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Abstract –  

This research explores the intersection of Artificial 

Intelligence and modern farming techniques, specifically 

focusing on Precision Agriculture and its potential to 

transform traditional crop management practices for 21st-

century food security challenges. Within this broad 

domain, our work concentrates on leveraging deep neural 

networks and computer vision to diagnose plant diseases 

from images, bringing together expertise from machine 

learning, digital imaging, plant pathology, and agricultural 

engineering to develop practical diagnostic tools for field 

use. The urgency of this research is underscored by the 

devastating reality that plant diseases cause approximately 

30-33% of global crop losses annually, while traditional 

expert-based visual inspection methods remain slow, 

expensive, subjective, and often detect problems too late to 

prevent significant damage. 

Current deep learning approaches, despite achieving 

impressive accuracy, face critical limitations including 

high computational costs, demanding hardware 

requirements, lack of interpretability in decision-making 

processes, insufficient labeled data for rare diseases, high 

variability in field conditions, and the inability to provide 

real-time diagnostics without cloud connectivity. To 

address these challenges, this survey advocates for compact 

convolutional architectures such as MobileNetV2 and 

EfficientNetB0 that can be deployed on low-power devices 

while maintaining diagnostic accuracy.. 
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1.INTRODUCTION  

Our world faces an increasingly urgent food crisis. With the 

global population expected to exceed 9.7 billion by mid-

century, combined with climatic volatility creating 

unpredictable growing conditions, keeping crops healthy 

has never been more critical (Jafar et al., 2024). Plant 

infections caused by bacteria, viruses, and fungi don't just 

hurt individual farmers—they ripple through entire supply 

chains, affecting food prices and threatening the 

livelihoods of millions of smallholder farmers, especially 

in developing nations. 

The old-school approach of having agricultural experts 

walk through fields checking plants simply doesn't scale. 

Expert plant pathologists are scarce, particularly in regions 

where they're needed most. Even trained professionals 

struggle with early-stage diagnosis because many diseases 

look similar when symptoms first appear. Manual 

inspection is also inherently subjective—what one expert 

sees as early blight, another might classify differently. This 

is where AI and Deep Learning become game-changers, 

offering the ability to rapidly analyze subtle visual changes 

on plant surfaces and provide consistent, objective 

diagnoses (Jafar et al., 2024). These automated tools can 

democratize access to expert-level diagnostics, bringing 

sophisticated disease identification to any farmer with a 

smartphone. 

Understanding Plant Health Issues: Biotic vs. Abiotic 

When plants show signs of distress, the causes generally 

fall into two categories. Biotic diseases come from living 

organisms—the pathogens attacking the plant. These 

include fungi like Powdery Mildew and Anthracnose that 

spread across leaves, bacteria such as Bacterial Blight that 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 10 | Oct - 2025                                SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                        

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53263                                              |        Page 2 
 

cause water-soaked lesions and wilting, and viruses like 

Mosaic Virus that create distinctive patterns on leaves. 

Each type of pathogen operates differently and progresses 

at different rates. 

On the other hand, abiotic stresses aren't caused by 

infections at all—they're environmental problems. Extreme 

temperatures, pollution, nutrient deficiencies, and water 

stress can all cause visible symptoms on plants. You might 

see yellowing (what scientists call chlorosis), dead tissue 

(necrosis), curled leaves, or stunted growth. Here's the 

tricky part: environmental stress often mimics infection 

symptoms visually. This is why accurate diagnostic tools 

need to distinguish between these causes—treating a 

nutrient deficiency with fungicide won't help, and vice 

versa (Javidan et al., 2024). 

How Automated Disease Diagnosis Works 

The process of automated plant disease diagnosis (PDD) 

follows what's called an Image Vision Recognition (IVR) 

pipeline. Think of it as a series of steps: first, you capture 

the image; then you clean it up and prepare it; next, you 

identify the relevant parts; after that, you extract important 

features; and finally, you use AI to classify what disease (if 

any) is present. Each step plays a crucial role in turning a 

simple photo into actionable diagnostic information. The 

modular design is actually beneficial—it means we can 

improve individual components as better techniques 

emerge without rebuilding the entire system. 

2.) Related Work: How Current Systems Approach 

Plant Disease Detection 

2.1 The Complete Pipeline from Field to Diagnosis 

Capturing and Preparing Images 

Getting good training data starts with image collection, 

typically from smartphones, high-resolution cameras, or 

even drones flying over fields. Many researchers use 

established datasets like PlantVillage.Modern systems are 

exploring beyond standard RGB photography—

multispectral and hyperspectral imaging can capture 

disease signatures invisible to the human eye. The 

widespread availability of smartphones has made image 

capture accessible globally, though this convenience 

introduces challenges with inconsistent image quality. 

Once images are captured, preprocessing becomes 

essential. Raw field photos need standardization—they're 

resized to consistent dimensions (typically 224×224 or 

256×256 pixels), cleaned of noise using filters like 

Gaussian or median filtering, and often converted to 

different color spaces (Ahmed et al., 2022). The HSV color 

space, for example, separates color information from 

lighting variations, making disease symptoms stand out 

more clearly. The Hue component is particularly valuable 

since it captures the color characteristics associated with 

disease manifestation. 

The CLAHE technique enhances contrast locally by 

adjusting pixel intensity within small patches, followed by 

smoothing across tile boundaries to maintain image 

consistency (Gonzalez & Woods, 2018). This is especially 

crucial for field images where lighting is unpredictable—

think shadows from leaves or passing clouds. Without this 

preprocessing, subtle disease spots might be invisible to the 

model. 

Isolating the Problem Areas 

Segmentation is about separating what matters (the infected 

leaf tissue) from what doesn't (soil, shadows, healthy 

parts). Getting this right can boost classification accuracy 

by 10-15% simply by eliminating confusing background 

information. 

Traditional segmentation approaches include thresholding 

(where Otsu's method automatically finds the best cutoff 

point), K-means clustering (grouping similar-colored 

pixels), and edge detection using Canny or Sobel operators. 

These methods are computationally cheap and fast, but they 

struggle with real-world complexity. When diseased 

regions have similar colors to backgrounds, or when you 

have multiple disease stages in one image, these simple 

mathematical rules often fail. 

Deep learning-based segmentation offers a more robust 

solution. Architectures like U-Net, Mask R-CNN, and 

DeepLabV3+ can classify every single pixel (semantic 

segmentation) or identify individual disease lesions as 

separate objects (instance segmentation). These models 

achieve impressive Intersection over Union (IoU) scores 

exceeding 0.90, meaning they're very precise about where 

disease boundaries actually are. 
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2.2 Extracting Meaningful Information: Features That 

Matter 

Traditional Hand-Crafted Features 

Before deep learning dominated the field, researchers 

manually designed features based on domain knowledge. 

This required understanding both plant pathology and 

image processing. 

Color-based features capture statistical properties—

mean, maximum, median, and standard deviation—from 

different color spaces (RGB, HSV, HSI). These quantify 

visual changes like yellowing or tissue death. More 

advanced approaches use color moments, which describe 

the distribution's skewness and kurtosis, or color 

correlograms that capture how colors relate spatially 

(Javidan et al., 2024). 

Texture properties such as contrast or entropy can be 

quantified through statistical matrices like GLCM, which 

capture spatial correlations among pixel intensities 

(Javidan et al., 2024). Local Binary Patterns (LBP) and 

Gabor filters offer alternative ways to represent texture that 

work well for capturing repetitive patterns caused by 

pathogen growth. 

Shape descriptors measure geometric attributes—area, 

perimeter, circularity, aspect ratio. Hu moments provide 

shape descriptions that don't change with rotation, while 

Fourier descriptors characterize complex lesion 

boundaries. The compactness ratio (perimeter squared 

divided by area) helps distinguish regular fungal spots from 

irregular bacterial lesions (Javidan et al., 2024). 

Deep Learning's Automatic Feature Discovery 

Convolutional Neural Networks changed the game by 

learning features automatically from raw pixels. Instead of 

manually designing features, CNNs learn hierarchical 

representations through their layers—early layers detect 

simple edges and textures, while deeper layers recognize 

complex semantic concepts (Shelke et al., 2024). This 

automatic learning has proven superior to hand-crafted 

features, especially for complex real-world scenarios where 

defining optimal features manually is nearly impossible. 

 

 

2.3 Classification Approaches: From Traditional ML to 

Modern Deep Learning 

Classical Machine Learning Methods 

Support Vector Machines, Random Forests, Decision 

Trees, K-Nearest Neighbors, and Artificial Neural 

Networks represent the traditional toolkit. SVMs with 

radial basis function kernels work particularly well for 

binary classification problems. Random Forest's ensemble 

approach provides some protection against overfitting and 

handles multi-class scenarios reasonably well, though 

performance typically plateaus around 85-92% accuracy. 

These methods shine with smaller datasets (500-2000 

images) but depend heavily on the quality of hand-crafted 

features you feed them. 

Convolutional Neural Networks: The Modern 

Standard 

CNNs dominate image classification because they excel at 

capturing spatial patterns and generalizing to new data. 

Heavy-duty models like VGG19 and ResNet achieve 

outstanding accuracy—VGG19 can hit 99.48% for tomato 

disease classification. However, there's a catch: VGG19's 

model size reaches 76.48MB and requires 40.05 million 

floating-point operations, making it impractical for mobile 

devices (Ahmed et al., 2022). ResNet variants with 50-152 

layers need substantial GPU resources and take over 100 

milliseconds to process a single image on smartphones. 

These architectures were designed for data centers, not 

farm fields. 

Efficient architectures like MobileNetV2 and 

EfficientNetB0 change the equation entirely. MobileNetV2 

achieves comparable accuracy (99.30%) while drastically 

cutting computational overhead to 4.87 million floating-

point operations (Ahmed et al., 2022). Its 9.60MB size 

means it runs on devices with just 2GB of RAM. 

EfficientNetB0 takes a different approach, using 

compound scaling to uniformly adjust depth, width, and 

resolution, achieving peak accuracies up to 99.69% (Nigar 

et al., 2024). These models process images in under 50 

milliseconds on modern smartphones, making real-time 

diagnosis feasible. 
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2.4 What Makes Lightweight Models Efficient 

Understanding why models like MobileNetV2 work so 

well on mobile devices requires looking at their core 

innovations. 

Depthwise Separable Convolution is the key 

breakthrough. This method isolates spatial and channel-

wise filtering, substantially decreasing computation 

compared to standard convolutions (Sandler et al., 2018). 

Instead of processing all channels together, it first applies a 

separate filter to each input channel (depthwise), then uses 

1×1 convolutions to combine the results (pointwise). For a 

3×3 kernel, this reduces computational cost by roughly 9 

times. 

ReLU6 activation functions—defined as min(max(0, x), 

6)—provide bounded outputs that improve numerical 

stability, especially important when quantizing models to 

8-bit or lower precision for deployment on resource-

constrained hardware (Ahmed et al., 2022). 

Inverted residual blocks in MobileNetV2 expand features 

in intermediate layers while keeping inputs and outputs 

narrow, improving gradient flow and representational 

capacity without sacrificing efficiency (Sandler et al., 

2018). 

2.5 System Architecture in Practice 

Practical deployment architectures follow modular designs 

to support real-time farm use. The data flow moves 

sequentially: sensors or users capture data, which flows to 

image processing modules (applying CLAHE and 

segmentation), then to the deep learning model for 

classification, followed by XAI generation (using LIME), 

and finally to output interfaces like mobile applications 

(Jafar et al., 2024). This clear separation allows 

independent optimization of each component. 

For deployment, the architecture loads a compressed and 

optimized DL model (like MobileNetV3-small, with 

parameters reduced to approximately 0.93 million through 

quantization) directly onto mobile devices for fast, on-

device inference (Damaševičius & Maskeliūnas, 2024). 

Supporting both online and offline operation modes is 

crucial for rural areas with limited connectivity. 

 

 

3.) Advantages, Limitations, and Where We're Heading 

3.1 Comparing Different Approaches 

Deep learning models deliver superior performance 

through automated feature learning and strong 

generalization capabilities, often achieving accuracies 

above 99%. However, they're data-hungry—typically 

requiring 10,000+ labeled images—and computationally 

demanding. Training these models needs substantial GPU 

resources, taking anywhere from several hours to days 

depending on dataset size and model complexity. The 

labeling process itself creates a bottleneck, requiring expert 

knowledge and significant time investment. Plus, their 

"black-box" nature makes it hard to understand why they 

make specific predictions (Shelke et al., 2024). 

Traditional machine learning models offer simplicity—

they train faster on smaller datasets (500-2000 images 

suffice), completing training in minutes on standard CPUs. 

But they top out around 85-92% accuracy and depend 

entirely on the quality of hand-crafted features. The feature 

engineering process demands domain expertise and 

iterative experimentation, making it time-consuming and 

potentially suboptimal (Javidan et al., 2024). 

The efficiency gap between heavy and lightweight deep 

learning models is striking. MobileNetV2 matches 

VGG19's accuracy (99.30% vs. 99.48%) while requiring 

approximately 8 times less memory (9.60MB vs. 

76.48MB) and 8 times fewer computations (4.87 vs. 40.05 

million floating-point operations). This efficiency enables 

all-day battery operation and reduces thermal constraints 

on mobile devices (Ahmed et al., 2022). 

3.2 Future Research Directions 

Several persistent challenges need addressing for 

widespread deployment: 

Making Models More Efficient: Ongoing work on 

quantization (reducing precision from 32-bit to 8-bit or 

lower) and compression techniques like pruning and 

knowledge distillation can further minimize model sizes. 

Neural Architecture Search techniques could automatically 

discover optimal lightweight architectures tailored to 

specific deployment constraints (Damaševičius & 

Maskeliūnas, 2024). 

Handling Multiple Problems Simultaneously: Current 

systems typically identify one disease at a time, but real-
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world plants often face multiple challenges concurrently—

diseases, pests, and nutrient deficiencies don't occur in 

isolation. Future systems need multi-label prediction 

capabilities and quantitative severity assessment through 

pixel-level segmentation. Disease progression modeling 

using temporal analysis of image sequences could enable 

predictive diagnostics, catching infections before visible 

symptoms appear (Javidan et al., 2024). 

Building User Trust: Explainable AI methods like LIME 

and gradient-based visualization techniques such as Grad-

CAM provide transparency into model decision-making, 

fostering necessary user trust for agricultural adoption 

(Nigar et al., 2024). However, explanations must be 

presented in agronomically meaningful terms rather than 

technical jargon to be useful for farmers. 

4.) System Architecture Overview 

A practical PDD system connects multiple components 

working together: 

Component Purpose Technologies 

Used 

Data Capture Get images from 

the field 

Smartphones, 

IoT sensors, 

drones, high-

resolution 

cameras 

Image 

Enhancement 

Improve quality 

and focus on 

problem areas 

CLAHE, color 

space 

conversion, 

segmentation, 

normalization 

Disease 

Classification 

Identify the 

specific disease 

Lightweight 

CNNs 

(MobileNetV2, 

EfficientNetB0) 

Explanation 

Generation 

Show why the 

model made its 

decision 

XAI modules 

(LIME, Grad-

CAM) 

User 

Interface 

Deliver results 

and 

recommendations 

Mobile apps, 

cloud reporting, 

SMS alerts 

 

5.) Our Proposed Approach: Combining Efficiency 

with Transparency 

Based on our analysis of current research, we propose a 

hybrid architecture that balances maximum accuracy with 

practical deployability on resource-constrained platforms. 

The system uses MobileNetV2 or EfficientNetB0 as the 

feature extraction backbone. 

How the System Works 

Step 1: Preprocessing and Data Augmentation 

Input images first undergo illumination normalization 

using CLAHE. During training, we apply continuous data 

augmentation—rotating images by ±20 degrees, shifting by 

±10%, horizontally flipping, and zooming by ±15%. This 

significantly improves the model's ability to handle real-

world field variability while preventing data leakage 

(Ahmed et al., 2022). Augmentation effectively multiplies 

training dataset size by 10-20 times, crucial when labeled 

data is limited. 

Step 2: Transfer Learning Foundation 

Rather than training from scratch, we use pre-trained 

convolutional layers from the lightweight backbone as our 

starting point. These layers already know how to recognize 

generic visual patterns from being trained on massive 

datasets like ImageNet (1.2 million images). Empirical 

evidence suggests transfer learning can markedly shorten 

training duration and enhance accuracy, particularly when 

disease-specific datasets are limited (Pan & Yang, 2010). 

This approach typically reduces training time by 60-70% 

and improves accuracy by 5-10% compared to training 

from scratch. 

Step 3: Specialized Classification Head 

The robust feature vector (typically 1280-dimensional for 

MobileNetV2) feeds into a smaller, application-specific 

classification head with shallow dense layers (for example, 

512 → 256 → number of disease classes). This head trains 

from scratch to specialize the general features for our 

specific plant disease classes—say, 38 distinct conditions. 

We include dropout layers (rate 0.3-0.5) to prevent 

overfitting to limited disease-specific training data (Ahmed 

et al., 2022) 
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Step 4: Explainable Predictions 

Each final prediction pairs with a LIME-generated 

explanation. This module visually highlights which image 

regions—like specific lesion spots—most influenced the 

model's decision, providing essential diagnostic context 

that builds user confidence (Nigar et al., 2024). LIME 

works by perturbing the input image and observing how 

classifications change, identifying critical regions. The 

superpixel-based visualization makes it intuitive even for 

non-technical users to understand. 

This integrated framework combining efficiency-

optimized features with transparent decision-making yields 

a robust, low-latency system suitable for real-time mobile 

deployment. Applications like 'PlantCare' demonstrate that 

end-to-end inference (from image capture to explained 

diagnosis) can complete in under 2 seconds on mid-range 

smartphones, enabling practical field usage (Nigar et al., 

2024). 

6.) Conclusion: 

Shifting from traditional visual inspection to AI-driven 

diagnosis is essential for sustainable agricultural 

production, especially given that plant diseases threaten 

one-third of global crop yields annually. Our survey reveals 

that achieving truly deployable plant disease detection 

solutions requires prioritizing lightweight deep learning 

models—specifically MobileNetV2 and EfficientNetB0—

which deliver near-state-of-the-art accuracy (approaching 

99.69%) while maintaining computational footprints small 

enough for mobile deployment (Ahmed et al., 2022; Nigar 

et al., 2024). 

Incorporating Explainable AI, exemplified by LIME, is not 

optional—it's essential for overcoming the "black-box" 

problem and providing users with prediction traceability 

and validation. This transparency isn't just a nice feature; 

it's fundamental for farmer adoption and trust. Looking 

forward, research must concentrate on multi-disease 

detection, quantitative severity assessment, and improving 

model robustness to environmental noise for seamless 

translation from laboratory success to autonomous field 

operation. Combining lightweight architectures, 

explainability, and edge computing represents our most 

promising path toward democratizing advanced plant 

disease diagnostics globally. 

 

7.) Future Research Opportunities 

The persistent challenge of bridging the gap between 

laboratory performance and field deployment needs urgent 

attention. Models trained exclusively on controlled 

laboratory images often struggle with complex field 

conditions—occlusion by other leaves, variable lighting 

throughout the day, and cluttered backgrounds all hurt 

performance (Javidan et al., 2024). Here's where future 

work should focus: 

Improving Training Data Quality and Quantity 

Generative techniques like GANs (Generative Adversarial 

Networks) and Diffusion Models could synthetically 

expand limited datasets, particularly valuable for rare 

diseases affecting less common crops (Shelke et al., 2024). 

These approaches generate photorealistic images with 

controlled disease characteristics, addressing class 

imbalance problems. Self-supervised learning approaches 

could leverage vast amounts of unlabeled agricultural 

imagery to improve feature representations without 

requiring expensive expert labeling. 

Optimizing for Edge Devices 

Continuing post-training model compression and 

quantization work (reducing MobileNetV3-small 

parameters to approximately 0.93 million through 8-bit 

quantization) enables high-accuracy performance on low-

power IoT and mobile devices (Damaševičius & 

Maskeliūnas, 2024). This minimizes bandwidth and 

computational demands for portable field solutions. 

Hardware-aware neural architecture search could design 

models specifically optimized for agricultural edge 

devices. Federated learning approaches might enable 

collaborative model improvement across farms while 

preserving data privacy. 

Advanced Diagnostic Capabilities 

Moving beyond simple disease classification to support 

multi-label predictions (diagnosing several co-occurring 

disorders, pests, or deficiencies simultaneously) represents 

a critical advancement. Integrating pest detection, weed 

identification, and crop growth monitoring would create 

comprehensive agricultural intelligence systems. Temporal 

modeling using recurrent architectures or temporal 

convolutions could track disease progression and predict 

future spread patterns, enabling proactive rather than 

reactive interventions (Javidan et al., 2024). 
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Making Explanations Actionable 

Evolving XAI outputs from simple visual maps to 

integrated decision-support systems that provide specific, 

non-technical treatment recommendations and dosage 

information directly to farmers would greatly increase 

practical value (Nigar et al., 2024). Natural language 

generation could convert visual explanations into plain-

language diagnostic reports. Integrating with agricultural 

knowledge bases and weather data could provide context-

aware treatment recommendations optimized for local 

conditions, crop varieties, and regulatory constraints. 
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