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Abstract— The idea of IIoT had grown at a very faster pace 

and it brought huge cyber security risks, especially to cyber- 

attacks. To mitigate the above-discussed threats, the 

convolutional neural network (CNN) and Long Short-Term 

Memory (LSTM) network Intrusion Detection System (IDS) 

model is introduced. This model improved the detection 

accuracy because the network traffic data from the IIoT 

network has both spatial and temporal dependencies. To test the 

proposed methods, we used the UNSW-NB15 dataset 

comprising of 175,341 records 49 features applied binary 

classification (normal and anomalous traffic) and multiple 

classification (9 classes of attacks). It started with feature 

scaling, missing data management and finally categorical data 

transformation. CNN layers capture spatial feature and LSTM 

layers capture the temporal feature. We employed the 

optimization algorithm Adam to train the model, and dropout 

layers were used to minimize over fitting. I used evaluation 

measures for evaluating effectiveness. Integration of CNN and 

LSTM models into a single architecture was shown to give much 

higher accuracy compared to the models where only one of the 

two was used; the accuracy for the binary classification came 

out to be 97% while for multi classification the accuracy was 

99%. Compared with the previous results, false positive rates 

were much lowered, so the performance of the model for 

detecting both previously known and new attacks was 

demonstrated. The result obtained from the study show the 

effectiveness of the proposed hybrid approach that can be used 

to protect IIoT networks. Further developmental work will 

target optimality for real-time IIoT applications and enhancing 

the system’s applicability within vast IIoT systems. 

 

Keywords: Intrusion Detection System (IDS), Sequential Data 

Classification, Anomaly Detection in Networks, Real-time Threat 

Detection, Network Traffic Analysis, Industrial Internet of 

Things, Industrial Internet of Things (IIoT). 

1. INTRODUCTION 

IIoT also re-defines the industrial environments for 

operations that are described by smart affairs and more 

enhanced connectivity. This reconfiguration also enables the 

actualization of data exchange between different subsystems 

to improve automation & control actions. In industries like 

manufacturing, transportation, energy and healthcare the 

usage of IIoT has shown positive impacts in different areas 

of business and enhanced profitability by cutting down costs 

and raising productions. For instance, the application of IIoT 

in carrying out predictive maintenance makes it possible for 

companies to determine when an equipment is likely to 

develop a fault hence reducing the rate of even comparably 

high downtimes and maintenance expenses greatly. Also, 

IIoT drives innovation since industries can use big data 

analysis to determine the best ways to improving processes 

and quality of products. IIoT continues to grow in that many 

connected devices bring up a system interconnectivity that 

may be challenging to trace, Thus, it is essential to realize all 

of one's potential to address organizational and other needs 

while placing adequate and strong security measures around 

it. 

While, IIoT has the capability of revolutionize many 

industries, it has with it, precluded the numerous security 

risks associated with interconnected systems. A vast majority 

of IIoT devices are characterized by limited CPU capabilities, 

especially if they are rather traditional ones. These devices 

thus end up as juicy prospects for cyber threats as they may 

slow business, alter secured data, and in extreme cases 

jeopardize the lives of the employees. As many IT security 

experts have pointed out, even firewalls are inadequate in 

face of the new and constantly emerging cyber threats. These 

solutions typically present very high false positive rates 

hence degenerating into alert fatigue. Moreover, as new 

strategies evolve over time, conventional measures to counter 

cyber threats are insufficient or all together, thus leaving 

critical vulnerabilities in current organizational security 

frameworks. 

 

Indeed, the rise of these new and constantly emerging 

threats has shown that the technological landscape of the IIoT 

needs solutions that are considerably more agile than 

traditional security approaches. Learning approaches have 

attractive the cartridges of the cyber security area yet; 

intrusion detection systems are not completely made from 

different techniques. Unfortunately, majority of the current 

models has some drawbacks as for the universality of their 
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performance concerning different varieties of attacks and 

network environments. In addition, conventional machine 

learning approaches call for feature engineering and can lack 

generalization when new attack types are employed, which 

cause degradation of performance in response to the complex 

attack phase. Therefore, numerous opportunities for the 

subsequent creation of stable adaptive IDS systems remain 

open that could protect IIoT networks from threats, the 

detection of which is complicated by the heterogeneity and 

high variability of systems. 

 

In an effort to address this gap, this paper presents new 

CNN-LSTM based IDS for the hybrid intrusion detection 

system. This study's objective is to provide a model that 

builds upon the success of both architectures, where CNN 

detects spatial features in network traffic, while LSTM can 

learn temporal patterns. As a result, our method combines 

both strategies in a way that will enhance IDS accuracy and 

decrease false positives, both of which will increase IIoT 

network security. The proposed model is also proposed to be 

dynamic in responding to the dynamic nature of the threats in 

the cyber space and give more real time information on the 

security of a network. 

Our work uses the UNSW-NB15 dataset which is one of 

the most popular datasets in NSL, containing different types 

of attacks and normal traffic. This dataset allows for an 

accurate evaluation of the suggested hybrid model's 

performance in terms of both multi-class classification of 

different attack types and binary classification (normal/non- 

normal traffic). The results of this study will be helpful in 

expanding our knowledge of how well hybrid deep learning 

techniques function in the context of IIoT intrusion detection. 

Finally, the purpose of this study is to create foundation for 

subsequent research and development of cyber security 

solutions specific to industrial use and deployment of IIoT, 

thereby enabling organizations adequately protect their 

industries and unlock the potentials afforded by these 

technologies. 

 

2. LITERATURE REVIEW 

With their primary function being to detect any 

infractions on the network traffic streams, NIDS have 

become essential components of network security. Numerous 

approaches that use a broad range of methodologies have 

been well documented in the literature. These vary from 

traditional rule-based systems to the most recent cutting-edge 

advanced techniques like deep learning techniques. 

Recently, Kumar and Singh proposed an attention- 

enhanced CNN-LSTM model with 99.2% detection accuracy 

and a 0.3% FPR (False Positive Rate) when tested with CIC- 

IDS2023 data set. Their approach worked in tandem to 

weight the spatial and temporal features and analysed 1024- 

byte packets in real-time. The main drawback was high time 

consumption with the overall time of model inference equal 

to 4.2 seconds, which does not allow applying the proposed 

approach to IoT constrained peripheral devices [1]. 

Another work done by Zhang et al. (2023) presented the 

CNN-LSTM model for IoT networks and examined a result 

of 98.7% of accuracy on UNSW-NB15. Their methodology 

integrated 1D convolution layers to learn spatial feature and 

LSTM layers to detect temporal pattern and analyzed network 

traffic in 100ms time slots. But in the zero-day attacks their 

model reduced the performance (to 92.3% accuracy), which 

prove the necessity for better generalization in the unknown 

attack scenarios [2]. 

 

 

Wang et al. (2023) designed a lightweight CNN-LSTM 

model targeting the industrial IoT network to learn a small 

model with a high accuracy of 97.8% by minimizing 3.2 MB 

memory size. Their approach began with feature selection 

that used the principal component analysis feature to input 

data into the hybrid architecture. Regarding the identification 

of the presented multistage attacks, the findings demonstrated 

89.3% accuracy of the detection of the basic attack scenario, 

and 85.6% for the complex attack scenarios that involves 

many stages [3]. 

Liu and Chen (2024) put forward a transformer-enhanced 

CNN-LSTM model, which can parse TON_IoT dataset with 

99.5% accuracy and 98.7% recall. It complied into self- 

attention mechanisms into the conventional CNN-LSTM 

configuration, with input in the form of network flows in 

50ms buckets. The main disadvantage was that the model is 

affected by the network jitter and it was revealed that its 

performance was 12% lower when the network was unstable 

[4]. 

Stores of corresponding statistical indices for the intended 

dataset BoT-IoT as follows: The CNN-LSTM with traditional 

machine learning achieved 99.10% accuracy and a 0.20% 

false-positive rate as mentioned in Patel et al. (2023). In their 

work, they employed a voting process between deep learning 

and random forest classification devises. The kinds of results 

the tool produced included: The major concern revealed was 

the latency of 2.8 ms, which set an obvious constraint in 

perfecting the real time detection over high speed networks 

[5]. 

Transfer Learning on CNN-LSTM for NASDAQ attack 

classification was done in the work of Rodriguez et al. (2024) 

with 96.9% accuracy on zero-day attacks, pre-training on 

several datasets. In their approach, feature extraction was 

done through the use of a complex flow statistics fusion with 

per-packet features. However, the model demonstrated an 

overall detection rate higher for those classes with majority 

attacks and a detection rate of as low as 78.3% [6] for a 

minority attack class. 

Yamamoto and colleagues (2024) proposed a pioneering 

FL approach to distributed CNN-LSTM based intrusion 

detection in different industrial IoT networks, which had 

significant improvements in the testing models. On the newly 

launched Industrial-IDS2024 dataset, their system achieved 

the accuracy of 99.3%, and a modest 96.8% APT detection. 

The employed methodology included an innovative training 

approach that ensured that many facilities trained the model 

concurrently without sharing network data; doing 2.5TB of 

network traffic daily, across 15 distinct industrial sites. The 

first promising change involved their learning rate where they 

utilized a method that could detect and vary according to 

network conditions and threats. Nevertheless, their approach 

is highly sensitive to communication overhead; they 

exchange 1.2GB of parameter updates in an every iteration of 
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training and reported variability of detection rate, which by 

protocol an industrial protocol with lesser known detection 

rate of 88.5%. 

Chen et al (2024) proposed a novel quantum-inspired 

CNN-LSTM that improved the efficiency to process and 

detect new intrusion in the network. With this hybrid 

approach they were able to obtain an accuracy of 99.7 % 

using a broad QIDS-2024 database and decrease the 

computational load by 45 % compared to the algorithms 

based on the DL. The method used a quantum-inspired neural 

network which used amplitude encoding to encode features 

and quantum state superposition principles to parallelly 

process flows in the network. They said that their system 

could handle up to one million packets per second with a 

latency of only half a millisecond, hence the devices would 

well compatible with today’s 5G and the future 6G networks. 

This work evidenced a very high detection capability 

especially on the encrypted ones with 97.8% on SSL/TLS 

based threats. However, the system had some drawbacks 

concerning the hardware demand and had to be based on 

really specific, quantum-inspired processors and had some 

stability problems when exposed to highly imbalanced attack 

distributions; the performance may vary within 15 percent 

across different attack categories [8]. 

In conclusion, in spite of the discussed advances in the 

performance of NIDS with the use of different learning 

methods, there are noted important issues related to the 

generality of the proposed solutions, possibility of their 

flexible implementation, and their applicability in real-time 

evaluation conditions. Future studies should endeavor to look 

at more flexible and stable models of invasion detection to 

improve the model. 

• Flow features (e.g., source/destination IP, ports, 

protocols) 
• Basic features (e.g., duration, packets, bytes) 

• Content features (e.g., TCP flags, window size) 

• Time-based features 

• Additional generated features 

 

Key Features: 

• Approximately 2.5 million records 

• 49 features per record 

• Diverse attack types and normal traffic patterns 

 
Attack Categories: 

Some of the Attack types and their examples are 

mentioned below in the Table 1. These attacks types are 

mainly used in our proposed solution for training and analysis 

of the model. 

3. METHODOLOGY 

This paper investigates the designing of a combined 

CNN-LSTM IDS for IIoT networks with a step by step guide 

to NIDS. Data pre-processing and feature scaling of the 

gathered dataset, which includes both regular traffic and 

traffic produced by various attack types, are the next steps in 

the process after data collecting and cleaning. Designing 

CNNs and LSTMs, which are capable of capturing spatial 

patterns in the traffic matrices and learning temporal patterns 

in the traffic flow respectively, a hybrid model is developed 

to model the network traffic. To the model end appropriate 

optimizers, loss function and regularization techniques are 

applied to train the model so that over fitting may not occur. 

Using important metrics like precision, exactness, and recall 

in addition to the F1-score, its effect on total intrusion 

detection and IIoT cyber security is evaluated. 

3.1 Selection of Data Resources: 

3.1.1 UNSW-NB15 Dataset Overview: 

The basic data source chosen for our analysis is the 

UNSW-NB15 dataset since it covers modern network traffic, 

attacks, and their distribution. Collected by the Cyber Range 

Lab of the ACCS, this dataset is characterized by normal and 

attack traffic to resemble real IIoT network conditions. The 

dataset comprises approximately 2.5 million records with 49 

features, categorized into: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Attack Categories 

3.1.2 Dataset Relevance to IIoT: 

The applicability of the considered dataset for IIoT 

intrusion detection can be explained by: 

✓ Many typical attack styles that mimic current threats 

✓ The traffic flow similar to IIoT environment. 

✓ With rich feature set including both the network and 

host features. 

✓ High quality and well-documented ground truth 

labels. 

There is enough volume in this dataset to train a deep 

learning model from the ground up. 

Attack Type Description Examples 

Fuzzers Attempts to crash 

programs/services 

Buffer 

overflows, 

format string 

bugs 

Analysis Scanning and analysis 

of network 
vulnerabilities 

Port scans, 

spam activities 

Backdoors Unauthorized access 

via stealthy methods 

Rootkits, 

Trojan horses 

DoS Denial of Service 

attacks 

SYN flood, 

UDP flood 

Exploits Taking advantage of 

system vulnerabilities 

SQL injection, 

code injection 

Generic Attacks against 

cryptographic ciphers 

Birthday 

attacks, 

collision 
attacks 

Reconnaissance Gathering information 

for future attacks 

Network 

sniffing, ping 

sweeps 

Shellcode Payloads used in 

exploitation of 

vulnerabilities 

Reverse shells, 

bind shells 

Worms Self-replicating 

malware 

Conficker, 

Stuxnet 
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3.2 Data Preprocessing Pipeline: 

In view of this, proper implementation of data 

preprocessing is central to the development of a good IDS. 

When we are implementing our preprocessing technique we 

use the following steps: feature selection, data cleaning, data 

normalization, and data partitioning. 

3.2.1 Feature Selection and Engineering: 

The interaction between feature selection and feature 

engineering was particularly helpful in improving the 

performance of the models. Firstly, to minimize redundancy 

and optimize computation, the correlation matrix was used to 

eliminate high-correlated features, with correlation 

coefficient of more than 0.9. The measure of information gain 

was used next to order the features as much as possible based 

on their usefulness as predictors of the target variables, then 

domain knowledge was applied to filter out irrelevant 

features. In addition, the feature engineering process created 

new variables like Packet Rate which was packets divided by 

the duration Packet Rate = packets/ duration, Bytes per 

Packet Bytes per Packet = Bytes/packets as well as time 

window feature where counts cycle was done over temporal 

periods to capture temporal characteristics of the network 

traffic. These engineered features contributed to more 

informative inputs for the model, improving its ability to 

detect network intrusions. 
 

Fig. 1: Pie Chart Distribution of Normal and Abnormal 

Labels for Multi class Classification 

In the Fig.1, pie chart illustrates the distribution of various 

cyberattack types in a dataset. "Normal" traffic is the largest 

category, making up 48.66% of the entire aggregate. 

"Backdoor" and "Fuzzers," which account for 24.01% and 

19.94% of the data, respectively, are the next and third most 

significant categories. Other attack types, including 

"Reconnaissance," "Exploits," "Analysis," "DoS," "Worms," 

and "Generic," constitute smaller portions of the dataset. This 

visualization provides a valuable overview of the prevalent 

cyberattack trends in the analyzed data. 

3.2.2 Data Cleaning and Normalization: 

Data preprocessing plays a significant role in pushing 

forward the construction of a good machine learning model 

because it enhances the quality of data that feeds the model. 

In this section, we explain how missing values were dealt 

with, the process of encoding categorical features and how 

numerical features were normalized. 

3.2.2.1 Handling Missing Values: 

Dealing with data missing is crucial; this would avoid the 

model to be influenced by records that have missing 

information. For the numerical data, a different approach was 

made than for the categorical data in order to yield proper 

quality of data. 

• Numerical Features: The Missing values in 

numeric columns are now given using median value 

of the column. Median is preferred over average 

because it is not sensitive to outliers. For example, 

if a column with a network traffic duration contains 

missing values. To fill up the blank, the column's 

median value is computed. This method makes sure 

that no impossible processes are distorted by 

extreme values (such as periods of exceptionally 

heavy traffic). 

• Categorical Features: For categorical variables, 

the most common category, mode, was used to fill 

in missing values. This method ensures that the 

general behavior of the data record is reflected in the 

assignment. For example, if the "service" function, 

which indicates that the network usage type is being 

used, contains missing values, the most popular 

service type is selected. 

• Feature Dropping: Columns that had more than 

30% missing values were dropped from the dataset, 

as imputing such large amounts of missing data 

could introduce significant bias or errors. For 

instance, if a feature like “attack_type_description” 

had over 30% missing values, it was removed from 

the analysis. This threshold was chosen based on the 

balance between data preservation and quality, 

ensuring that the most critical features are retained 

while discarding unreliable ones. 

3.2.2.2 Categorical Encoding: 

Because the machine learning models cannot react to 

categorical data directly, it needs to treat these as numerical 

ones. Two encoding techniques were used: 

• One-Hot Encoding for Nominal Variables: 

Regarding the variables which do not have a 

sequential orientation, for example ‘protocol’ (TCP, 

UDP …) we utilized one hot encoding. This 

technique converts every category such that it is 

easier to analyze. For example, if the “protocol” 

column has three distinct values (TCP, UDP, 

ICMP), it is converted into three separate binary 

columns: one for each protocol. In other words, each 

row will be a one vector with the 1 at the position of 

the protocol in the row and 0 elsewhere. 

• Label Encoding for Ordinal Variables: In cases 

where the different values of the factor are ordered 

(for example, the levels of service), it rose dummy 

encoding to the level of label encoding. Such 

technique provides an integer value to each category 

on the basis of categories. For Ex., if the attributes 

of “service” domain can be “low,” “medium,” and 
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“high,” then these are assigned the numbers 0, 1, and 

2, respectively. 

 

 

3.2.2.3 Feature Scaling: 

When one of the numerical features has a large magnitude 

while another has a small one (for example, the first 

represents bytes transferred and the second – packets sent) the 

feature scaling has to be performed to make the values in the 

features comparable. This bars the larger values from 

exaggerating the impact of the model in relation to the feature 

being under consideration. 

• Min-Max Normalization was used later to 

normalize the numerical features that were scaled to 

values within the range of 0 and 1.. This technique 

means that all the features will make equal 

contribution towards the model. The formula used is 

as follows: 

same ratio as the entire data set. This is particularly true if 

working with imbalanced datasets such as in intrusion 

detection, where some type of attacks may be rare. 

 

 

1. First Split (Train-Test Split): 

– The first step involves partitioning of the 

entire data into training data set and the test 

data set with 85% and 15% respectively. 

85% for training and 15% for testing. This 

division is helpful to guarantee that the test 

set would be an example of the overall data 

set. 

– Test Size: 15% of the dataset is allocated 

to the test set. 

– Stratification: Ensures that the proportion 

of attack types remains consistent in both 

the training and test sets. 
𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

 

Where the: 

= 
  𝑋−𝑋𝑚𝑖𝑛   --- eq (1) 
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛 2. Second Split (Train-Validation Split): 

– The training set was further divided into a 

– X is the true feature value 

– Xmin is the min value of the feature 

– Xmax is the max value of the feature 

Applying normalization helps model converge 

quicker during training & reduces the chances of 

biased weight updates. 

3.2.3 Data Partitioning 

It is important in machine learning so as to have a model 

that can perform well on unseen data by partitioning the data 

correctly. The dataset is split into three subsets: data splitting 

in to training set, validation set and the test set. These sets 

serve different purposes in the model development lifecycle: 

• Training Set (70%): This subset is used to train the 

model In order to achieve this the following data sets 

are created; Based on this data, the model updates 

parameters to minimize error in outcome estimate of 

the target variable. 

• Validation Set (15%): This set is utilized in the 

course of constructing models to enhance hyper 

parameters and avoid over fitting. The loss is 

measured on the validation set after every epoch and 

if it begins to misbehave, a stop is made there and 

then. 

• Test Set (15%): Conversely, the test set is only 

utilized to evaluate the results of the most recent 

model that was constructed. These variables, which 

provide an indication of how well the model would 

generalize on unknown data, were not employed 

during model training. 

3.2.3.1 Data Splitting Procedure 

In order to maintain a balanced distribution of attack types 

for all the subsets, we employed a stratified sampling 

technique. One advantage of stratified sampling is that each 

subset has a representation of attack types (or labels) in the 

smaller training set (70 percent of the 

original dataset) and a validation set (15 

percent of the original dataset) after the 

data had been divided into training and test 

sets. The validation set was chosen because 

it is utilized in model selection and 

hyperparameter tuning. 

– Validation Set Size: The validation set is 

about 0.15 of the overall amount of 

information. This is realized albeit taking 

85 % of the total sample size and splitting 

it by a test size of 17.65 %. 

– Stratification: The same approach is used 

to have equal distribution of the attacks in 

relation to the stratification layers. 

3.2.3.2 Preserving Class Distribution 

Due to the UNSW-NB15 dataset's uneven sample 

distribution, this was especially crucial. Lacking this step, 

some attack categories (which may be seldom) may not be 

included in both the test or validation sets, which makes no 

sense in terms of model generalization. If the number of 

instances in a class is balanced it is easier to detect all types 

of intrusions throughout both the training and the evaluating 

phases of the model. 

Summary of Splits: Training data : 70% of total Training 

data set Testing data :15% of total Training data set & Testing 

data set 

By using stratification in both the splits, the model learns 

from and is tested on parts of the data that are sample 

representative thus enhancing flexibility in terms of 

generalization. 

Analysis of the results shows that data preparation, 

cleaning, normalization, and proper division of data for 

training and cross-checking provide high quality model feed 

to the intrusion detection model. This process minimizes 

cases of over fitting, enhances the models’ performance and/ 
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or accuracy, and guarantees that the final model, if at all, will 

be adaptable to real IIoT network traffic. 

3.3 Hybrid CNN-LSTM Model Architecture: 

In this section We introduce a novel model that integrates 

CNNs and LSTM networks to take the best of both to detect 

intrusion in Industrial IoT (IIoT) networks. The CNN 

component aims at capturing spatial relationships of the input 

network traffic data, and the LSTM component aimed at 

capturing the temporal relationship of the sequences making 

it possible for the system to detect modern and constantly 

developing cyber threats. 

3.3.1 CNN Component Design: 

The CNN architecture is designed to identify and extract 

spatial features from network traffic data, such as patterns 

within packet payloads or connections over a short duration. 

The model shown in Fig. 2 begins with an input layer, which 

accepts data structured according to the number of features in 

the dataset (for example, the 49 features of the UNSW-NB15 

dataset). This input is then processed by several 

convolutional layers that apply filters to detect local patterns 

in the data. Each filter slides over the input data and performs 

a convolution operation, which captures different spatial 

characteristics, such as the relationships between packet size, 

duration, and protocol used. 
 

Fig. 2: Architecture of CNN 

The CNN layers perform the following computation: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏) --- eq (2) 

where: - W represents the convolutional kernel weights - 

* denotes the convolution operation - b is the bias term - 

ReLU is the activation function: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) --- eq (3) 

To add nonlinearity and enable the model to recognize 

increasingly intricate patterns and relationships, a folding 

equation employs the activation function of a resolved linear 

unit (Relu). He makes sure that only the most crucial 

attributes are transmitted to the following layer by 

eliminating negative values. The maximum pooling layer is 

used to reduce data according to the activation function, 

reduce its dimensions, and maintain its most prominent 

functionality. This pooling technique also improves the 

generalization of the model by reducing the possibility of 

excessive adaptation and acceleration of calculations in the 

next layer 

After each folding and pooling operation, stacking 

formalization is used to stabilize the training process and 

accelerate convergence. By modifying and scaling each layer, 

stacking-in-Normalization makes the model's learning 

process more stable and less susceptible to over adaptation or 

explosion gradients. This combination of folding, activation, 

pooling and normalization ensures that CNN components 

extract meaningful, compact spatial representations of 

network traffic data that are very important for the later stages 

of the model. 

3.3.2 LSTM Component Implementation: 

CNN components that handle continuous parts of network 

traffic data use long short-term storage levels (LSTM) for 

spatial information extraction. Because LSTMS makes it 

possible to detect long-term dependencies inside a sequence, 

it performs especially well over time series. In network 

traffic, LSTM networks are able to detect potential Cyberm 

Reets. Temporal characteristics including frequent attempts 

to connect, typical package sizes, and irregular data 

transmissions can show this. 

The LSTM layer is composed of memory cells that can be 

adhered to important information over a long period of time, 

as seen in Figure 3. This is good for identifying patterns of 

sequences that can include several time steps in the relevant 

information. Sequence data is processed by each LSTM layer 

and changes it as an answer to the input whenever you change 

each LSTM layer (called cells and hidden conditions). Three 

key components: forgetting, input and output gates allow the 

network to selectively access or forget data and concentrate 

on important patterns, while simultaneously removing 

unimportant details. 

 

Fig. 3: Architecture of Long Short Term Memory 

LSTM computations follow these equations: 

✓ 𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) --- eq (4) 

✓ 𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) --- eq (5) 

✓ 𝐶̃ 𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶̃ · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶̃) --- eq (6) 

✓ 𝐶̃𝑡 = 𝑓𝑡 ∗ 𝐶̃𝑡−1 + 𝑖𝑡 ∗ 𝐶̃ 𝑡 --- eq (7) 

✓ 𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) --- eq (8) 

✓ ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶̃𝑡) --- eq (9) 

Where: - f_t: forget gate - i_t: input gate - C_t: cell state - 

o_t: output gate - h_t: hidden state 

To prevent the model from overfitting, dropout layers are 

introduced after each LSTM layer. By randomly deactivating 

some of the LSTM units during training, dropout drives the 

model to learn more robust representations of the data instead 

of relying too much on any one pathway. The model can 

efficiently capture the sequential dependencies in network 

traffic data while retaining generalization capabilities thanks 

to the combination of LSTM layers and dropout. 

 

3.3.3 Hybrid Model Integration: 

http://www.ijsrem.com/
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𝑖=1 

The Hybrid-CNN-LSTM architecture combines the 

temporal modeling performance of LSTM with the spatial 

functional functions of CNN. Combining these two elements, 

the model can also identify long-term time dependencies 

(repeat or circular pattern of network activity) and local 

spatial patterns (such as correlations between package size, 

protocol, and duration). 

The Hybrid CNN + LSTM proposed model architecture 

is shown below in Fig. 4. 
 

 

Fig.4. Architecture of Hybrid CNN+LSTM Model 

In the integrated model, the output from the CNN 

component (which contains spatial feature representations) is 

flattened and reshaped into a suitable format for the LSTM 

layers to process. This transformation is necessary because 

the LSTM component expects sequential input. Once the data 

is formatted, it is passed through the LSTM layers, which 

model the temporal dependencies in the sequence of spatial 

features. 

After the LSTM layers have processed the sequential 

data, the output is passed through a series of fully connected 

(dense) layers, which combine the learned spatial and 

temporal features into higher-level representations. These 

dense layers apply further transformations to the data, 

allowing the model to make final predictions. A ReLU 

activation function is applied in the dense layers to introduce 

non-linearity, followed by another dropout layer to prevent 

over fitting. 

All possible classes such as malware, DOS attacks, 

normal traffic, etc. are accepted by the SoftMax output layer, 

which is the final level of the model. At this level, the model 

can classify network traffic for many groups based on the 

patterns found. The S-like output function can be used in 

place of softmax for binary classification jobs (such as 

normal or storm). A cross-category loss function that 

determines the inconsistency between the true label and the 

predicted probability that trains this model. 

To ensure that the model gets better at making predictions 

over time, an optimization technique like Adam is utilized to 

reduce this loss during training. 

The proposed architecture uses the advantages of both 

models. CNNS is a CNN and LSTM for extracting important 

spatial patterns to record the temporal dependencies of 

network traffic. This combination is highly effective in 

intrusion recognition in IIOT environments, with both spatial 

and temporal data playing a critical role in identifying 

potential threats. The hybrid approach allows the model to 

recognize both direct anomalies in network traffic and long- 

term patterns that show more subtle and persistent threats. 

3.4 Training Process: 

There are several critical elements in the training process 

enable hybrid CNN-LSTM models to efficiently learn and 

recognize IIOT network infiltration patterns based on input 

data. Evaluation criteria, optimization strategies, and training 

methods all have a significant impact on model performance. 

3.4.1 Optimization Strategy: 

Apply Adam optimizer with your model training in order 

to maximize the results. This is typically the case with the 

optimization step. Adam is a well-known optimization 

algorithm since it incorporates the advantages of both 

Adaptive Gradient Algorithm (ADAGRAD) as well Square 

Outbreak (RMSPROP). The use of impulses to speed up the 

descent of the gradient’s constituents enhances convergence 

and reduces vibration of the model. The training rate for the 

model is 0.001. This is an average value that defines the 

balance between rapid convergence and the stability of the 

model. 

 

For the moment and its decay estimation in the optimizer, 

there are two βs which are: β1 and 2. In the optimization 

algorithm, we set β1 to 0.9 for the gradient's running average 

and set β2 to 0.999 for the gradient's squared running average. 

There are values that are helpful in avoiding the noisy 

gradient consequences and helps in faster convergence of the 

optimizer especially in large datasets like UNSW-NB15. 

Also for optimization purposes, an epsilon value of 1 × 10-7 

is added to help eliminate the division by zero errors. 

 

The model training utilizes a loss function termed 

categorical cross-entropy. This loss function measures the 

distance between the actual labels and the expected 

probabilities for classification problems with multiple 

classes. This loss is decreased over the training steps, 

increasing the prediction accuracy from the model through 

the Adam optimizer. 

The categorical cross-entropy loss function was used: 

𝐿 = − ∑𝐶̃  𝑦𝑖 log(𝑦 𝑖) --- eq (10) 

Where: - C is the number of classes - y_i is the true 

probability of class i - ŷ_i is the predicted probability of class 

i 

3.4.2 Training Configuration: 

To train the model, a predefined training process is set up 

for 100 epochs meaning that the model will see the whole 

training dataset 100 times. The batch size is defined as 32, 

thereby the model processes 32 samples at once before 

adjusting its parameters. Batch sizes like 32, which are 

smaller, are often preferred since they help strike a balance 

between efficiently using memory and training the model 

fast, hence helping the model learns without having to spend 

a lot of computational resources. 

In order to help the model generalize well to new data, 

overfitting is avoided through early stopping. This method 

http://www.ijsrem.com/


         
            International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 04 | April - 2025                              SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM46403                                            |        Page 8 
 

attempts to halt the validation loss and if there is no 

improvement for a patience of 10 epochs, then the model is 

stopped. Overfitting occurs as the model continues to train 

after reaching its optimal point. By stopping the model at the 

perfect  time,  it  reduces  the  chances  of  overfitting. 

 

Moreover, a learning rate scheduler is also used alongside 

early stopping to provide the model more flexibility during 

training. If the validation loss has been stagnant, a dynamic 

adjustment will reduce the learning rate with a factor of 0.1. 

The model can perform better when its able to adjust its 

parameters with larger updates during the initial stages and 

finer adjustments when moving closer to the desired 

performance. To make sure that the optimizer, the maximum 

limit avoids making quite minor changes that can cause 

training to lag. 

3.5 Evaluation Metrics: 

The success of our model is evaluated using the precision 

recall curves along with the standard classification measures, 

which give a complete description of the model functionality 

with respect to accuracy, precision, recall, and F1 score. 

These measures are useful in evaluating the capability of the 

model to analyze both attack and non-attack traffic, as well 

as different types of attacks. 

• A basic measure is Accuracy, the ratio of sampled 

predictions captured accurately against the total 

predictions made – positive or negative. In the case 

of imbalanced datasets where the model may be 

biased toward predicting the majority class, it can be 

misleading despite giving an overall good 

impression of model performance. 

• Precision measures how many of the positive 

predictions made by the model were true positive 

values. A high precision value indicates the model 

has a low false positive rate in predicting instances 

of scaled attack traffic, thus justifying the precision. 

• Recall also known as sensitivity refers to the 

proportion of actual positive cases the model was 

able to identify. A high level of recall means that a 

good proportion of actual attacks are detected and 

captured, thus less threats are ignored (false 

negatives). 

• The F1 Score is determined by the harmonic mean 

of recall and precision. A single metric that helps 

balance the model performance is offered by this. 

3.5.1 Confusion Matrix 

A confusion matrix is used here to gain deeper insight into 

how the model is performing for different classifications. The 

confusion matrix enables us to analyze how the model 

functions with regard to true positives (normal traffic 

correctly received), false negatives (attacks not captured), 

false positives (normal traffic incorrectly classified), and true 

negatives (attacks correctly identified). The detailed 

granularity is useful for pinpointing particular issues the 

model fails, like misclassifying benign traffic as attacks (false 

positive) or missing certain types of intrusions (false 

negative). 

Take, for instance, a simplified two class categorization 

(attacks versus normal traffic), a confusion matrix will tell 

how well the model can classify the captures for each class. 

In comparison, in a multi-class (multiple types of attacks) the 

confusion matrix can show how the model can classify each 

type and if there is overlap, for instance classifying a DoS 

attack as reconnaissance traffic. 

Incorporating the confusion matrix with the other 

performance metrics enables us to measure the model fairly 

and objectively. The analysis gives us pointers on how we 

can improve the model even further so that it would perform 

the best. 

4. EXPERIMENTAL RESULTS 

In the trial stage, we applied the UNSW-NB15 dataset to 

evaluate the performance of intrusion detection for IIoT 

networks using the hybrid CNN-LSTM model. In order to 

preserve the proportion of each attack type across every set, 

this dataset was partitioned into training (70%), validation 

(15%), and testing (15%) sets. A comprehensive assessment 

of the model's power was conducted, measuring accuracy, 

precision, recall, and F1-score among other criteria. 

4.1 Model Performance on Binary Classification: 

The first stage of experimentation was initiated with 

binary-classification tasks in which the model was required 

to identify normal and attack traffic. The performance was 

tested on the test set and the performance evaluation was 

done. 
 

Metric CNN- 
LSTM 

Standalone 
CNN 

Standalone 
LSTM 

Random 
Forest 

SVM 

Accuracy 97.45% 96.12% 96.84% 93.54% 91.12% 

Precision 96.89% 95.23% 95.98% 92.45% 90.33% 

Recall 97.62% 96.56% 96.24% 94.12% 89.50% 

F1-Score 97.25% 95.89% 96.11% 93.27% 89.91% 

 

Table 2: Model Performance (Binary Classification) 

Explanation of Results: 

• The hybrid CNN-LSTM model attained the highest 

accuracy of 97.45%. This demonstrates the model's 

ability in detecting both normal and malicious traffic 

with high precision and recall. 

• It was also noted that the hybrid model had a greater 

accuracy compared to standalone CNN (96.12%) 

and LSTM (96.84%) because the model was able to 

utilize both spatial and temporal features. 

• The accuracy indicators of the classic machine 

learning models, like Random Forest and SVM, 

were lower in accuracy, with the SVM model 

achieving a mere 91.12% accuracy. This suggests 

that the scope of IIoT network traffic complexity 

http://www.ijsrem.com/
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Fig. 5: Accuracy Graph (Binary Classification) 

The precision of the hybrid CNN-LSTM model was 

96.89%, indicating a low false positive rate and efficiently 

classifying attack traffic. The recall showed no attacks were 

missed which gave the value at 97.62%. With an F1 score of 

97.25 percent, the model performed superbly, indicating a 

well-balanced measure of accuracy with the precision and 

recall. 

4.2 Model Performance on Multi-class Classification: 

During the second round of testing, the model was trained 

and tested on multi-class classification. Now it had to 

classify nine types of attack traffic alongside normal traffic 

and the identified types of attack were DoS, Reconnaissance, 

Exploits, Fuzzes, Worms, and others which we have already 

discussed in the dataset overview. 
 

Metric CNN- 
LSTM 

Standalon 
e CNN 

Standalon 
e LSTM 

Rando 
m 
Forest 

SVM 

Accuracy 99.02 
% 

97.81% 98.12% 94.77% 90.33 
% 

Precisio 
n 

98.75 

% 

97.32% 97.92% 94.15% 89.01 

% 

Recall 98.98 

% 

98.22% 98.11% 95.23% 88.77 

% 

F1-Score 98.86 

% 

97.77% 98.01% 94.69% 88.89 

% 

 

Table 3: Model Performance (Multi Classification) 

Explanation of Results: 

• For multi-class classification, the CNN-LSTM 

model achieved an impressive accuracy of 99.02%, 

significantly outperforming the standalone CNN 

(97.81%) and standalone LSTM (98.12%). This 

indicates that the hybrid architecture's ability to 

model both spatial and temporal patterns in the data 

is crucial for distinguishing between different types 

of attacks. 

• The precision of 98.75% means that the hybrid 

model rarely misclassifies one type of attack as 

another. High recall of 98.98% indicates that the 

model successfully detected the vast majority of 

attack instances across all categories, minimizing 

false negatives. The F1-score of 98.86% reflects a 

well-balanced performance, confirming the model's 

robustness in multi-class classification tasks. 

 

Fig. 6: Accuracy Graph (Multi Classification) 

In the Fig. 5 & Fig. 6, plot illustrates the training and 

validation accuracy curves for a CNN-LSTM model over 50 

epochs. Both curves demonstrate a consistent increase 

throughout the training process, indicating effective learning. 

The training accuracy reaches a plateau around epoch 35, 

while the validation accuracy continues to increase with some 

fluctuations. The gap between the training and validation 

accuracy curves suggests that the model might be over fitting 

to the training data. Early stopping could have been 

implemented to prevent over fitting by terminating the 

training when the validation accuracy stops improving. 

Overall, the model demonstrates good performance, with 

both training and validation accuracy reaching high levels. 

However, techniques like regularization or data augmentation 

could be explored to further improve the model's 

generalization capabilities. 

The traditional machine learning models again performed 

worse, with Random Forest achieving 94.77% accuracy and 

SVM falling behind with 90.33% accuracy. The lower 

precision and recall values for these models suggest they 

struggle to differentiate between certain types of attacks, 

likely due to their inability to model temporal dependencies 

in network traffic data effectively. 

 

 

4.3 Confusion Matrix for Multi-class Classification: 

The confusion matrix provides a detailed breakdown of 

how well the CNN-LSTM model performed across different 

classes, offering insight into any specific attack categories 

where the model may have struggled. The table below shows 

an excerpt of the confusion matrix for some attack types: 

Actual \ 
Predicted 

Norma 
l 

DoS Reconnaissa 
nce 

Exploits Worm 
s 

Normal 14560 12 5 3 0 
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Table 4: Confusion Matrix (Multi Classification) 

Explanation of Confusion Matrix: 

• The CNN-LSTM model performed exceptionally 

well  for  common  attack  categories 

like DoS and Reconnaissance, with very few 

misclassifications between attack types. 

• For Worms, the model detected all instances with 

near-perfect accuracy (only one instance was 

misclassified   as   a   DoS   attack). 

The Exploits category also had a strong 

performance, with only 15 instances misclassified 

across all classes. 

4.4 Training and Validation Loss: 

Throughout the training process, both the training and 

validation loss decreased steadily, indicating that the model 

was effectively learning from the data without over fitting. 

Early stopping was employed, halting training at epoch 

49 when no significant improvement in validation loss was 

observed. The learning rate scheduler reduced the learning 

rate by a factor of 0.1 when the validation loss plateaued, 

ensuring more fine-tuned updates towards the later stages of 

training. 
 

Fig. 7: Loss Graph (Multi Classifaction) 

The development and evaluation loss gradually dropped, 

as the results demonstrate, suggesting that the model was 

getting better during the training phase. Early stopping was 

triggered after 49 epochs, as the validation loss reached a 

minimum and stabilized. 

Summary of Results 

Overall, the study results demonstrate that this CNN- 

LSTM hybrid model serves better in both multi-class and 

binary classification tasks than both independent deep 

learning models and conventional machine learning 

techniques. The framework can identify and categorize 

intricate attack patterns with excellent accuracy, precision, 

recall, and F1-score because it can capture temporal and 

spatial relationships in network traffic data. 

The model can accurately categorize various attack types 

with relatively few misclassifications, according to the 

confusion matrix study. The hybrid CNN-LSTM architecture 

is a viable attack detection solution for IIoT networks because 

of its high-performance level. 

5. CONCLUSION 

In the current study, we combined the time-based 

sequence simulation competence of Long Short-Term 

Memory (LSTM) networks with the spatially extraction of 

features capacities of Convolutional Neural Networks 

(CNNs) to create a hybrid CNN-LSTM model for intrusion 

detection in IIoT networks. With an accuracy of 97.45% for 

binary classification and 99.02% for multi-class 

classification, the model outperformed both standalone deep 

learning models and conventional machine learning 

techniques when tested on the UNSW-NB15 dataset. It was 

able to reduce false positives and false negatives by 

efficiently capturing both spatial and temporal patterns, 

which made it ideal for identifying a variety of dynamic 

cyberthreats in IIoT contexts. 

Future work will focus on implementing the model in 

real-time intrusion detection systems and optimizing it for 

resource-constrained IIoT devices. Additionally, testing the 

model on other IIoT-specific datasets will be essential to 

ensure its robustness and generalizability across different 

network environments. By addressing these areas, the model 

can be made more practical for real-world deployment, 

enhancing security in critical industrial systems. 
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