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Abstract – The rapid proliferation of deepfake 

technology poses significant challenges to digital media 

authenticity, necessitating robust detection mechanisms. 

This paper presents a web-based deepfake detection 

system developed using Flask,  

TensorFlow, and OpenCV, designed to classify 

uploaded videos as "REAL" or "FAKE" based on a pre-

trained convolutional neural network (CNN) model. The 

system preprocesses video frames to a standardized 

(None, 128, 128, 3) input shape, leveraging a single-

frame analysis approach for real-time classification. Key 

challenges, including model compatibility, input shape 

mismatches, and prediction biases, were addressed 

during development. Preliminary results indicate 

successful deployment on a local server, though 

limitations in model generalization were observed, with 

all test videos classified as "FAKE." This work 

highlights the feasibility of web-integrated deepfake 

detection and identifies areas for future enhancement  
 

  Deepfake detection has evolved alongside generative 

technologies. Early methods relied on visual artifacts, 

while modern approaches leverage deep learning. Li et 

al. proposed CNN-based detection using frame-level 

features, achieving high accuracy on datasets like Face 

Forensics++. Rossler et al.  introduced the Face 

Forensics++ dataset, pairing real and manipulated 

videos, with Caption models expecting (128, 128, 3) 

inputs—similar to our system’s model.  
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1.INTRODUCTION : 

 
This Deepfakes, synthetic media generated by 

artificial intelligence, have emerged as a dual-edged 
sword—offering creative potential while threatening 
misinformation and trust in visual content. With 
advancements in generative adversarial networks 
(GANs), detecting manipulated videos has become a 
critical research area. Traditional detection methods rely 
on manual analysis or desktop-based tools, limiting 
accessibility. This project introduces a web-based 
solution that integrates a pre-trained CNN model into a 
user-friendly interface, enabling non-experts to upload 
and analyze videos via a browser. 

2. Methodology : 

The development of the deepfake detection system 

followed a structured approach, combining frontend 

design, backend processing, and machine learning 

integration. 

 

3.1 System Architecture : 
 

Frontend: An HTML interface (index.html) with 

JavaScript for asynchronous file uploads via the Fetch 

API, styled with CSS (style.css).  

Backend: Flask (app.py) serves the webpage, handles 

video uploads, and processes predictions, saving files to 

static/uploads/.  

Model: A pre-trained CNN (deepfake_model.h5) 

expecting (None, 128, 128, 3) input, loaded with 

TensorFlow/Keras. 

 

3.2 Video Preprocessing: 

 

Frame Extraction: OpenCV’s cv2.VideoCapture extracts 

a single frame from the uploaded video.  
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Resizing: Frames are resized to (128, 128) using 

cv2.resize() and normalized to [0, 1] by dividing by 

255.0.  

Input Formatting: A batch dimension is added with np. 

expand dims(), yielding (1, 128, 128, 3) for model input.  
 

3.3 Classification: 

 

The model outputs a scalar value (assumed sigmoid-

activated), interpreted as a confidence score.  

A threshold of 0.5 determines the label: "FAKE" if confidence 

> 0.5 else "REAL".  

 

3.4 Deployment  

 

  The system runs locally (http://localhost:5000) 

using Flask’s development server, with debug mode 

enabled for real-time error tracking.  

 
 

3.5 Development Challenges  

Shape Mismatch: Initial attempts to process 10 frames 

((1, 10, 128, 128, 3)) failed due to model 

incompatibility, resolved by switching to single-frame 

analysis.  

File Format: Restricted to .mp4, .avi, and .mov via  

ALLOWED_EXTENSIONS, with codec support 

dependent on OpenCV’s backend. 

 

3. Results :  

 

 The system was tested on a local machine (Windows, 

Python 3.12) with sample .mp4 videos from various 

sources (phone recordings, stock clips). Key 

observations:  

Deployment:: Successfully hosted at 

http://localhost:5000, with a responsive interface for 

video uploads.  

Processing: Frames were consistently resized to (128, 

128, 3), with model input shape verified as (1, 128, 128, 

3).  

Prediction: All tested videos were classified as "FAKE," 

with confidence scores ranging from 0.6 to 0.95 (e.g., 

Prediction: [[0.852]]) 

 

 

4. Conclusion  

 

 This project demonstrates a functional web-based 

deepfake detection system, integrating Flask, 

TensorFlow, and OpenCV to process video frames into a 

(None, 128, 128, 3) format for CNN-based 

classification. The system successfully uploads and 

analyzes .mp4, .avi, and .mov files, delivering 

predictions via a user-friendly interface. However, the 

uniform "FAKE" output indicates limitations in the pre-

trained model’s generalization, likely requiring 

retraining on a balanced dataset or adjustment of the 

classification threshold.  

 

Future work includes:  

Enhancing model accuracy with multi-frame analysis 

(e.g., (None, 10, 128, 128, 3) via LSTM).  

Expanding supported formats with FFmpeg-backed 

OpenCV.  

Deploying on a public server for broader accessibility.  

This system lays a foundation for accessible deepfake 

detection, bridging the gap between AI research and 

practical application.. 
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