
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 1

Decentralization Access Control with Anonymous Authentication of Data

Stored Using Game Theory

V.BRINDHAVANM

RIYA RAJ

J.SUHAINA FATHIMA

DHAANISH AHMED COLLEGE OF ENGINEERING

Abstract-The rapid development of the Internet,

cloud storage has penetrated into every aspect of

human society. However, cloud data disclosure

happens more and more frequently, which makes

cloud data security and privacy protection impact

wide adoption of cloud storage. Control cloud data

access based on reputation by introducing a

Reputation Center (RC) was proposed and

demonstrated to secure cloud data effectively in

[9]. But the acceptance of such a system by cloud

users and Cloud Service Providers (CSPs) is

crucial for its practical deployment and final

success.In this paper, we investigate the

acceptance of a cloud data access control system

based on reputation using Game Theory. Due to

the existence of dishonest CSPs, there exists a

social reputation dilemma among CSPs, which

seriously impedes the popularity of cloud

storage.To encourage users to use cloud storage

and suppress collusion between CSPs and data

requesters, a repeated public-goods game is built

up by applying a compensation mechanism to

improve the utilities of cloud users and a

punishment mechanism based on reputation to

incent honest behaviors.

 1.INTRODUCTION

Cloud computing is a technology that uses the

internet and central remote servers to maintain data

and applications. Cloud computing allows consumers

and businesses to use applications without installation

and access their personal files at any computer with

internet access. This technology allows for much

more efficient computing by centralizing storage,

memory, processing and bandwidth. Cloud

computing is a comprehensive solution that delivers

IT as a service. The flexibility of cloud computing is

a function of the allocation of resources on demand.

Before cloud computing, websites and server-based

applications were executed on a specific system.

Cloud computing is broken down into three segments

application, storage and connectivity Cloud

Applications or Software as a Service (SaaS) refers to

software delivered over a browser. SaaS eliminates

the need to install and run applications on the

customer's own computers/servers and simplifies

maintenance, upgrades and support. Examples of

SaaS are Facebook, SalesForce, etc.

 EXISTING SYSTEM

The cloud infrastructures are much more

powerful and reliable than personal computing

devices, but they are still susceptible to internal

threats (e.g., via virtual machine) and external threats

(e.g., via system holes) that can damage data

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 2

integrity, second, for the benefits of possession, there

exist various motivations for cloud service providers

(CSP) to behave unfaithfully toward the cloud users.

Occasionally suffer from the lack of trust on CSP

because the data change may not be timely known by

the cloud users, even if these disputes may result from

the users’ own improper operations. Security audit is

an important solution enabling trace back and

analysis of any activities including data accesses,

security breaches, and application activities. Data

security tracking is crucial for all organizations that

should comply with a wide range of federal

regulations. Compared to the common audit, the audit

services for cloud storages should provide clients

with a more efficient proof for verifying the integrity

of stored data. Unfortunately, the traditional

cryptographic technologies, based on hash functions

and signature schemes, cannot support for data

integrity verificatio

 EXISTING SYSTEM

The cloud infrastructures are much more

powerful and reliable than personal computing

devices, but they are still susceptible to internal

threats (e.g., via virtual machine) and external threats

(e.g., via system holes) that can damage data

integrity, second, for the benefits of possession, there

exist various motivations for cloud service providers

(CSP) to behave unfaithfully toward the cloud

users.Occasionally suffer from the lack of trust on

CSP because the data change may not be timely

known by the cloud users, even if these disputes may

result from the users’ own improper operations.

Security audit is an important solution enabling trace

back and analysis of any activities including data

accesses, security breaches, and application activities.

Data security tracking is crucial for all organizations

that should comply with a wide range of federal

regulations. Compared to the common audit, the audit

services for cloud storages should provide clients

with a more efficient proof for verifying the integrity

of stored data. Unfortunately, the traditional

cryptographic technologies, based on hash functions

and signature schemes, cannot support for data

integrity verification without a local copy of data. In

addition, it is evidently impractical for audit services

to download the whole data for checking data

validation due to the communication cost, especially

for large-size files.

 PROPOSED SYSTEM

Introduce a dynamic audit service for integrity

verification of un-trusted and outsourced storages.

These audit service can provide public audit ability

without downloading raw data and protect privacy of

the data. Also, this audit system can support dynamic

data operations and timely anomaly detection with

the help of several effective techniques, such as

fragment structure, random sampling, and Index-

Hash Table (IHT), also propose an efficient

approach based on probabilistic query and periodic

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 3

verification for improving the performance of audit

services. Another major concern is the security issue

of dynamic data operations for public audit services.

In clouds, one of the core design principles is to

provide dynamic scalability for various applications.

This means that remotely stored data might be not

only accessed by the clients but also dynamically

updated by them, for instance, through block

operations such as modification, deletion and

insertion.

 SYSTEM SPECIFICATION

SOFTWARE REQUIREMENT

 Front End/GUI Tool : Microsoft

Visual studio 2010 and above

Operating System : Windows

Family 7 or 8

Language : C#

Application : Web Application

(ASP.NET)

Back end : Windows Azure

Storage

Developer SDK : Windows

Azure SDK 2.2

 HARDWARE REQUIREMENT

Processor : Pentium dual

core

RAM : 1 GB

Hard Disk Drive : 80 GB

Monitor : 17” Color

Monitor

MODULE DESCRIPTION

Key Generation:

The owner generates a public/secret key pair

(pk, sk) by himself or the system manager, and then

sends his public key pk to TPA. Note that TPA cannot

obtain the client’s secret key sk; secondly, the owner

chooses the random secret.

The key feels like, should do the right thing

with their cloud strategy and make sure that they ask

the right questions to their cloud service providers. It

isn’t really about whether or not the service has

encryption or not.

Tag Generation:

The client (data owner) uses the secret

key sk to pre-process a file, which

consists of a collection of n blocks,

generates a set of public verification

parameters and index-hash table that

are stored in TPA, and transmits the

file and some verification tags to CSP.

 Tags generated by DOs and the leakage

of the user’s secret key

 Owner

Private Key

Secret Key
TPA

Secret Key

Random Secret

Send

Send
Send

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 4

Periodic Sampling Audit:

1.TPA (or other applications) issues a

“Random Sampling” challenge to audit the integrity

and availability of outsourced data in terms of the

verification information stored in TPA.

2 .It is crucial to develop a more efficient and

secure mechanism for dynamic audit services, in

which a potential adversary’s advantage through

dynamic data operations

Audit for Dynamic Operations:

An authorized application, which holds

data owner’s secret key sk, can manipulate the

outsourced data and update the associated index

hash table stored in TPA. The privacy of sk and

the checking algorithm ensure that the storage

server cannot cheat the authorized applications

and forge the valid audit records.

AAs should be cloud application services

inside clouds for various application purposes,

but they must be specifically authorized by DOs

for manipulating outsourced data. Since the

acceptable operations require that the AAs must

present authentication information for TPA, any

unauthorized modifications for data will be

detected in audit processes or verification

processes. Based on this kind of strong

authorization-verification mechanism, we assume

neither CSP is trusted to guarantee the security of

stored data, nor a DO has the capability to collect

the evidence of CSP’s faults after errors have

been found.

 Index hash map:

 To support dynamic data operations, we

introduce a simple IHT to record the changes

of file blocks, as well as generate the hash

value of each block in the verification process.

The structure of our IHT is similar to that of

Client Secret Key File

Pre

Process

N Block

Set Of

Verification

Index Hash

Table

TPA
Random

Sampling
Intergerity

Audit

Availablity

OutSourced

Data

Verification

Information

Authorized

Application
Data Owner

Out Sourced

Data

Index Hash

Table

TPA

Valid Audi Records

Secret

Key

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 5

file Block allocation table in file systems.

Generally, the IHT consists of serial number,

block number, version number, and random

integer Note that we must assure all records in

the IHT differ from one another to prevent the

forgery of data blocks and tags. In addition to

recording data changes, each record _i in the

table is used to generate a unique hash value,

which in turn is used for the construction of a

signature tag _i by the secret key sk. The

relationship between _i and _i must b e crypto

graphically secure, and we make use of it to

design our verification protocol.

 LITERATURE SURVEY

1PORs: Proofs of Retrievability for Large Files

Cloud computing promises In this paper, we

define and explore proofs of retrievability (PORs). A

POR scheme enables an archive or back-up service

(prover) to produce a concise proof that a user

(verifier) can retrieve a target file F, that is, that the

archive retains and reliably transmits file data

sufficient for the user to recover F in its entirety.

A POR may be viewed as a kind of

cryptographic proof of knowledge (POK), but one

specially designed to handle a large file (or bitstring)

F. We explore POR protocols here in which the

communication costs, number of memory accesses

for the prover, and storage requirements of the user

(verifier) are small parameters essentially

independent of the length of F. In addition to

proposing new, practical POR constructions, we

explore implementation considerations and

optimizations that bear on previously explored,

related schemes. In a POR, unlike a POK, neither the

prover nor the verifier need actually have knowledge

of F. PORs give rise to a new and unusual security

definition whose formulation is another contribution

of our work. We view PORs as an important tool for

semi-trusted online archives. Existing cryptographic

techniques help users ensure the privacy and integrity

of files they retrieve. It is also natural, however, for

users to want to verify that archives do not delete or

modify files prior to retrieval. The goal of a POR is

to accomplish these checks without users having to

download the files themselves. A POR can also

provide quality-of-service guarantees, i.e., show that

a file is retrievable within a certain time bound.

Drawbacks:

To illustrate the basic idea and operation of a

POR, it is worth considering a straightforward design

involving a keyed hash function h_(F). In this

scheme, prior to archiving a file F, the verifier

Index Hash Table

Records
Hash Value Verification

Process

Block

Allocation

Signature

Tag

 Serial Number

File

Blocks

Block Number Version Number

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 6

computes and stores a hash value r = h_(F) along with

secret, random key _. To check that the prover

possesses F, the verifier releases _ and asks the prover

to compute and return r. Provided that h is resistant to

second-preimage attacks, this simple protocol

provides a strong proof that the prover knows F. By

storing multiple hash values over different keys, the

verifier can i nitiate multiple, independent checks.

This keyed-hash approach, however, has an important

drawback: High resource costs. The keyedhash

protocol requires that the verifier store a number of

hash values linear in the number of checks it is to

perform. This characteristic conflicts with the aim of

enabling the verifier to offload its storage burden.

More significantly, each protocol invocation requires

that the prover process the entire file F. For large F,

even a computationally lightweight operation like

hashing can be highly burdensome. Furthermore, it

requires that the prover read the entire file for every

proof—a significant overhead for an archive whose

intended load is only an occasional read per file, were

every file to be tested frequently.

Contribution:

We introduce a POR protocol in which the

verifier stores only a single cryptographic key—

irrespective of the size and number of the files whose

retrievability it seeks to verify—as well as a small

amount of dynamic state (some tens of bits) for each

file. (One simple variant of our protocol allows for

the storage of no dynamic state, but yields weaker

security.) More strikingly, and somewhat

counterintuitively, our scheme requires that the

prover access only a small portion of a (large) file F

in the course of a POR. In fact, the portion of F

“touched” by the prover is essentially independent of

the length of F and would, in a typical

parameterization, include just hundreds or thousands

of data

blocks. Briefly, our POR protocol encrypts F and

randomly embeds a set of randomly-valued check

blocks called sentinels. The use of encryption here

renders the sentinels indistinguishable from other file

blocks. The verifier challenges the prover by

specifying the positions of a collection of sentinels

and asking the prover to return the associated sentinel

values. If the prover has modified or deleted a

substantial portion of F, then with high probability it

will also have suppressed a number of sentinels. It is

therefore unlikely to respond correctly to the verifier.

To protect against corruption by the prover of a small

portion of F, we also employ error-correcting codes.

We let ˜ F refer to the full, encoded file stored with

the prover. A drawback of our proposed POR scheme

is the preprocessing / encoding of F required prior to

storage with the prover. This step imposes some

computational overhead—beyond that of simple

encryption or hashing—as well as larger storage

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 7

requirements on the prover. The sentinels may

constitute a small fraction of the encoded ˜ F

(typically, say, 2%); the error-coding imposes the

bulk of the storage overhead. For large files and

practical protocol parameterizations, however, the

associated expansion factor | ˜ F|/|F| can be fairly

modest, e.g., 15%.

Fig 2: Schematic of a POR system. An encoding

algorithm transforms a raw file F into an encoded file

˜ F to be stored with the prover / archive. A key

generation algorithm produces a key _ stored by the

verifier and used in encoding. (The key _ is

independent of F in some PORs, as in our main

scheme.) The verifier performs a challenge-response

protocol with the prover to check that the verifier can

retrieve F.

2.2 Provable data possession at untrusted stores

 Introduce a model for provable data

possession (PDP) that allows a client that has stored

data at an untrusted server to verify that the server

possesses the original data without retrieving it. The

model generates probabilistic proofs of possession by

sampling random sets of blocks from the server,

which drastically reduces I/O costs. The client

maintains a constant amount of metadata to verify the

proof. The challenge/response protocol transmits a

small, constant amount of data, which minimizes

network communication. Thus, the PDP model for

remote data checking supports large data sets in

widely-distributed storage system.

We present two provably-secure PDP schemes

that are more efficient than previous solutions, even

when compared with schemes that achieve weaker

guarantees. In particular, the overhead at the server

is low (or even constant), as opposed to linear in the

size of the data. Experiments using our

implementation verify the practicality of PDP and

reveal that the performance of PDP is bounded by

disk I/O and not by cryptographic computation.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 8

Drawbacks:

However, archival storage requires

guarantees about the authenticity of data on

storage, namely that storage servers possess data.

It is insufficient to detect that data have been

modified or deleted when accessing the data,

because it may be too late to recover lost or

damaged data. Archival storage servers retain

tremendous amounts of data.

Contributions:

In this paper we:

 Formally define protocols for provable data

possession (PDP) that provide probabilistic

proof that a third party stores a file.

 Introduce the first provably-secure and

practical PDP schemes that guarantee data

possession.

 Implement one of our PDP schemes and show

experimentally that probabilistic possession

guarantees make it practical to verify

possession of large data sets.

Our PDP schemes provide data format independence,

which is a relevant feature in practical deployments,

and put no restriction on the number of times the

client can challenge the server to prove data

possession. Also, a variant of our main PDP scheme

offers public verifiability.

2.3 Demonstrating data possession and un-

cheatable data transfer

We observe that a certain RSA-based secure

hash function is homomorphic. We describe a

protocol based on this hash function which prevents

‘cheating’ in a data transfer transaction, while placing

little burden on the trusted third party that oversees

the protocol. We also describe a cryptographic

protocol based on similar principles, through which a

prover can demonstrate possession of an arbitrary set

of data known to the verifier. The verifier isn’t

required to have this data at hand during the protocol

execution, but rather only a small hash of it. The

protocol is also provably as secure as integer

factoring. this raises many concerns over the honesty

of network users. More explicitly, it is desirable to

know, in a distributed data store network, whether

users are actually storing files they were assigned to

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 9

store; and in a content distribution network where

users are rewarded for donating their idle bandwidth

and charged for using other users’ bandwidth,

whether data transfers took place correctly and

bandwidth credits for the transaction can be

exchanged. We cite some scenarios in Sections 3 and

4 where it would make sense for a user to break

network rules in exchange for some form of personal

gain (or plain vandalism). Hence it is desirable to

keep tabs on the honesty of users, which is the

purpose of the protocols described in this paper.

Drawbacks:

It is interesting to note that a personal computer

has three main resources which may be exploited by

a distributed network: processing time, network

bandwidth and storage.

In each case a user may ‘cheat’ and not dedicate

the resources as promised. For the first, efficient

techniques are known for certain classes of problems

which detect with arbitrarily high accuracy any

attempt to shortcut computations [4]. In this paper, we

provide limited (yet still useful) ways to prevent

cheating when the latter two resources are involved.

Contribution:

A function H is homomorphic if, given two

operations + and ×, we have

H(d + d’) = H(d) × H(d’).

An homomorphic hash function is, simply put, a hash

function that is homomorphic.

In many cases it is undesirable that a hash

function be homomorphic, and most known

constructs of this type are weak. However, it is

possible to build strong homomorphic hash functions

based on public-key primitives, so long as the secret

parameters are not disclosed; up until now, the only

known example was the work of Krohn, Freedman

and Mazires [6], based on discrete logarithms. We

now describe a different homomorphic hash function,

based on principles similar to RSA, and which is

slightly more flexible than Krohn-Freedman-

Mazires’s function. This function isn’t novel; see e.g.

[10]. However, we believe nobody has yet called to

attention its homomorphic property.

2.4 Enabling Public Verifiability and Data

Dynamics for Storage Security in Cloud

Computing

Cloud Computing has been envisioned as the

next-generation architecture of IT Enterprise. It

moves the application software and databases to the

centralized large data centers, where the management

of the data and services may not be fully trustworthy.

This unique paradigm brings about many new

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 10

security challenges, which have not been well

understood. This work studies the problem of

ensuring the integrity of data storage in Cloud

Computing. In particular, we consider the task of

allowing a third party auditor (TPA), on behalf of the

cloud client, to verify the integrity of the dynamic

data stored in the cloud. The introduction of TPA

eliminates the involvement of the client through the

auditing of whether his data stored in the cloud are

indeed intact, which can be important in achieving

economies of scale for Cloud Computing. The

support for data dynamics via the most general forms

of data operation, such as block modification,

insertion, and deletion, is also a significant step

toward practicality, since services in Cloud

Computing are not limited to archive or backup data

only. While prior works on ensuring remote data

integrity often lacks the support of either public

auditability or dynamic data operations, this paper

achieves both. We first identify the difficulties and

potential security problems of direct extensions with

fully dynamic data updates from prior works and then

show how to construct an elegant verification scheme

for the seamless integration of these two salient

features in our protocol design. In particular, to

achieve efficient data dynamics, we improve the

existing proof of storage models by manipulating the

classic Merkle Hash Tree construction for block tag

authentication. To support efficient handling of

multiple auditing tasks, we further explore the

technique of bilinear aggregate signature to extend

our main result into a multiuser setting, where TPA

can perform multiple auditing tasks simultaneously.

Extensive security and performance analysis show

that the proposed schemes are highly efficient and

provably secure.

Drawbacks:

The first to explore constructions for dynamic

provable data possession, They extend the PDP

model to support provable updates to stored data files

using rank-based authenticated skip lists. This

scheme is essentially a fully dynamic version of the

PDP solution. To support updates, especially for

block insertion, they eliminate the index information

in the “tag” computation in Ateniese’s PDP model

and employ authenticated skip list data structure to

authenticate the tag information of challenged or

updated blocks first before the verification procedure.

However, the efficiency of their scheme remains

unclear.

Although the existing schemes aim at

providing integrity verification for different data

storage systems, the problem of supporting both

public auditability and data dynamics has not been

fully addressed. How to achieve a secure and efficient

design to seamlessly integrate these two important

components for data storage service remains an open

challenging task in Cloud Computing.

Contributions:

Our contribution can be summarized as follows:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 11

1. We motivate the public auditing system of data

storage security in Cloud Computing, and propose a

protocol supporting for fully dynamic data

operations, especially to support block insertion,

which is missing in most existing schemes.

2. We extend our scheme to support scalable and

efficient public auditing in Cloud Computing. In

particular, our scheme achieves batch auditing where

multiple delegated auditing tasks from different users

can be performed simultaneously by the TPA.

3. We prove the security of our proposed construction

and justify the performance of our scheme through

concrete implementation and comparisons with the

state of the art.

 ARCHITECTURE DIAGRAM

 ALGORITHM

INDEX HASHING TABLE ALGORITHM

Hashing is a technique or process of mapping keys,

and values into the hash table by using a hash function.

It is done for faster access to elements. The efficiency

of mapping depends on the efficiency of the hash

function used.

Let a hash function H(x) maps the value at the

index x%10 in an Array. For example if the list of

values is [11,12,13,14,15] it will be stored at positions

{1,2,3,4,5} in the array or Hash table respectively.

 SCREENSHOTS

SCREEN SHOTS:

 LOGIN PAGE

 REGISTER PAGE:

S

o

c

k

et

Data

Management

Data Owner

UI Internet

S

o

c

k

et

Data AccessUser UI

S

o

c

k

et

Request

Analyses

Storage

Engine
DB

Compute

Process

Index

S

o

c

k

et

Sample audit

Data Management

Dynamic Operation

CSP

TPAUser

Data Owner

IHT

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 12

 KEY GENERATION AND FILE BLOCK

CONVERSION

:

TAG GENERATION

UPLOADED FILE

 USER REGISTER PAGE

 USER LOGIN PAGE

DATA USER PAGE

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 13

 CONCLUSION

 A construction of dynamic audit services for un-

trusted and outsourced storages. We also presented an

efficient method for periodic sampling audit to

enhance the performance of TPAs and storage service

providers. This project developed in Windows Azure

Cloud, mainly this cloud improves the security and

performance

 FUTURE ENHANCEMENT

Hash Bucketing Based Knowledge module

A Bucketing hashing-based technique, called

flexible Bucketing-based hashing, for processing the

NN query. The main advantage of this technique is

that the server always returns a exact binary candidate

set. The client then refines the candidate set to obtain

the final result.

 REFERENCES

1. Amazon Web Services, “Amazon S3

Availability Event: July 20, 2008,”

http://status.aws.amazon.com/s3-

20080720.html, July 2008.

2. Juels and B.S. Kaliski Jr., “PORs: Proofs of

Retrievability for Large Files,” Proc. ACM

Conf. Computer and Communications

Security (CCS ’07), pp. 584-597, 2007.

3. M.Mowbray, “The Fog over the Grimpen

Mire: Cloud Computing and the Law,”

Technical Report HPL-2009-99, HP Lab.,

2009.

4. A.A.Yavuz and P.Ning, “BAF: An Efficient

Publicly Verifiable Secure Audit Logging

Scheme for Distributed Systems,” Proc. Ann.

Computer Security Applications Conf.

(ACSAC), pp. 219-228, 2009.

5. G. Ateniese, R.C. Burns, R. Curtmola, J.

Herring, L. Kissner, Z.N.J. Peterson, and D.X.

Song, “Provable Data Possession at Untrusted

Stores,” Proc. 14th ACM Conf. Computer and

Comm. Security, pp. 598-609, 2007.

 1] Peter Mell, Tim Grance, et al. The nist

definition of cloud computing. 2011.

 [2] Yinghui Zhang, Robert H Deng,

Shengmin Xu, Jianfei Sun, Qi Li, and Dong Zheng.

Attribute-based encryption for cloud computing

access control: A survey. ACM Computing Surveys,

53(4):1–41, 2020.

 [3] Jia-Nan Liu, Xizhao Luo, Jian Weng,

Anjia Yang, Xu An Wang, Ming Li, and Xiaodong

Lin. Enabling efficient, secure and privacypreserving

mobile cloud storage. IEEE Transactions on

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 14

Dependable and Secure Computing, pages 1–15,

2020.

 [4] Anjia Yang, Jia Xu, Jian Weng,

Jianying Zhou, and Duncan S Wong. Lightweight and

privacy-preserving delegatable proofs of storage with

data dynamics in cloud storage. IEEE Transactions on

Cloud Computing, 9(1):212–225, 2021.

 [5] Dawn Xiaoding Song, David Wagner,

and Adrian Perrig. Practical techniques for searches

on encrypted data. In Proceeding 2000 IEEE

Symposium on Security and Privacy. S&P 2000,

pages 44–55. IEEE, 2000.

 [6] Ming Zeng, Hai-Feng Qian, Jie Chen, and

Kai Zhang. Forward secure public key encryption

with keyword search for outsourced cloud storage.

IEEE Transactions on Cloud Computing, pages 1–13,

2019.

 [7] Yupeng Zhang, Jonathan Katz, and

Charalampos Papamanthou. All your queries are

belong to us: The power of file-injection attacks on

searchable encryption. In 25th USENIX Security

Symposium, pages 707–720, 2016.

 [8] Emil Stefanov, Charalampos Papamanthou,

and Elaine Shi. Practical dynamic searchable

encryption with small leakage. In Network and

Distributed System Security Symposium, volume 71,

pages 72–75, 2014.

[9] Raphael Bost. Poϕoς: Forward secure searchable

encryption. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and

Communications Security, pages 1143–1154. ACM,

2016.

 [10] Zhongjun Zhang, Jianfeng Wang, Yunling

Wang, Yaping Su, and Xiaofeng Chen. Towards

efficient verifiable forward secure searchable

symmetric encryption. In European Symposium on

Research in Computer Security, pages 304–321.

Springer, 2019

http://www.ijsrem.com/

