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Abstract—Stress has a big impact on people's well-

being, productivity, and health. Automated stress 

detection technologies have grown in value as 

wearable sensors and mobile health tracking have 

proliferated. In order to categorize stress levels based 

on behavioral and biometric data, this research 

investigates the use of five deep learning models: 

Multilayer Perceptron (MLP), Autoencoder + MLP, 

1D Convolutional Neural Network (1D CNN), 

TabNet, and Long Short-Term Memory (LSTM). 

Model performance is compared in terms of 

accuracy, speed, complexity, and interpretability 

using a dataset with 1,000 samples and 10 

characteristics. The findings show that while 

Autoencoder and CNN models offer strong 

substitutes for feature-rich inputs, MLP and TabNet 

models present the most promising balance between 

simplicity and accuracy. The non-sequential nature 

of the data caused LSTM to perform poorly. 

Keywords—Long Short-Term Memory (LSTM), 
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1. Introduction 

Stress has emerged as one of the most prevalent 

psychological and physiological conditions impacting 

modern societies. In today's fast-paced environment, 

stress affects individuals across all age groups and 

professions. Chronic stress, when left unrecognized or 

untreated, can lead to severe physical ailments such as 

hypertension, cardiovascular diseases, diabetes, and 

psychological conditions including anxiety, depression, 

and sleep disorders. Due to its pervasiveness and 

negative implications on personal and professional life, 

the detection and management of stress are of utmost 

importance. 

Traditionally, stress assessment has been conducted 

using standardized psychological questionnaires like the 

Perceived Stress Scale (PSS) or through clinical 

observation. While these methods provide insights into a 

person’s mental health status, they are subjective and 

often require professional involvement. Additionally, 

they may not be feasible for continuous or real-time 

monitoring, which is essential in preventing stress from 

escalating into more serious health issues. This has led 

researchers to explore more automated and scalable 

solutions for stress detection. 

Real-time physiological and behavioral data collection is 

now feasible due to the quick development of 

technology, particularly in the areas of wearable 

electronics and health informatics. Many biological 

signals, such as heart rate, skin temperature, galvanic 

skin response (GSR), and motion-related metrics like 

step count and activity levels, may now be tracked by 

sensors found in gadgets like smartwatches, fitness 

bands, and even smartphones. Building automatic stress 

detection systems that can function in real-time and 

adjust to each user's unique baseline is made possible by 

these continuous data streams. 

The capacity of artificial intelligence (AI), in particular 

machine learning (ML) and deep learning (DL), to model 

intricate and nonlinear relationships in sizable datasets 

has grown significantly at the same time. These methods 

have shown promise in detecting stress by identifying 

small patterns in behavioral and physiological signs that 
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may be hard to spot using traditional statistical 

techniques. 

For stress categorization, traditional machine learning 

methods including Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), Decision Trees (DT), and 

Random Forests (RF) were initially employed.  

These models need meticulous feature engineering, and 

the caliber and domain relevance of the features that are 

retrieved have a significant impact on the model's 

efficacy. Although these models are effective in many 

situations, they frequently fail to capture complex feature 

connections and may not generalize well to new or noisy 

data. 

By offering end-to-end solutions that can automatically 

develop hierarchical representations of the input data, 

deep learning techniques, on the other hand, have 

completely changed the way stress detection is 

approached. Deep learning models are ideal for jobs 

involving complicated and high-dimensional inputs 

because they can recognize high-level abstractions in 

data, especially neural networks with numerous layers. 

In this study, five deep learning models are compared for 

the task of classifying stress using behavioral and 

biometric data: 

1. Multilayer Perceptron (MLP): An input, 

hidden, and output layer feedforward artificial neural 

network type. MLPs offer a balance between computing 

efficiency and model complexity, making them useful 

for modeling tabular data. 

2. Autoencoder + MLP: Unsupervised neural 

networks called autoencoders are employed in 

dimensionality reduction and feature learning. They aid 

in denoising and emphasizing key features by 

compressing and recreating data. An MLP is then used 

to classify the learned characteristics. 

Spatial hierarchies in the input data. 

3. Convolutional Neural Network in One 

Dimension (1D CNN): CNNs were first created for 

image processing, but they have since been modified for 

tabular and sequential data. The 1D CNN architecture is 

appropriate for learning interactions between closely 

related qualities because it employs convolutional filters 

to discover spatial hierarchies in the input data. 

4. TabNet: A relatively recent architecture created 

especially for tabular data, TabNet chooses which 

features to emphasize at each decision stage using 

sequential attention. Its primary benefits are competitive 

accuracy and model interpretability without requiring a 

lot of feature engineering or preprocessing.  

5. LSTM, or long short-term memory: LSTM 

units, a kind of Recurrent Neural Network (RNN) made 

for sequential input, feature a memory component that 

enables the model to hold onto information for extended 

periods of time. LSTM is used in this study to compare 

its performance to other models, even though it is not 

naturally suited for static tabular data. 

The study's dataset, which includes 1,000 samples with 

10 characteristics each, records stress-related behavioral 

and physiological markers. From extremely low to 

extremely high, the stress levels are divided into five 

groups. One-hot encoding categorical targets, handling 

missing values, and feature normalization are examples 

of preprocessing processes. To assess model 

generalization, the data is divided into training and 

testing sets.  

Finding the optimal deep learning model for structured, 

static stress data in terms of accuracy, training time, 

model complexity, and interpretability is the main goal 

of this study. To provide a fair comparison, each model 

is trained and assessed using the same hyperparameters 

and data partitions. 

This research adds to the expanding body of knowledge 

in automated mental health evaluation by utilizing deep 

learning techniques on structured biometric data. It also 

lays the groundwork for the creation of more 

sophisticated, scalable, and intuitive stress monitoring 

systems. 

.2. System Overview 

The suggested stress detection system classifies people's 

stress levels by combining deep learning models with 

wearable sensor data. The system is made to work with 

static biometric and behavioral data that can be gathered 

from wearable platforms or mobile devices in real-time 

or almost real-time.  

 

There are four main parts to the system: 

1. Data Acquisition: Wearable technology is used to 

collect physiological and behavioral data, including 

movement, skin conductivity, temperature, and heart 

rate. For batch processing, this raw data is either kept or 
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sent to a processing unit. Ten important features that 

describe biometric and activity-related variables are 

included in the dataset of 1,000 examples used in this 

study.  

2. Preprocessing Module: A number of preprocessing 

procedures are applied to the raw data, such as: • Using 

statistical imputation (mean/mode) to handle missing 

values. 

 

• Using statistical imputation (mean/mode) to 

handle missing values.  

•  Data normalization by feature scaling with 

Standard Scaler. 

•  For category labels (stress levels), one-hot 

encoding is used.  

•  Dividing the dataset into test and training sets in 

order to verify the models. 

 

3. Training of Deep Learning Models: Five distinct 

deep learning models are used:  

• MLP is a model for a basic neural network. 

• Autoencoder + MLP: Blends supervised 

classification with unsupervised feature extraction.  

• 1D CNN: Looks for local patterns in data using 

filters.  

• TabNet: Selects features for tabular data 

depending on attention.  

• The ability of LSTM to model sequential 

dependencies makes it a benchmark.  

 

Each model is trained using the same hyperparameters 

for fairness: 50 epochs, categorical cross-entropy loss, 

Adam optimizer, and early pausing to prevent 

overfitting. 

4. Stress Categorization and Outcomes: Following 

training, the models distinguish between five stress 

levels: very low, low, medium, high, and very high. The 

output can be used for real-time feedback or further 

analysis. Accuracy, speed, model size, and 

interpretability metrics are recorded for comparison.  

 

This modular architecture makes it simple to include into 

wearable technology or mobile health apps, giving 

patients and medical professionals quick access to 

information about stress levels and facilitating 

preventative intervention techniques. 

 

 

3. Implementation Details 

Using behavioral and biometric data, five deep learning 

models were applied and assessed for the stress 

categorization task in this study. To guarantee a fair 

comparison, all models were trained under the same 

parameters: 50 training epochs, early stopping to avoid 

overfitting, Adam optimizer for effective gradient 

descent, and categorical cross-entropy loss because the 

classification task involved many classes. Each model 

was created to take into account the dataset's 1,000 

samples and 10 features, which were static and tabular in 

form. 

3.1 Multilayer Perceptron (MLP) 

Architecture: 

• Input Layer 

• 64-unit dense layer with ReLU activation. 

• 0.3-dropout-rate dropout layer to minimize 

overfitting. 

• 32-unit dense layer with ReLU activation. 

• Softmax-activated output layer for multi-class 

classification  

Benefit and Use Case: MLPs' ease of use and 

effectiveness make them ideal for structured data. 
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Complex nonlinear interactions between input attributes 

and output labels can be modeled using them. MLPs 

make good baseline models for tabular information and 

are simple to implement and computationally efficient. 

Use Case and Advantage: MLPs are well-suited for 

structured data due to their simplicity and efficiency. 

Complex nonlinear interactions between input attributes 

and output labels can be modeled using them. MLPs 

make good baseline models for tabular information and 

are simple to implement and computationally efficient. 

3.2 Autoencoder + MLP 

Architecture: 

• Encoder: The encoder compresses the input into 

a lower-dimensional representation using dense layers 

with ReLU activation.  

• Decoder: The decoder mirrors the encoder to 

reconstruct the input.  

• Compressed Features: The compressed 

features are taken out of the encoder and supplied to an 

MLP classifier. 

Use Case: Unsupervised feature learning makes use of 

the autoencoder. By identifying key patterns before 

supplying them to an MLP, it improves classification by 

denoising and reducing the dimensionality of the data. 

Performance in generalization is frequently enhanced by 

this combination. 

3.3 1D Convolutional Neural Network (1D CNN) 

Architecture: 

• To identify local trends among nearby input 

features, use the Conv1D layer. 

•  Flatten layer to convert data to 1D vectors. 

• MaxPooling layer to reduce overfitting and 

downsample feature maps  

• Dense layers that are fully coupled and include 

Softmax activation leading to the output layer 

Use Case: Local dependencies and spatial feature 

hierarchies in input vectors can be effectively learned by 

1D CNNs. They work well with structured data where 

relationships between surrounding features are 

significant. They work effectively with organized tabular 

data if there are patterns across feature dimensions, even 

though they were created for sequence data. 

3.4 TabNet 

Architecture: 

• Decision-making processes based on sequential 

attention  

• At every stage, features are chosen using sparse 

attention masks. 

 

Benefit: TabNet is specifically made for tabular data. It 

blends the adaptability of neural networks with the 

interpretability of tree-based models. It provides great 

accuracy and explainability by learning which attributes 

to employ at each decision step. It requires little 

preprocessing and is implemented using the PyTorch 

TabNet package. 

3.5 Long Short-Term Memory (LSTM) 

Architecture: 

• Dense Layer with 32 units. 

• LSTM Layer with 64 units for sequence 

processing 

• Softmax-activated output layer  

 

Use Case: Because of its memory cells that capture long-

term dependencies, LSTM is typically employed for 

modeling sequential or time-series data. LSTM was used 

as a benchmark to assess its performance and 

adaptability in non-sequential, tabular data contexts, 

despite the fact that our dataset is not temporal.  

 

This methodology provides a fair comparison of several 

deep learning models on the same dataset, exposing their 

benefits and drawbacks in the context of stress 

classification using structured biometric data. 
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4. Experimental Results 

Accuracy, training duration, and interpretability were 

used to assess each of the five deep learning models' 

performances. An 80:20 ratio was used to divide the 

1,000 sample, 10-feature dataset into training and testing 

sets. 

4.1 Accuracy Comparison 

• Multilayer Perceptron (MLP): Showed excellent 

performance on tabular data with little adjustment, 

achieving the greatest accuracy of 91.5%.  

 

• Autoencoder + MLP: Accuracy score of 88.2% 

demonstrated the advantages of feature compression, 

albeit it performed marginally worse than MLP alone. 

 

•  1D CNN: Captured spatial associations between 

features with an accuracy of 89.1%.  

 

• TabNet: A strong option for explainable AI 

applications, it achieved 90.7% accuracy while retaining 

great interpretability.  

 

• LSTM: Because the dataset is non-sequential, 

which is not ideal for recurrent architectures, LSTM had 

the lowest score of 83.4%. 

 

Model Suitable 

For 

Notes 

MLP Tabular data Best 

baseline 

model 

Autoencoder+MLP Feature 

compression 

Good for 

noise 

reduction 

1D CNN Structured 

features 

Finds local 

feature 

interactions 

TabNet Tabular data Advanced, 

interpretable 

LSTM Sequential 

data  

Use only if 

you convert 

data to time 

series 

 

4.2 Training Time and Complexity 

• MLP: Lowest computational cost and fastest 

training time.  

• Autoencoder + MLP: The unsupervised 

pretraining stage results in a moderate training time. 

• 1D CNN: Moderate to high complexity; 

convolution operations take longer to train.  

• TabNet: Due to attention processes, training 

was a little slower but still within reasonable bounds.  

• LSTM: Has little performance improvement, is 

the most computationally costly, and converges slowly. 

 

4.3 Model Interpretability 

• By using attention-based feature selection, 

TabNet had the best interpretability. 

• Whereas MLP and Autoencoder + MLP had 

mediocre interpretability. 

• CNN and LSTM were more opaque, making 

them less ideal for clinical or user-centric deployments 

where explanation is critical. 

In conclusion, TabNet and MLP offered the best trade-

off between explainability, speed, and accuracy. While 

Autoencoder + MLP demonstrated promise in improving 

classification through unsupervised learning, CNN 

provided a good substitute for richer feature sets. Static 

biom5 was less successful with LSTM than sequential 

data. 

5. Results and Related Work 

Confusion Matrix Observations: 

• MLP and TabNet had minimal misclassification. 
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• CNN and Autoencoder struggled slightly on 

middle classes (3 vs. 4). 

• LSTM misclassified more often due to data not 

being time-dependent. 

 

Related Work  

Existing literature has investigated various models for 

stress detection, including classical ML methods and 

newer deep learning approaches. For instance: 

• Kim et al. (2020) used CNNs on wearable sensor 

data, showing high accuracy. 

• TabNet, introduced by Google Research, has 

shown strong performance on tabular data with improved 

interpretability. 

• Autoencoders have been employed to extract 

compressed features from noisy biosignal inputs before 

classification. 

Despite these advancements, few studies have compared 

multiple deep learning models side-by-side on the same 

structured stress dataset. This paper addresses that gap. 

 

5. Conclusion And Discussion 

This study explored deep learning models for stress 

detection on a biometric dataset. The results show: 

• MLP and TabNet offer the best performance 

overall. 

• Autoencoders and CNNs are valuable for 

specific use cases. 

• LSTM is not recommended for non-sequential 

data. 

Future work includes using real-time sensor data, 

deploying models on mobile platforms, and exploring 

hybrid models combining CNN and attention 

mechanisms. 

 

Discussion 

 

MLP performed well due to the low-dimensional, tabular 

nature of the dataset. It trained quickly and reached high 

accuracy with minimal tuning. 

TabNet, though more resource-intensive, provided both 

high accuracy and interpretable outputs (e.g., feature 

masks showing which input contributed most to 

prediction). This makes it a strong candidate for real-

world deployment. 

The Autoencoder+MLP model showed robust 

performance, especially if future data includes noise or 

missing values. CNN performed well but lacked 

interpretability. 

LSTM, while powerful for sequence modeling, is less 

suited for static tabular inputs and hence 

underperformed. 

 

 

 

 

 

 

 

Model Test 

Accur

acy 

Spee

d 

Comple

xity 

Interpreta

bility 

MLP 88–

91% 

Fast Low Medium 

Autoenc

oder 

+MLP 

87–

89% 

Fast Medium Medium 

1D CNN 88–

90% 

Medi

um 

Medium Low 

TabNet 89–

92% 

Medi

um 

High High 

LSTM 78–

82% 

Slow Medium Low 
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