLMs are computationally 

intensive, and ensuring real-time responses without significant 

delays required optimization of the pipeline. Model 

Adaptability, Pretrained models were not always perfectly suited 

for specific database schemas or user intents, necessitating fine-

tuning or prompt engineering. Error Handling, In cases where 

the model generated incorrect or incomplete queries, detecting 

and correcting these errors programmatically was a major 

challenge. To address these issues, the system incorporated 

fallback mechanisms and iterative query refinement techniques. 

5. Dataset and Training Challenges 

Training the system to handle diverse natural language queries 

and database schemas required a comprehensive dataset. Data 

Collection, Curating a dataset that covered a wide range of query 

types, schemas, and natural language variations was time-

consuming.Generalization, Ensuring the model generalized well 

across unseen schemas and queries was difficult, as overfitting 

to specific datasets could limit performance. Evaluation Metrics, 

Defining meaningful metrics to evaluate the accuracy of 

generated SQL queries and the quality of reasoning explanations 

posed a significant challenge. These issues were addressed 

through data augmentation techniques, schema-agnostic 

training, and careful evaluation metric design. 

6. User Experience and Interface Design 

Designing a user-friendly interface for the system required 

overcoming several hurdles.Simplified Interaction, Balancing 

simplicity with functionality to cater to both technical and non-

technical users was challenging. Error Feedback, Providing 

meaningful feedback to users in case of invalid inputs or errors 

required robust error-handling mechanisms. Visualization of 

Results, Presenting complex query results in an intuitive and 

visually appealing manner posed additional design challenges. 

Iterative testing and feedback from users helped refine the 

interface to address these concerns. 

 

7. System Scalability and Maintenance 

As the system was designed to handle various datasets and 

schema structures, scalability and maintainability were critical 

concerns: Dynamic Schema Adaptation: The system needed to 

adapt to different database schemas dynamically without 

requiring manual intervention. Database Size: Handling large 

databases with millions of records without performance 

degradation was challenging. Future Model Updates: Integrating 

updates to the underlying LLMs or database technologies 

without disrupting the existing workflow required modular 

design. Addressing these challenges involved designing a 

flexible architecture with modular components and efficient 

database query mechanisms. 

                           VIII. CONCLUSION  

In this project, we successfully developed a robust system that 

bridges the gap between natural language processing and 

database querying by leveraging advanced AI models and SQL 

integration. The system empowers users to interact with complex 

databases through simple, intuitive natural language inputs, 

automating the generation of SQL queries and providing detailed 

reasoning for the results. This combination of query generation, 

execution, and interpretability enhances accessibility for non-

technical users while maintaining technical rigor for advanced 

applications. Throughout the development process, several 

challenges were addressed, including natural language 

ambiguity, schema awareness, and integration of machine 

learning models. The proposed architecture, grounded in 

modular design and advanced reasoning capabilities, ensures 

scalability, adaptability, and security, making the system suitable 

for diverse datasets and use cases. The outcomes of this project 

demonstrate its potential to revolutionize data interaction by 

simplifying query processes, reducing dependency on technical 

expertise, and enabling informed decision-making. This work 

lays the foundation for further exploration in intelligent query 

systems, particularly in enhancing reasoning capabilities and 

expanding domain adaptability. 
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