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Abstract - The focuses on detecting electricity 

theft cyber-attacks in the consumption domain, this paper 

investigates electricity thefts at the distributed generation 

(DG) domain. In this attack, malicious customers hack into 

the smart meters monitoring their renewable-based DG units 

and manipulate their readings to claim higher supplied energy 

to the grid and hence falsely overcharge the utility company. 

Deep machine learning is investigated to detect such a 

malicious behaviour. A set of cyber-attack functions were 

introduced to manipulate the integrity of the readings of the 

injected power from the DG units in order to falsely 

overcharge the electric utility company. It integrating various 

data from the DG smart meters, meteorological reports, and 

SCADA metering points in the training of a deep 

convolutional-Artificial Neural Network is performed and 

analyse the cyber-theft on electrical data. The machine 

learning and feed neural network algorithm of Artificial 

Neural Network is applied and find the cyber-attack in benign 

and malicious Electrical data and predict the data. The 

prediction result is based on in the form of accuracy. 

1.INTRODUCTION  

 

One of the goals of this work is to investigate the 

integration of different data sources in the training 

process of the deep learning-based detector. These 

various data sources include the readings from DG 

smart meters, meteorological data (solar irradiance), 

and SCADA metering points. In order to develop a 

deep learning-based electricity theft detection system, 

we have investigated the application of deep feed 

forward, and deep artificial neural networks. The 

detector is trained using benign and malicious datasets. 

Hyper parameter optimization is applied to define the 

optimal architecture for the detector. The detector 

developed herein is a general detector trained using 

datasets obtained from all the DGs in the system, and 

hence, the detector can be used to detect the presence 

of electricity theft cyber-attack for any DG unit in the 

system. Our investigations revealed that a hybrid C-

RNN deep learning architecture offers the best 

detection performance among different deep learning-

based models. Optimal selection of hyper-parameters is 

investigated using a random grid search approach. Our 

studies also demonstrated that the detection 

performance can be significantly enhanced if multiple 

data sources are integrated while training the detector. 

In specific, the integration of the PV generation profile, 

irradiance data, and SCADA meter readings. Electrical 

theft leads to enormous losses to the utilities in the 

power sector. The major cause of these thefts is the 

illegal use of electricity by the consumers through 

tapping. To detect the malicious consumers that 

intentionally purloin the electricity.  
 

2. RELATED WORK 

Limited research work exists on electricity theft 

detection at the generation domain. Specififically, [8] 

investigates the detection of electricity theft in PV solar 

panels by developing an anomaly detector based on the 

least squares approach and a moving time window. 

Furthermore, [6] presents a set of optimal cyber-attack 

functions on the DG units while assuming that the 

attacker is aware of the detection mechanism. The 

developed detectors in [6] are based on ARIMA models,  

Kullback-Leibler divergence (KLD), and principle 

component analysis (PCA). Most of the relevant works 

address electricity theft detection in the energy 

consumption domain. Data driven solutions have been 

popular in detecting electricity theft in the consumption 

domain because of the vast streams of data that are 

obtained from the smart meters deployed at the 

customers premises. Many of these works rely on 

commonly used data-driven machine learning tech 

niques that classify customers based on their load 

profifile into honest and malicious customers. For 

instance, in [12], a feed forward neural network with 

single hidden layer is adopted for electricity theft 

detection using the load profifiles of the customers, 

which reported a classifification accuracy up to 70%.  

An SVM-based classififier is developed in [13] with a 

fuzzy inference system as a post-processing stage, 

resulting in a detection accuracy of 72%. In [14], an 

electricity theft detector is proposed based on an SVM, 

which results in a detection accuracy of 86.43%. The 
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electricity theft detector in [15] adopts a graph-based 

approach that implements optimum path forest with a 

reported detection accuracy of 89%. The work in [16] 

adopts a two-step approach based on decision trees and 

SVM to detect electricity thefts, leading to 

classifification3 accuracy of 92.5%. The work in [1] 

relies on an SVM-based classififier and presents a wide 

range of electricity theft cyberattacks, which improved 

the classifification accuracy to 94% with 11% false 

alarm rate, leading to a highest difference  

of 83%. The aforementioned works utilize shallow 

machine learning techniques and thus cannot fully 

capture the various consumption patterns observed in the 

complex structure of the power metering data. To further 

enhance the detection accuracy, deep machine learning 

techniques can be adopted. The work in [17] adopts a 

deep recurrent neural network (RNN) classififier based 

on a gated recurrent unit (GRU) that is able to capture 

the temporal correlation within the customer’s load 

profifile, resulting in detection rate of 92.5% and false  

alarm rate of 5%, improving the highest difference to 

87.5%. Furthermore, [18] investigates stealth false data 

injection (FDI) attacks for electricity theft in the 

consumption domain, where a stack of restricted 

Boltzmann machines (RBMs) is implemented in order to 

detect such malicious FDI attacks, which results in a 

detection accuracy up to 96%.  

3 . DATA PREPARATION 

This section describes how realistic benign and 

malicious datasets are developed. Since this data is not 

publicly available, realistic synthetic data is created. 

Real load profifiles and solar irradiance data are utilized 

to obtain the benign data, then a set of cyber-attack 

functions are applied on the benign dataset to obtain the 

malicious dataset. The benign and malicious datasets 

will then be used to train the classififier. 

A. Benign Dataset  

One of the goals of this work is to investigate the 

integration of different data sources in the training 

process of the deep learning-based detector. These 

various data sources include  

the readings from DG smart meters, meteorological data 

(solar irradiance), and SCADA metering points. In order 

to create the benign dataset that incorporates these 

readings, we simulate the power flflow within an IEEE 

distribution test system. Figure 1 presents the utilized 3-

phase IEEE 123-bus test system.  

 

 

customers, which represents a practical scenario with a 

mixture of residential and nonresidential units. The 

fifirst step is to specify the number of residential units, 

which is determined based on average peak demand of 5 

kW in the 3-phase test system. Without loss of 

generality, only residential customers are considered to 

have PV panels installed on their roof tops. In order to 

present a realistic load profifile per residential household, 

real smart meter data from Ontario Canada is utilized 

[19]. The dataset presents load profifiles for customers 

over the four seasons of the year with a consumption 

reading reported every 60 minutes. The real load 

profifiles are utilized per residential household such that 

the aggregate load per phase per bus does not exceed the 

peak demand of the IEEE 123-bus test system. To 

incorporate renewable energy-based DG units within the 

system, a penetration level of 30% is considered (i.e., 30% 

of the residential customer peak demand). Historical 

irradiance data from weather station, located in Ontario 

Canada, is utilized. The solar irradiance readings (in 

kW/m2 ) are reported at intervals of 60 minutes for 365 

days. To specify the number of panels installed per 

residential unit, an average PV capacity that is randomly 

selected between 0.5 and 1.5 kW is considered per 

residential household, without loss of generality. The PV 

capacity per residential household is divided by the 

panel capacity to determine the number of installed 

panels per household. To simulate a realistic 

environment, 5 different types of PV panels are 

considered, without loss of generality. Each residential 

unit that is considered to install solar PV panels is 

randomly assigned one panel type. Table I summarizes 

the characteristic parameters of each panel type [4]. The 
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PV panel parameters in Table I are under standard test 

conditions (25o C) and are defifined as follows: V MPP 

and I MPP are voltage and current at the maximum 

power point, respectively, I SC and V OC are the PV 

panel short circuit current and open circuit voltage at 

operation conditions, respectively, TNOC stands for the 

nominal cell operating temperature, which presents the 

temperature reached by solar cells under nominal 

conditions of 20o C and 0.8 kW/m2 irradiance, Kv and 

Ki are the voltage and current temperature coeffificients, 

respectively, and the PV capacity CPV is the maximum 

power generated by the PV panel. Given the panel-

related characteristics and the solar irradiance values, 

the corresponding solar energy generation profifile for 

each panel type, and hence for each residential customer, 

can be determined. Defifine the following terms at a 

specifific day d ∈ D and specifific hour t ∈ T for a given 

panel type k: T cell is the cell temperature of the PV 

panel, T A is the ambient temperature, S IR is the solar 

irradiance, and F F is the fifill factor of the PV panel. 

Hence, the generated power P PV k,t,d can be  

TABLE I 

CHARACTERISTIC PARAMETERS OF SOLAR PV 

PANELS  

 

 

Given the load and generation profiles for each bus, 
the IEEE 123-bus test system is simulated to specify 
the power flows and voltages, which present the 
readings provided by the SCADA metering points. The 
objective here is to capture the relationship between the 
SCADA meter readings and the PV energy generation 
profile, which will be used later for theft detection. 
The SCADA readings in the form of voltage, current, 
and power are affected by the injection from the PV 
units installed in the downstream. Denote the total 
number of PV panels of type k installed by the 
customers on bus i and phase p as N PV . The 
aggregate generated power P PV on 

P PV i,p,t,d = X k P PV k,t,d × NPV k,i,p Sbase  

 

B. Malicious dataset  

One of the challenges that face this research work is the 

absence of data that is needed to develop the desired 

classififier. In the previous subsection, we have 

implemented a realistic simulation environment to create 

a benign dataset that represents various data sources. In 

this subsection, a set of cyber-attack functions will be 

applied on the benign dataset in order to create the 

malicious dataset. The cyber-attack functions 

manipulate the benign data in a way that mimics the 

malicious customer behavior. As the malicious customer 

does not have access to the solar irradiance data and the 

SCADA metering data, the cyber-attack functions are 

applied only on the solar energy generation profifile. 

The customer has access to the smart meter attached to 

the solar panel, which is not the case for the weather 

station that reports the solar irradiance data and the 

SCADA metering points monitoring the buses. The 

objective of the cyber-attack functions that manipulate 

the reported energy generation profifile is to claim 

higher injected energy to the power grid. We introduce 

the four cyber-attack functions listed in Table II. The 

fifirst cyber-attack function f1(Et,d) implements a partial 

increment attack, where a malicious customer reports an 

incremental percentage (1+α) of the actual generated 

energy Et,d (e.g., reporting 120% of the actual 

generation). The second function f2(Et,d) presents also a 

partial increment attack, however, the incremental 

percentage changes from time instant to another and 

from day to day (1 + αt,d). The third attack function 

f3(Et,d) represents a minimum generation attack, where 

a malicious customer sets a minimum reporting value 

(βt,d) for the generated energy (for instance, βt,d = 20% 

of the peak generation is reported whenever the actual 

generated energy equals zero). The fourth cyber-attack 

function f4(Et,d) is a peak generation attack, where a 

malicious customer reports only the highest energy 

generation value once reached. It should be highlighted 

that the aforementioned attack functions are generic 

regardless of the type of renewable energy source. Each 

cyber-attack function is applied on the solar energy 

generation profifile matrix E, which results in four 

malicious matrices. The concatenation of the benign and 

malicious solar energy generation profifiles presents the 

entire dataset X where each row gives a sample energy 

generation profifile over the day. Each sample is 

associated with a label that equals ‘0’ if the sample is 

benign and equals ‘1’ if the sample is malicious. The 

label column vector associated with X is denoted by . As 

we have four times malicious data than the benign one, 
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the trained classififier will be a biased one. To avoid this, 

the minor (benign) class is over-sampled using the 

adaptive synthetic sampling approach (ADASYN) [22]. 

The balanced dataset is then normalized in order to bring 

the values of all the features \to a common scale. The 

normalized dataset X presents a zero mean and unit 

variance and is associated with the labeling vector Y. 

The data is then split into two disjoint sets with ratio 2:1, 

namely train data XTR with label YTR and test data 

XTST with label YTST.  

TABLE II  

PROPOSED CYBER-ATTACK FUNCTIONS FOR 

ELECTRICITY THEFT ON RENEWABLE-BASED 

DG UNITS.  

 

4. DESIGN OF ELECTRICITY THEFT DETECTOR  

In this section, we aim to develop a classififier that can 

detect cyber-attacks targeting the integrity of the 

readings about the of generated energy. The detector 

design is based on deep neural networks that can capture 

complex representative patterns within the data. Three 

structures are investigated for the detector, namely, deep 

feed forward, deep recurrent, and deep convolutional-

recurrent neural networks.  

1) Deep Feed Forward Neural Network-based Detector:  

The deep feed forward neural network presents the 

simplest implementation of the detector and offers the 

lowest computational complexity. It consists of an input 

layer, a set of hidden layers, and an output layer. Using 

X, the input layer consists of 24 neurons that are fed 

with the readings of the generated energy over the day, 

i.e., xd ∈ X. The hidden layers present L layers each 

with N neurons. The output layer has 1 neuron to 

represent the two classes, i.e., benign sample y = ‘0’ or 

malicious sample y = ‘1’. The weight matrix Wl 

defifines the weight wl nn0 of the connection from 

neuron n0 in layer l − 1 to neuron n in layer l. The bias 

vector of layer l, bl , defifines the bias bln of neuron n in 

layer l. Let zn = P n0 wl nn0 al−1 n0 + bln denote the 

weighted sum of inputs to neuron n, where al = σ(zl) and 

σ(·) is an activation function. The training of the detector 

aims to fifind the model parameters Wl and bl denoted 

by Θ, which isachieved by minimizing the cross-entropy 

 

where |XTR| denotes the number of training samples 

and y(xd) denotes the label corresponding to sample xd. 

Iterative gradient descent is used to solve the 

minimization in (4). Let denote the number of iterations. 

The entire training set is divided into equal-sized M 

mini-batches. Algorithm 1 describes the training stage of 

the feed forward neural networkbased detector assuming 

a stochastic gradient descent  (SGD)optimization. In 

Algorithm 1, two stages are implemented in each 

iteration. The feed forward stage determines the 

predicted output vectors. The back propagation stage 

then determines the gradient of the cross-entropy of (4) 

as a function of an error  

term ∆ [23]. The gradient then is used to update the 

weights and bias values in each iteration. The following 

symbols are used in Algorithm 1: 5 a represents partial 

derivative with respect to a, σ0 (zl(x)) denotes the 

reciprocal of the partial derivative of zl with respect to al, 

is the Hadamard product, and T represents the transpose 

operation.  

 

2) Deep Recurrent Neural Network-based Detector: 

spite offering lower computational complexity, the deep 

feed forward neural network-based detector does not 

exploit the temporal correlation present in the input data. 

The energy generation profifile represents a time-series 

data that is best handled using a recurrent neural 

network (RNN)-based classififier, which can further 
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enhance the detection performance. To overcome the 

vanishing gradient problem while learning  

temporal correlation over long intervals, a variant of the 

RNN, namely, a gated recurrent unit (GRU)-based RNN, 

is utilized [23]. The input layer of the GRU-based 

classififier consists of 24 neurons that are fed with the 

daily energy generation profifile xd ∈ X. The input layer 

is followed by L hidden GRU layers, and each layer 

presents N neurons (units). Except for the last GRU 

layer, each layer accepts and produces a sequence vector. 

The output layer presents 1 neuron: y = ‘0’ and y = ‘1’ 

for a benign and a malicious sample, respectively.  

Each layer l presents an output vector ol with o1 = xd. A  

hidden GRU layer l defifines the following parameters:  

• Input at time step t: This is denoted by o 

l−1 t and results from the previous layer l − 1. 

 

• Hidden state at time step t: This is denoted by slt and it 

represents the memory that is computed using the 

hidden state slt−1 of the same layer at the previous time 

step.  

• Update gate at time step t: This is denoted by zl and 

represents a combination of the new input ol−1 t and the 

previous memory slt −1 , given by zlt = σ(ol−1 t Ulz + 

slt−1Wlz +blz), Ulz and Wlz are learnable weight 

matrices, blz is a bias vector, and σ(·) is an activation 

function.  

• Reset gate at time t: This is denoted by rlt and it 

specififies the contribution of the memory slt−1 to the 

next state hlt  We have rlt = σ(ol−1 t Ulr + sl −1Wrl + 

blr) and hlt = tanh(ol−1 t Ulh+(−1 rl)Wlh+blh), Ul , 

Wrl , Ulh , and Wlh are weight matrices and blr and blh 

are bias vectors. The next state is then calculated as 

slt+1 = (1−zl) hl +zl slt and the output is given by olt+1 

= (Volslt+1 + blo), where Vol and blo are learnable 

weight matrix and bias, respectively. The objective of 

the detector’s training stage is to learn the parameters 

Ul(·), W(l·), V(l·) , and bl(·) that lead to the desirable 

output y(xd) for input xd. This is achieved by 

minimizing the cross-entropy function presented in (4). 

The solution of such a minimization follows a similar 

approach as described for the feed forward neural 

network, however, the back propagation here is 

essentially a back propagation through time (BPTT).  

The training process is described in Algorithm 2 

 

 

 

5 SIMULATER RESULTS 

A. Implementation Details  

For data preparation, the IEEE 123 bus test system 

discussed in Section III is implemented using a 

simulation environment that integrates both MATLAB 

and GAMS to solve the unbalanced power flflow of the 

IEEE 123-bus for a period of one year. A for loop is 

included in the MATLAB to provide the load and 

generation data at each hour of the day to the GAMS 

program that solves the non-linear power flflow 
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equations. For the training and testing of the machine 

learning models, keras sequential API [24] is utilized 

when a single data source is used. Keras functional API 

[25] is utilized when various data sources are integrated. 

For hyper-parameter optimization, the following 

parameters are used in Algorithm 3: L = {2, 3, 4}, N = 

{64, 128, 256}, A = {Relu, Elu, Tanh, Sigmoid}, O = 

{RMSProp, ADAM, SGD, AdaGrad, AdaDelta, 

AdaMax, NADAM}.  

B. Single Data Sources Models  

This subsection investigates the detector’s training using 

a single data source, namely, PV generation profifile. 

The objective is to judge which of the deep learning 

models presented in Section IV.A offers the best 

detection performance. Furthermore, the performance of 

the proposed deep learning-based  detection schemes is 

compared with shallow classifification based on an 

SVM model and time-series anomaly detection 

TABLE III  

OPTIMAL HYPER-PARAMETERS OF THE NEURAL 

NETWORK MODELS  

 

based on an ARIMA model. For the SVM-based 

classification benchmark, the classififier is trained on 

both benign and malicious PV energy generation 

profifile and presents a class label as the output. For the 

ARIMA-based anomaly detection scheme, the model is 

trained only on the benign PV energy generation 

profifile to learn the ARIMA model parameters that can 

predict the future generation profifile while minimizing 

the error between the predicted and actual values. Then, 

the anomaly detector is tested on both benign and 

malicious datasets. Whenever the error between the 

predicted and reported generation profifile is larger than 

a threshold, a malicious sample is detected. Table III 

presents the results of hyper-parameter optimization for 

the different deep learning detection models, using 

Algorithm 3. Hyper-parameter optimization of the SVM 

classififier yields C = 10 and RBF Kernel. Table IV 

summarizes the detection performance of the deep 

learning-based classififiers following the optimal 

hyperparameters in Table III. As demonstrated in Table 

IV, the hybrid C-RNN detector offers the best detection 

performance among the other architectures. This is due 

to the fact that the C-RNN detector is trained on the 

most relevant features as extracted by the CNN while 

the GRU learns the temporal correlation within the data 

that distinguishes benign and malicious samples. 

Detection errors occur since we have various panel types 

(hence, various forms of benign PV generation profifiles) 

and cyber-attack functions (hence, various forms of 

malicious samples). These factors could confuse the 

detector in discriminating benign from malicious 

samples. However, the reported detection and false 

alarm rates by the proposed detector demonstrate high 

detection performance. Furthermore, comparison results 

with a shallow classififier 

TABLE IV 

DETECTION PERFORMANCE OF THE PROPOSED 

DETECTORS IN COMPARISON WITH SVM AND 

ARIMA-BASED DETECTORS  

 

TABLE V 

OPTIMAL HYPER-PARAMETERS OF THE 

MODELS  

 

(SVM) and time-series anomaly detection (ARIMA) 

reveals performance improvement in detection rate from 

83 − 88% to 94.6% (improvement up to 11.6 − 6.6%). 

This is mainly due to the fact that deep machine learning 

techniques can better capture the complex patterns 

within the data, which further yield better detection 

performance. The high false alarm rate in the ARIMA 

model, and thus the lower detection performance 

compared with all other models, is due to the fact that 

the ARIMA model is trained only on the benign dataset 

while all other models including theshallow SVM 
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classififier is trained on both benign and malicious 

datasets.  

 

C. Integration of Multiple Data Sources  

Since the hybrid C-RNN detector presents the best 

performance among other architectures, the C-RNN 

model is then tested for the integration of multiple data 

sources. The optimal hyper-parameters of the three 

models, namely M1, M2, and M3, illustrated in Figure 3 

are summarized in Table V. Using such hyper-

parameters, the detection performance of the three  

models is presented in Table VII. The ROC curve for the  

model with best detection performance (M3) is given in 

Figure 4. It is observed that the integration of the solar 

irradiance data within the model’s training enhanced the 

HD from 92% to 98.2%. The incorporation of the 

SCADA meter reading further enhanced the HD to 

99.08%. Such improvement in results is due to the fact 

that the detector has successfully learnt the relationship 

between the PV generation profifile, solar irradiance 

data, and SCADA meter readings, which results in 

further improvement in the detection performance. 

D. Robustness of the Detection Scheme  

This subsection investigates the robustness of the 

proposed detection scheme against new cyber-attack 

functions. We consider in this subsection model M3 as it 

presents the highest detection performance. Three train 

and test cases are  

TABLE VI 

DETECTION PERFORMANCE OF THE MODELS IN 

FIGURE 3. 

 

introduced. In the fifirst case (C1), the detector is trained 

on benign PV generation data, solar irradiance data, 

SCADA meter readings, and the malicious dataset is 

based only on a single cyber-attack function, namely 

f1(Et,d). In the testing phase, the detector’s performance 

is examined against all malicious and benign PV 

generation profifiles. Hence, this case represents a 

scenario where the detector is tested against three new 

cyber-attack functions that are not part of the  

training dataset. The second case (C2) considers two 

cyberattack functions, namely, f1(Et,d) and f2(Et,d), to 

create the dataset of the training phase while the 

detector’s performance is tested against all malicious 

and benign PV generation profifiles. The last case (C3) 

considers three cyberattack functions, namely, f1(Et,d), 

f2(Et,d), and f3(Et,d), to create the malicious dataset of 

the training phase, while the detector’s performance is 

tested against all malicious and benign PV generation 

profifiles. The performance results are summarized in 

Table VII. Such results demonstrate the robustness of 

the proposed detection scheme as the detector  

maintains a high detection performance even when new 

cyberattacks are introduced in the testing stage. This is 

because the detector managed to generalize its learning 

experience to capture the main distinctive patterns in the 

benign PV generation profifile and its relationship with 

solar irradiance data and SCADA meter readings, which 

is then used to detect new (unseen) cyber-attacks.  
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3. CONCLUSIONS 

 

This paper investigated electricity theft detection in 

renewable energy-based DG units. A set of cyber-attack 

functions were introduced to manipulate the integrity of 

the readings of the injected power from the DG units in 

order to falsely overcharge the electricutility company. 

These cyber-attack functions include partial increment, 

minimum generation, and 

 

TABLE VII  

DETECTION PERFORMANCE OF M3 IN FIGURE 3 

AGAINST NEW (UNSEEN) CYBER-ATTACKS.  

 

peak generation attacks. Our investigations revealed that 

a hybrid C-RNN deep learning architecture offers the 

best detecion performance among different deep 

learning-based models. Optimal selection of hyper-

parameters is investigated using a random grid 

searchapproach. Our studies also demonstrated that the 

detection performance can be signifificantly enhanced if  

multiple data sources are integrated while training the 

detector. In specifific, the integration of the PV 

generation profifile, irradiance data, and SCADA meter 

readings presented a detection rate of 99.3% and false 

alarm of only 0.22%. Furthermore, the robustness of the 

proposed detector is demonstrated against new cyber-

attacks that were not present in the detector’s training 

stage.  
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