T ond™

2l ‘X;R.A
"IJSREME’;
e-Journal

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Deep Convolutional Networks for Crop Disease Diagnosis: A Survey on

Architectures, Feature Engineering, and Explainability for Real-Time

Agricultural Deployment

Yashwardhan Bhosale! , Prof. S.N.Shelke?, Shravan Sutar?, Shravani Chaskar*

I First Author: Department of Computer Engineering, Sinhgad Academy of Engineering, Pune

? Second Author: HOD-Department of Computer Engineering, Sinhgad Academy of Engineering, Pune

3Third Author: Department of Computer Engineering, Sinhgad Academy of Engineering, Pune

‘Fourth Author: Department of Computer Engineering, Sinhgad Academy of Engineering, Pune

kokok

Abstract —

This research explores the intersection of Artificial
Intelligence and modern farming techniques, specifically
focusing on Precision Agriculture and its potential to
transform traditional crop management practices for 21st-
century food security challenges. Within this broad
domain, our work concentrates on leveraging deep neural
networks and computer vision to diagnose plant diseases
from images, bringing together expertise from machine
learning, digital imaging, plant pathology, and agricultural
engineering to develop practical diagnostic tools for field
use. The urgency of this research is underscored by the
devastating reality that plant diseases cause approximately
30-33% of global crop losses annually, while traditional
expert-based visual inspection methods remain slow,
expensive, subjective, and often detect problems too late to
prevent significant damage.

Current deep learning approaches, despite achieving
impressive accuracy, face critical limitations including
high computational costs,
requirements, lack of interpretability in decision-making
processes, insufficient labeled data for rare diseases, high

demanding  hardware

variability in field conditions, and the inability to provide
real-time diagnostics without cloud connectivity. To
address these challenges, this survey advocates for compact
convolutional architectures such as MobileNetV2 and
EfficientNetB0 that can be deployed on low-power devices
while maintaining diagnostic accuracy..

Key Words: Precision Agriculture, Deep Learning (DL),
Convolutional Neural Networks (CNNs), Lightweight
Architectures (MobileNetV2, EfficientNetB0),
Explainable Al (XAI), LIME, Transfer Learning, Feature
Engineering, Image Segmentation, Edge Computing,
Mobile Deployment.

1.INTRODUCTION

Our world faces an increasingly urgent food crisis. With the
global population expected to exceed 9.7 billion by mid-
century, combined with climatic volatility creating
unpredictable growing conditions, keeping crops healthy
has never been more critical (Jafar et al., 2024). Plant
infections caused by bacteria, viruses, and fungi don't just
hurt individual farmers—they ripple through entire supply
chains, affecting food prices and threatening the
livelihoods of millions of smallholder farmers, especially

in developing nations.

The old-school approach of having agricultural experts
walk through fields checking plants simply doesn't scale.
Expert plant pathologists are scarce, particularly in regions
where they're needed most. Even trained professionals
struggle with early-stage diagnosis because many diseases
look similar when symptoms first appear. Manual
inspection is also inherently subjective—what one expert
sees as early blight, another might classify differently. This
is where Al and Deep Learning become game-changers,
offering the ability to rapidly analyze subtle visual changes
on plant surfaces and provide consistent, objective
diagnoses (Jafar et al., 2024). These automated tools can
democratize access to expert-level diagnostics, bringing
sophisticated disease identification to any farmer with a
smartphone.

Understanding Plant Health Issues: Biotic vs. Abiotic

When plants show signs of distress, the causes generally
fall into two categories. Biotic diseases come from living
organisms—the pathogens attacking the plant. These
include fungi like Powdery Mildew and Anthracnose that
spread across leaves, bacteria such as Bacterial Blight that
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cause water-soaked lesions and wilting, and viruses like
Mosaic Virus that create distinctive patterns on leaves.
Each type of pathogen operates differently and progresses
at different rates.

On the other hand, abiotic stresses aren't caused by
infections at all—they're environmental problems. Extreme
temperatures, pollution, nutrient deficiencies, and water
stress can all cause visible symptoms on plants. You might
see yellowing (what scientists call chlorosis), dead tissue
(necrosis), curled leaves, or stunted growth. Here's the
tricky part: environmental stress often mimics infection
symptoms visually. This is why accurate diagnostic tools
need to distinguish between these causes—treating a
nutrient deficiency with fungicide won't help, and vice
versa (Javidan et al., 2024).

How Automated Disease Diagnosis Works

The process of automated plant disease diagnosis (PDD)
follows what's called an Image Vision Recognition (IVR)
pipeline. Think of it as a series of steps: first, you capture
the image; then you clean it up and prepare it; next, you
identify the relevant parts; after that, you extract important
features; and finally, you use Al to classify what disease (if
any) is present. Each step plays a crucial role in turning a
simple photo into actionable diagnostic information. The
modular design is actually beneficial—it means we can
improve individual components as better techniques
emerge without rebuilding the entire system.

2.) Related Work: How Current Systems Approach
Plant Disease Detection

2.1 The Complete Pipeline from Field to Diagnosis
Capturing and Preparing Images

Getting good training data starts with image collection,
typically from smartphones, high-resolution cameras, or
even drones flying over fields. Many researchers use
established datasets like PlantVillage.Modern systems are
exploring beyond standard RGB photography—
multispectral and hyperspectral imaging can capture
disease signatures invisible to the human eye. The
widespread availability of smartphones has made image
capture accessible globally, though this convenience
introduces challenges with inconsistent image quality.

Once images are captured, preprocessing becomes
essential. Raw field photos need standardization—they're

resized to consistent dimensions (typically 224x224 or
256x256 pixels), cleaned of noise using filters like
Gaussian or median filtering, and often converted to
different color spaces (Ahmed et al., 2022). The HSV color
space, for example, separates color information from
lighting variations, making disease symptoms stand out
more clearly. The Hue component is particularly valuable
since it captures the color characteristics associated with
disease manifestation.

The CLAHE technique enhances contrast locally by
adjusting pixel intensity within small patches, followed by
smoothing across tile boundaries to maintain image
consistency (Gonzalez & Woods, 2018). This is especially
crucial for field images where lighting is unpredictable—
think shadows from leaves or passing clouds. Without this
preprocessing, subtle disease spots might be invisible to the
model.

Isolating the Problem Areas

Segmentation is about separating what matters (the infected
leaf tissue) from what doesn't (soil, shadows, healthy
parts). Getting this right can boost classification accuracy
by 10-15% simply by eliminating confusing background
information.

Traditional segmentation approaches include thresholding
(where Otsu's method automatically finds the best cutoff
point), K-means clustering (grouping similar-colored
pixels), and edge detection using Canny or Sobel operators.
These methods are computationally cheap and fast, but they
struggle with real-world complexity. When diseased
regions have similar colors to backgrounds, or when you
have multiple disease stages in one image, these simple
mathematical rules often fail.

Deep learning-based segmentation offers a more robust
solution. Architectures like U-Net, Mask R-CNN, and
DeepLabV3+ can classify every single pixel (semantic
segmentation) or identify individual disease lesions as
separate objects (instance segmentation). These models
achieve impressive Intersection over Union (IoU) scores
exceeding 0.90, meaning they're very precise about where
disease boundaries actually are.
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2.2 Extracting Meaningful Information: Features That
Matter

Traditional Hand-Crafted Features

Before deep learning dominated the field, researchers
manually designed features based on domain knowledge.
This required understanding both plant pathology and
image processing.

Color-based features capture statistical properties—
mean, maximum, median, and standard deviation—from
different color spaces (RGB, HSV, HSI). These quantify
visual changes like yellowing or tissue death. More
advanced approaches use color moments, which describe
the distribution's skewness and kurtosis, or color
correlograms that capture how colors relate spatially
(Javidan et al., 2024).

Texture properties such as contrast or entropy can be
quantified through statistical matrices like GLCM, which
capture spatial correlations among pixel intensities
(Javidan et al., 2024). Local Binary Patterns (LBP) and
Gabor filters offer alternative ways to represent texture that
work well for capturing repetitive patterns caused by
pathogen growth.

Shape descriptors measure geometric attributes—area,
perimeter, circularity, aspect ratio. Hu moments provide
shape descriptions that don't change with rotation, while
Fourier descriptors characterize complex lesion
boundaries. The compactness ratio (perimeter squared
divided by area) helps distinguish regular fungal spots from

irregular bacterial lesions (Javidan et al., 2024).
Deep Learning's Automatic Feature Discovery

Convolutional Neural Networks changed the game by
learning features automatically from raw pixels. Instead of
manually designing features, CNNs learn hierarchical
representations through their layers—early layers detect
simple edges and textures, while deeper layers recognize
complex semantic concepts (Shelke et al., 2024). This
automatic learning has proven superior to hand-crafted
features, especially for complex real-world scenarios where
defining optimal features manually is nearly impossible.

2.3 Classification Approaches: From Traditional ML to
Modern Deep Learning

Classical Machine Learning Methods

Support Vector Machines, Random Forests, Decision
Trees, K-Nearest Neighbors, and Artificial Neural
Networks represent the traditional toolkit. SVMs with
radial basis function kernels work particularly well for
binary classification problems. Random Forest's ensemble
approach provides some protection against overfitting and
handles multi-class scenarios reasonably well, though
performance typically plateaus around 85-92% accuracy.
These methods shine with smaller datasets (500-2000
images) but depend heavily on the quality of hand-crafted
features you feed them.

Networks: The Modern

Convolutional Neural

Standard

CNNs dominate image classification because they excel at
capturing spatial patterns and generalizing to new data.

Heavy-duty models like VGG19 and ResNet achieve
outstanding accuracy—VGG19 can hit 99.48% for tomato
disease classification. However, there's a catch: VGG19's
model size reaches 76.48MB and requires 40.05 million
floating-point operations, making it impractical for mobile
devices (Ahmed et al., 2022). ResNet variants with 50-152
layers need substantial GPU resources and take over 100
milliseconds to process a single image on smartphones.
These architectures were designed for data centers, not
farm fields.

Efficient architectures like MobileNetV2 and
EfficientNetBO change the equation entirely. MobileNetV2
achieves comparable accuracy (99.30%) while drastically
cutting computational overhead to 4.87 million floating-
point operations (Ahmed et al., 2022). Its 9.60MB size
means it runs on devices with just 2GB of RAM.
EfficientNetBO takes a different approach, using
compound scaling to uniformly adjust depth, width, and
resolution, achieving peak accuracies up to 99.69% (Nigar
et al., 2024). These models process images in under 50
milliseconds on modern smartphones, making real-time
diagnosis feasible.
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2.4 What Makes Lightweight Models Efficient

Understanding why models like MobileNetV2 work so
well on mobile devices requires looking at their core
innovations.

Depthwise Separable Convolution is the key
breakthrough. This method isolates spatial and channel-
wise filtering, substantially decreasing computation
compared to standard convolutions (Sandler et al., 2018).
Instead of processing all channels together, it first applies a
separate filter to each input channel (depthwise), then uses
1x1 convolutions to combine the results (pointwise). For a
3x3 kernel, this reduces computational cost by roughly 9
times.

ReLU6 activation functions—defined as min(max(0, x),
6)—provide bounded outputs that improve numerical
stability, especially important when quantizing models to
8-bit or lower precision for deployment on resource-
constrained hardware (Ahmed et al., 2022).

Inverted residual blocks in MobileNetV2 expand features
in intermediate layers while keeping inputs and outputs
narrow, improving gradient flow and representational
capacity without sacrificing efficiency (Sandler et al.,
2018).

2.5 System Architecture in Practice

Practical deployment architectures follow modular designs
to support real-time farm use. The data flow moves
sequentially: sensors or users capture data, which flows to
image processing modules (applying CLAHE and
segmentation), then to the deep learning model for
classification, followed by XAI generation (using LIME),
and finally to output interfaces like mobile applications
(Jafar et al., 2024). This clear separation allows
independent optimization of each component.

For deployment, the architecture loads a compressed and
optimized DL model (like MobileNetV3-small, with
parameters reduced to approximately 0.93 million through
quantization) directly onto mobile devices for fast, on-
device inference (DamasSevicCius & Maskelitinas, 2024).
Supporting both online and offline operation modes is
crucial for rural areas with limited connectivity.

3.) Advantages, Limitations, and Where We're Heading
3.1 Comparing Different Approaches

Deep learning models deliver superior performance
through automated feature learning and strong
generalization capabilities, often achieving accuracies
above 99%. However, they're data-hungry—typically
requiring 10,000+ labeled images—and computationally
demanding. Training these models needs substantial GPU
resources, taking anywhere from several hours to days
depending on dataset size and model complexity. The
labeling process itself creates a bottleneck, requiring expert
knowledge and significant time investment. Plus, their
"black-box" nature makes it hard to understand why they
make specific predictions (Shelke et al., 2024).

Traditional machine learning models offer simplicity—
they train faster on smaller datasets (500-2000 images
suffice), completing training in minutes on standard CPUs.
But they top out around 85-92% accuracy and depend
entirely on the quality of hand-crafted features. The feature
engineering process demands domain expertise and
iterative experimentation, making it time-consuming and
potentially suboptimal (Javidan et al., 2024).

The efficiency gap between heavy and lightweight deep
learning models is striking. MobileNetV2 matches
VGG19's accuracy (99.30% vs. 99.48%) while requiring
approximately 8 times less memory (9.60MB vs.
76.48MB) and 8 times fewer computations (4.87 vs. 40.05
million floating-point operations). This efficiency enables
all-day battery operation and reduces thermal constraints
on mobile devices (Ahmed et al., 2022).

3.2 Future Research Directions

Several persistent challenges need
widespread deployment:

addressing  for

Making Models More Efficient: Ongoing work on
quantization (reducing precision from 32-bit to 8-bit or
lower) and compression techniques like pruning and
knowledge distillation can further minimize model sizes.
Neural Architecture Search techniques could automatically
discover optimal lightweight architectures tailored to
specific deployment constraints

Maskelitinas, 2024).

(Damasevicius &

Handling Multiple Problems Simultaneously: Current
systems typically identify one disease at a time, but real-
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world plants often face multiple challenges concurrently—
diseases, pests, and nutrient deficiencies don't occur in
isolation. Future systems need multi-label prediction
capabilities and quantitative severity assessment through
pixel-level segmentation. Disease progression modeling
using temporal analysis of image sequences could enable
predictive diagnostics, catching infections before visible
symptoms appear (Javidan et al., 2024).

Building User Trust: Explainable Al methods like LIME
and gradient-based visualization techniques such as Grad-
CAM provide transparency into model decision-making,
fostering necessary user trust for agricultural adoption
(Nigar et al., 2024). However, explanations must be
presented in agronomically meaningful terms rather than
technical jargon to be useful for farmers.

4.) System Architecture Overview

A practical PDD system connects multiple components
working together:

Component Purpose Technologies
Used
Data Capture Get images from = Smartphones,
the field IoT sensors,
drones, high-
resolution
cameras
Image Improve quality CLAHE, color
Enhancement and focus on space
problem areas conversion,
segmentation,
normalization
Disease Identify the Lightweight
Classification specific disease CNNs
(MobileNetV2,
EfficientNetBO0)
Explanation = Show why the XAI modules
Generation model made its (LIME, Grad-
decision CAM)
User Deliver results Mobile apps,
Interface and cloud reporting,
recommendations =~ SMS alerts

5.) Our Proposed Approach: Combining Efficiency
with Transparency

Based on our analysis of current research, we propose a
hybrid architecture that balances maximum accuracy with
practical deployability on resource-constrained platforms.
The system uses MobileNetV2 or EfficientNetB0 as the
feature extraction backbone.

How the System Works
Step 1: Preprocessing and Data Augmentation

Input images first undergo illumination normalization
using CLAHE. During training, we apply continuous data
augmentation—rotating images by £20 degrees, shifting by
+10%, horizontally flipping, and zooming by +15%. This
significantly improves the model's ability to handle real-
world field variability while preventing data leakage
(Ahmed et al., 2022). Augmentation effectively multiplies
training dataset size by 10-20 times, crucial when labeled
data is limited.

Step 2: Transfer Learning Foundation

Rather than training from scratch, we use pre-trained
convolutional layers from the lightweight backbone as our
starting point. These layers already know how to recognize
generic visual patterns from being trained on massive
datasets like ImageNet (1.2 million images). Empirical
evidence suggests transfer learning can markedly shorten
training duration and enhance accuracy, particularly when
disease-specific datasets are limited (Pan & Yang, 2010).
This approach typically reduces training time by 60-70%
and improves accuracy by 5-10% compared to training
from scratch.

Step 3: Specialized Classification Head

The robust feature vector (typically 1280-dimensional for
MobileNetV2) feeds into a smaller, application-specific
classification head with shallow dense layers (for example,
512 — 256 — number of disease classes). This head trains
from scratch to specialize the general features for our
specific plant disease classes—say, 38 distinct conditions.
We include dropout layers (rate 0.3-0.5) to prevent
overfitting to limited disease-specific training data (Ahmed
et al., 2022)
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Step 4: Explainable Predictions

Each final prediction pairs with a LIME-generated
explanation. This module visually highlights which image
regions—like specific lesion spots—most influenced the
model's decision, providing essential diagnostic context
that builds user confidence (Nigar et al., 2024). LIME
works by perturbing the input image and observing how
classifications change, identifying critical regions. The
superpixel-based visualization makes it intuitive even for
non-technical users to understand.

This integrated framework combining efficiency-
optimized features with transparent decision-making yields
a robust, low-latency system suitable for real-time mobile
deployment. Applications like 'PlantCare' demonstrate that
end-to-end inference (from image capture to explained
diagnosis) can complete in under 2 seconds on mid-range
smartphones, enabling practical field usage (Nigar et al.,
2024).

6.) Conclusion:

Shifting from traditional visual inspection to Al-driven
diagnosis is essential for sustainable agricultural
production, especially given that plant diseases threaten
one-third of global crop yields annually. Our survey reveals
that achieving truly deployable plant disease detection
solutions requires prioritizing lightweight deep learning
models—specifically MobileNetV2 and EfficientNetBO—
which deliver near-state-of-the-art accuracy (approaching
99.69%) while maintaining computational footprints small
enough for mobile deployment (Ahmed et al., 2022; Nigar
et al., 2024).

Incorporating Explainable Al, exemplified by LIME, is not
optional—it's essential for overcoming the "black-box"
problem and providing users with prediction traceability
and validation. This transparency isn't just a nice feature;
it's fundamental for farmer adoption and trust. Looking
forward, research must concentrate on multi-disease
detection, quantitative severity assessment, and improving
model robustness to environmental noise for seamless
translation from laboratory success to autonomous field
operation.  Combining  lightweight  architectures,
explainability, and edge computing represents our most
promising path toward democratizing advanced plant
disease diagnostics globally.

7.) Future Research Opportunities

The persistent challenge of bridging the gap between
laboratory performance and field deployment needs urgent
attention. Models trained exclusively on controlled
laboratory images often struggle with complex field
conditions—occlusion by other leaves, variable lighting
throughout the day, and cluttered backgrounds all hurt
performance (Javidan et al., 2024). Here's where future
work should focus:

Improving Training Data Quality and Quantity

Generative techniques like GANs (Generative Adversarial
Networks) and Diffusion Models could synthetically
expand limited datasets, particularly valuable for rare
diseases affecting less common crops (Shelke et al., 2024).
These approaches generate photorealistic images with
controlled disease characteristics, addressing class
imbalance problems. Self-supervised learning approaches
could leverage vast amounts of unlabeled agricultural
imagery to improve feature representations without
requiring expensive expert labeling.

Optimizing for Edge Devices

Continuing post-training model compression and
MobileNetV3-small
parameters to approximately 0.93 million through 8-bit

quantization) enables high-accuracy performance on low-

quantization  work  (reducing

power IoT and mobile devices (DamaSevicius &
Maskelitinas, 2024). This minimizes bandwidth and
computational demands for portable field solutions.
Hardware-aware neural architecture search could design
models specifically optimized for agricultural edge
devices. Federated learning approaches might enable
collaborative model improvement across farms while
preserving data privacy.

Advanced Diagnostic Capabilities

Moving beyond simple disease classification to support
multi-label predictions (diagnosing several co-occurring
disorders, pests, or deficiencies simultaneously) represents
a critical advancement. Integrating pest detection, weed
identification, and crop growth monitoring would create
comprehensive agricultural intelligence systems. Temporal
modeling using recurrent architectures or temporal
convolutions could track disease progression and predict
future spread patterns, enabling proactive rather than
reactive interventions (Javidan et al., 2024).
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Making Explanations Actionable

Evolving XAI outputs from simple visual maps to
integrated decision-support systems that provide specific,
non-technical treatment recommendations and dosage
information directly to farmers would greatly increase
practical value (Nigar et al., 2024). Natural language
generation could convert visual explanations into plain-
language diagnostic reports. Integrating with agricultural
knowledge bases and weather data could provide context-
aware treatment recommendations optimized for local
conditions, crop varieties, and regulatory constraints.
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