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Abstract:  

In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained 

astonishing results in broad applications such as pattern recognizeton, speech recognition, computer vision, and 

natural language processing. Recent research has also been shown that deep learning techniques can be combined 

with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data 

input. This paper reviews the recent advances in deep reinforcement learning with a focus on the most used deep 

architectures such as auto encoders, convolutional neural networks and recurrent neural networks which have 

successfully been come together with the reinforcement learning framework. Keywords: Reinforcement learning, 

Deep Reinforcement learning, deep leaning, Neural networks, MDPs, Observable MDPs. 

1. Introduction 

Reinforcement learning (RL) algorithms involve the strategy of learning via interacting (sequences of actions, 

observations, and rewards) with the environment. RL-based methods have shown great successes in a variety of tasks 

from robotics [19] to resource allocation [43]. These have made them be one of the main promising candidates to 

reach the goal of artificial intelligence (AI), building those autonomous agents that can learn in complex and 

uncertain environments.  

Before an agent or robot (software or hardware) can select an action, it must have a good representation of the 

environment in which the agent is to be learned [19]. Thus, perception is one of the key problems that must be solved 

before the agent can decide to select an optimal action to take. 

Representation of the environment might be given or might be acquired. In reinforcement learning tasks, usually a 

human expert provides hand-crafted features of the environment based on his knowledge of the task. However, for 

some real-world control problems with high-dimensional sensory input like vision and speech, this work is too 

difficult and even might be impossible. Moreover, the performance of learning in such a way is intensely depending 

on the quality of the feature representation. Further on, the generalization of a given method for different tasks might 

not work well. Hence, it should be done automatically, since the accuracy, that automatic feature extraction can 

provide, is much better, and also the algorithm will not suffer from the issues of hand-designed features. 

Learning good representations of high-dimensional state or action spaces is a major challenge in reinforcement 

learning. There are several solutions to deal with this challenge, such as Hierarchical Reinforcement Learning (HRL) 

approaches [2, 32] and function approximation [41]. Most works presented in this study are based on the function 

approximation with respect to artificial neural networks as function approximates. 
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In recent years, research done in the deep learning area has shown that it is very promising and powerful tool to do 

automatic feature extraction from raw data, e.g., raw pixels of an image. It has gained huge attraction not only in 

academic communities (because of its performance in many application such as pattern recognition, speech 

recognition, computer vision, and natural language processing), but it has also been successfully applied in industry 

products by tech giants like Google (Googles translator, Image search engine), Apple (Apple’s Siri), Microsoft (Bing 

voice search) and other big companies such as Facebook and IBM. 

More recently, some deep learning techniques including supervised and unsupervised deep architectures including 

multilayer perceptron’s (MLPs), convolutional neural networks (CNNs), auto encoders and recurrent neural networks 

(RNNs) have started to incorporate reinforcement learning methods. The evaluation of the resulting new algorithms 

and methods has shown that deep learning techniques can also be used to learn useful representations for 

reinforcement learning problems [29, 30, 31, 9, 27]. Combining RL and deep learning techniques enables an RL 

agent to have a good perception of its environment by utilizing the possibilities that deep neural networks can 

provide. 

The aim of this study is to outline and critically review all significant research done to date in the context of 

combining reinforcement learning algorithms and deep learning methods. The research will review both supervised 

and unsupervised deep models that have been combined with RL methods for environments which might be partially 

observable MDPs or not. This study will also present recent outstanding success stories of the combined RL and deep 

learning paradigms, which led to the introduction of a novel research route called deep reinforcement learning, to 

overcome the challenges in learning control policies from high-dimensional raw input data in complex RL 

environment.  

The rest of this paper is organized as follows. Sections 2 and 3 give a brief review of reinforcement learning and 

deep learning (focused on three commonly used deep learning architectures with reinforcement learning framework), 

respectively. Section 4 presents the state of the art techniques that combine reinforcement learning and deep learning 

with a rough categorization of the combination of deep supervised learning models with RL and the combination of 

deep unsupervised learning models with RL. Finally, Section 5 summarizes the paper and discusses some promising 

directions for future research in deep reinforcement learning. 

 

2. Reinforcement Learning  

 Reinforcement Learning [18, 40] is a branch of machine learning in which an agent learns from interacting with an 

environment. An RL framework allows an agent to learn from trial and error. The RL agent receives a reward by 

acting in the environment and its goal is learning to select the actions that maximize the expected cumulative reward 

over time. In other words, the agent, by observing the results of those actions that it is taking in the environment, 

tries to learn an optimal sequence of actions to execute in order to reach its goal. 
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 A reinforcement learning agent can be modelled as a Markov decision process (MDP). If the states and action spaces 

are finite, then the problem is called a finite MDP. Finite MDPs are very important for RL problems and much of 

literatures have assumed the environment is a finite MDP in their works.  

The way an RL agent acts in the finite MDP framework as follows: The learning agent interacts with the environment 

by executing actions and receiving observations and rewards. At each time step t, which ranges over a set of discrete 

time intervals, the agent select an action a from a set of legal actions A = 1, 2, . . . , k at state st ∈ S, where S is the set 

of possible states. Action selection is based on a policy. The policy is a description of the behavior of the agent which 

tells the agent which actions should be selected for each possible state. As a result of each action, the agent receives a 

scalar reward rt ∈ R, and observes next state st+1 ∈ S at one step time later. The probability of each possible next 

state st+1 comes from a transition distribution which is P(st+1|st , at); st+1, st ∈ S, at ∈ A(st). Similarity, the 

probability of each possible reward rt comes from a reward distribution P(rt |st , at); st ∈ S, at ∈ A(st). Hence, the 

expected scaler reward received, rt , by executing action a in current states is calculated based on EP(rt|st,at)(rt |st = 

s, at = a). 

The aim of the learning agent is to learn an optimal policy π, which defines the probability of selecting action a in 

state s, so that with following the policy the sum of the discounted rewards over time is maximized. The expected 

discounted return R at time t is defined as follows:  

Rt = E[rt + γrt+1 + γ 2 rt+2 + . . .] = E[ X∞ k=0 γ k rt+k], (1) 

Where E[.] expectation with respect to the reward distribution and 0 < γ < 1 is called the discount factor. With regard 

to the transition probabilities and the expected discounted immediate rewards, which are the essential elements for 

specifying dynamics of a finite MDP, action-value function Qπ (s, a) is defined as follows: 

 Q π (s, a) = Eπ[Rt |st = s, at = a] = Eπ[ X∞ k=0 γ k rt+k|st = s, at = a], (2) 

The action-value function Aπ(s, a) for an agent is the expected return achievable by starting from state s, s ∈ S, and 

performing action a, a ∈ Aand then following policy π, where π is a mapping from states to actions or distributions 

over actions. With unfolding the equation 2 it is clear that it satisfies a recursive property, so that the following 

iterative update can be used for the estimation of action-value function: Q π i+1(s, a) = Eπ[rt + γ X∞ k=0 γ k 

rt+k+1|st = s, at = a] 
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 = Eπ[rt + γQπ i (st+1 = s 0 , at+1 = a 0 )|st = s, at = a], (3) 

For all s, s0 ∈ S and a, a0 ∈ A, in Eq. 3, both states a relationship between the value of an action in a state and the 

values of its next actions which can be performed It also cites the way of estimating the value based on its 

subsequent ones. Reinforcement learning agent wants to find a policy which achieves the greatest future reward in 

the course of its execution. Hence, it must learn an optimal policy π ∗ , a policy which is resulted to an expected 

value greater than or equal of following other policies for all states, and as a result, an optimal state-value function 

Q∗ (s, a). In particular, an iterative update for estimating the optimal state-value function is defined as follows:  

Qi+1(s, a) = Eπ[rt + γmaxa 0Qi(s 0 , a0 )|s, a], (4)  

Where it is implicit that s, s0 ∈ S and a, a0 ∈ A. The iteration converges to the optimal action-value function, Q∗ as i 

→ ∞ and called value iteration algorithm [40]. 

In many real problems, number of states and actions are very large and use of classical solution (state-action table to 

store the values of state-action pairs) is impractical. On way to deal with is use of function approximator as estimator 

of action-value function. The approximate value function is parameterized Q(s, a; θ) with parameter vector θ. 

Usually gradient-descent methods are used to learn parameters by trying to minimize the following loss function of 

mean-squared error in Q-values: 

 L(θ) = Eπ[(r + γmaxa 0Q(s 0 , a0 ; θ) − Q(s, a; θ))2 ], (5)  

Where r + γmaxa 0Q(s 0 , a0 ; θ) is the target value. Differentiation of the loss function with respect to its parameters  

θ lead to the following gradient:  

∂L(θ) ∂θ = E[(r + γmaxa 0Q(s 0 , a0 ; θ) − Q(s, a; θ))]∂Q(s, a; θ) ∂θ , (6) 

 This is the way the gradient-based methods are applied. Typically, the gradient above is optimized by stochastic 

gradient descent method. The approximate function can be a linear function or a non-linear function (for example a 

neural network) of the parameters θ. Until recently, the majority of work in reinforcement learning utilized linear 

function approximations because the convergence guarantees that they provide. More recently, by alleviating the 

convergence problems, not only typical neural networks, for example multilayer perceptron’s (MLP), have been 

common to use as function approximates for large reinforcement learning tasks, but deep neural networks such as 

convolutional neural networks and recurrent neural networks is used [35, 33, 30]. 

3. Deep Learning  

Obtaining a good performance of a machine learning technique is highly dependent on having good representation of 

input data. Hence, the pre-processing of the data (i.e., feature learning) is a critical step in the process of creating the 

machines which are learned through the observation of the data. The feature engineering process is a way to take 

advantage of the knowledge of the domain experts in order to extract hand-crafted features and to reduce dimension 

of features of the input data. Effectiveness of the shallow learning models such as support vector machines (SVMs) 

and logistic regression are dependent on feature learning. This process is important but very time consuming and 

difficult to do. It would be better to have algorithms that facilitate the problem. Deep learning techniques are one the 

best solutions to deal with high dimension data and extract discriminative information from the data. Deep learning 
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algorithms have the capability of automating feature extraction (the extraction of representations) from the data. The 

representation are leant through the data are fed directly into deep nets without human knowledge (i.e., automated 

feature extraction). This key aspect of deep learning architectures is led to progress towards those algorithms that are 

the goal Artificial Intelligence (AI), understating the world around independent of expert knowledge and interference 

[4]. 

 

 In summary, deep learning attempts to model high-level abstractions in data using deep networks of supervised 

and/or unsupervised learning algorithms, in order to learn from multiple levels of abstractions. It learns hierarchical 

representations in deep architectures for different tasks such as classification.  

Deep learning models contain multiple layers of representations. Indeed, it is a stack of building blocks such as auto 

encoders, Restricted Boltzmann Machines (RBMs) and convolutional layers. During training, the raw data is fed into 

a network consisting of multiple layers. The output of the each layer which is nonlinear feature transformations, is 

used as inputs to the next layers of the deep network. The output representation of the final layer can be used for 

constricting classifiers or those applications which can have the better efficiency and performance with abstract 

representation of the data in a hierarchical manner as inputs. Each layer by applying a nonlinear transformation on its 

input try to learn and extract underlying explanatory factors. Consequently, this process is led to learn a hierarchy of 

abstract representations. For example, using deep leaning algorithm in image processing applications, the first layer 

is provided by the image pixels which can lead to learn the edges of different object in image. The second layer uses 

the representations provided by the first layer to lean complex features such as object parts (combination of edges). 

The third layer composes object parts (more complex features) to figure out object models. The example shows the 

hierarchical learning power of the abstracted representations by a deep learning algorithm are able to recognize 

objects in the image. For this reason, the deep learning approach can be considered as a kind of representation 

learning algorithms [4].  

The use of deep neural networks allows the deep learning methods to be very powerful tools in solving real problem. 

However, learning the parameters (deep nets with many hidden layers are led to have millions of parameters to learn) 

in a deep architecture is a difficult optimization task which imposes very high computational complexity [26]. 

Fortunately, with emergent of advanced parallel processing technologies like GPU this problem has alleviated 

somewhat.  

In the following sections, we will introduce a brief overview of three kind of deep neural networks which recently 

have successfully been had the most use in combination with RL. These deep architectures are included auto 
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encoders (stacked [DE noising] auto encoders), convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs). 

3.1. Autoencoder  

The deep autoencoders are one of the most notable works in unsupervised deep feature learning. They are a type of 

artificial neural networks which try to learn a representation of original data. An autoencoder, autoassociator or 

Diabolo network [7] is trained to learn effective encoding of input data so as to the input can be reconstructed from 

the encoding. In fact, the target output of the network is the same of the input. It typically has three layers: input 

layer, used for input feature vectors; hidden layer, used for representing mapped features, and output layer which use 

to represent reconstructed input. Like other neural networks, the backpropagation methods are used to learn 

parameters, typically the stochastic gradient descent method. If the architecture of the autoencoder only contains one 

linear hidden layer and the mean squared error criterion, as the loss function, is used to train the network, 

autoencoder will performs like principal components analysis (PCA) method and will learn the first k principle 

components of the data [7].  

In order to get more benefits of the autoencoder rather than dimensionality reduction method, non-linear hidden units 

are used in the hidden layer. To achieve more expressive power of autoencoders, stacked auto-encoders are 

constructed by stacking up autoencoders in tandem [5]. The output of each autoencoder is connected to the input of 

the next autoencoder. There is also a variant of autoencoder called demonising autoencoder [44]. The denoising 

autoencoder minimizes the reconstruction error of corrupted versions of the input (random noises are added to input 

data) and tries to recover the original input data, i.e., without distortions. There are two key ideas behind this 

approach. First, the use of denoising will lead to a higher level representations which are more robust and stable 

when there is noise in the input data. Second, the use of the denoising task will force to extract those features which 

have more effect on useful structure of the input distribution [45]. 

3.2. Convolutional Neural Networks 

 Convolutional Neural Networks (CNNs) are categorised in the class of the supervised deep feature learning models. 

Perhaps one of the first research on CNNs is work done by LeCun et al. [25]. They used CNNs to recognize 

handwritten characters. By advances in power of computing devises they were able to apply CNNs on other 

applications such as object recognition and detection in image and speech recognition and time series [24].  

Convolutional networks are constructed of many layers and connections aim to learn hierarchical feature 

representation. To be invariant on some degree of translational and distortional of input feature vectors, three main 

strategies are applied, local receptive fields, shared weights and spatial or temporal subsampling [26]. 

3.3. Recurrent Neural Networks 

 Another deep supervised feature learning (as well as unsupervised) algorithm which is used for sequential 

information, where input data are depended to each other in the way they are coming out (data stream) or have 

located (words in a sentence), is recurrent neural networks (RNNs). Unlike feedforward neural networks (FNNs), 

recurrent neural networks (RNNs) have feedback connections which allows them to have internal states. This means 

that they have a memory which can keep information about previous inputs, enabling them to be useful for those 

applications such as speech recognition which has temporal and sequential data [12].  
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To learn long-term dependencies in sequential data using vanilla RNN architecture gives rise gradient vanishing (the 

magnitude of the error gradients vanish exponentially during training, which makes it impossible for the RNN to 

learn correlation between temporally long-term events) or gradient explosion (a large increase in the magnitude of 

the gradients during training, where long-term components exponentially grow and dominate the gradients of short 

term ones) problems [6]. Other types of RNNs such as long short term memory (LSTMs) [17] was introduced to deal 

with these problems. LSTMs are able to learn very long-term dependencies. They could outperform alternative 

RNNs and Hidden Markov Model (HMM) approaches which were state of the art in sequence learning [12]. 

4. Deep Supervised and Unsupervised Learning Models for Reinforcement Learning  

The most well-known reinforcement learning algorithm which uses neural networks (but no deep nets, i.e., there is 

only one hidden layer) is the world-class RL backgammon player named TD-Gammon, which gained a score equal 

to human champions by playing against itself [42]. TD-Gammon uses TD (lambda) algorithm [40] to train a shallow 

neural net to learn to play the game of backgammon. However, later attempts to use the same method for other 

games such as chess, Go and checkers were not successful. With riving interest in research works on deep learning in 

the middle of the 2000s decade, the promise to use neural networks as function approximator both for the state value 

function V (s) and the action-value function Q(s, a) in visual based RL tasks came back. In the following sections we 

introduce those works that have used the deep neural nets in combination with reinforcement learning framework to 

improve the performance of learning control policies with emphasizing on those that are fed with raw input data. 

4.1. Combination of RL Techniques with Supervised Learning  

Approaches of Deep Neural Networks The work in [35] has proposed a model free method called Neural Fitted Q 

learning (NFQ). NFQ update the weights of a multilayer perceptron by RPROP algorithm [36],a batch learning 

method for training the neural networks which is very fast in comparison with other supervised leaning methods, for 

regressing the value function where updating is accomplished offline. The update is based on an entire set of 

transition experiences which has triple form (s, a, s) where s is the current state, a is the selected action and s is the 

next state, which is the result of taking action a. Since updating is performed offline, the transition experiences are 
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collected before. Indeed, they are acquired by interacting with a real or simulated environment. The proposed method 

has two steps (1) collecting learning set and (2) doing a batch update for training a multilayer perceptron by RPROP 

algorithm. 

 Since it use a batch update the computational complexity of doing this update in each iteration is corresponding with 

the size of training set [30]. Since the most of the resent approaches that combine deep learning and RL use 

challenging environments introduced the Arcade Learning Environment (ALE) [3], we first introduce ALE. ALE 

provides an environment that emulate the Atari 2600 Games. Atari 2600 presents a very challenging environment for 

reinforcement learning that has a high dimensional visual input (210×160 RGB video at 60 Hz) which is a partial 

observable observation. It provides a range of interesting games that the proposed methods can be tested, where the 

agent uses the methods for playing the games. More recently, researchers in DeepMind technologies have developed 

an approach called Deep Q learning Network (DQN) [30] which benefits from advantages of deep learning for 

abstract representation in learning optimal policy, i.e. selecting actions in such a way that maximize the expected 

value of the cumulative sum of rewards. 

 It is an extension of the previous work Neural Fitted Q-Learning (NFQ) [35]. DQN combines a deep convolutional 

neural network with the simplest reinforcement learning method (Q-learning) to play several Atari 2600 computer 

games only by watching the screen. Combing model-free reinforcement learning algorithms such as mere Q-learning 

algorithm with neural networks causes some stability issues and makes to be diverged. There are two main reasons 

for these issues, e.g., (1) subsequent states in RL tasks are much correlated, (2) the policy is changing frequently, it is 

because of slight changes in Q-values. DQN for dealing with these issues provides some solutions. For the correlated 

states issue, it utilizes the approach introduced in [28] named experience replay. In the process of learning, DQN 

stores agent’s experience (st , at , rt , rt+1) at each time step into a dataset D, where st , at and rt , respectively the 

state, selected action and received reward at time step t and st+1 is state at the next time step. For updating Q-values, 

it uses stochastic minibatch updates with uniformly random sampling from experience replay memory (previous 

transitions) at training time. This work breaks strong correlations between consecutive samples, and for instability in 

the policy, the network is trained with a target Q-network to obtain consistent Q-learning targets by fixing weight 

parameters used in Q-learning target and updating them periodically. 

Until recently the proposed method achieved the best real time agents. In some games its strategy outperformed the 

human player and achieved state of the art performance on many Atari games with the same network architecture or 

hyperparameters. Several factors have been involved for getting the significant results, while the previous works had 

not considered [9]. First, advances in computing power, especially highly paralleled Graphical Processing Units 

(GPU) technology which has enabled training the deep neural networks with thousands of weight parameters. 

Second, DQN has used a large deep CNN which it has been made better representation learning. Third, DQN has 

used experience replay for the correlated states problem. 

However, using deep neural networks need sufficient data to be fed into network to learn better representations and 

as a result getting good performance. Hence, applying this approach in real environment such as robotics is very 

challenging and difficult since performing a large number of episodes to collect samples is source consuming and 

even not possible. 

The work done by Guo et al. [14] has shown better results in comparison with DQN’s performance. It uses the offline 

Mont Carlo tree search planning to provide training data for a convolutional neural network. Indeed, they have 
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developed some methods which benefit from deep learning nets for abstract representation and model-free RL by 

utilizing UCTbased planning method [20] to generate input data for the CNN. 

Like DQN this work also uses ALE framework as testbed for the proposed methods. It outperforms DQN in several 

games of Atari 2600. In order to achieve these results UCT needs significant time between actions [14]. In addition, 

planning-based approaches are slow for real time play. 

The goal of the research in [27] is training the perception and control systems jointly rather than each phase is trained 

separately, in order to get better performance. To reach this purpose, learning a policy which does both the perception 

and the control jointly, they utilized deep convolutional neural networks. The CNNs get raw images from a PR2 

robots camera and output the policy. The policy is a conditional distribution of a Gaussian which determines a 

probability distribution over actions with regard to given the observation of environment. The authors evaluated their 

method with comparing to other policy research approaches on various tasks such as hanging a coat hanger on a 

clothes rack, stacking Lego blocks on a fixed base, screwing caps onto pill bottles, etc. and has shown significant 

results. 

Developing an artificial agent which can play in variety of games is still a big challenge in AI. One type of these 

challenging games is board games such as the two-player game of Go in which the goal is to surround more territory 

than the opponent. In [13], the authors have developed a method to play the Go game on small boards with 

combining the benefits of two approaches multi-dimensional recurrent neural networks (MDRNNs) and long 

shortterm memory (LSTMs). The proposed method benefits from the feature of MDRNN where it can use provided 

information of the two space dimensions of the game board. Moreover, by integrating the LSTM in MDRNN, the 

vanishing gradient problem for RNNs [16] has solved as well. To train the networks they used policy gradients with 

parameter-based exploration method [39], a model-free reinforcement learning for POMDPs problems which has 

outperformed Evolution Strategies [8]. Notably, [10] as well as have used CNNs for playing Go game which input 

data was raw visual pixels. Their proposed methods have resulted state of the art performance to the problem of 

predicting the moves made by expert Go players. However, combining CNNs and RL framework to deal with Go 

game might lead to better improvement. 

Similar to the past works in visual based RL domain, the research [21] receives high dimensional visual inputs and 

learns optimal policies using end-to-end reinforcement learning. It utilized a compressed recurrent neural network 

which uses evolutionary algorithms for evolving the neural network as the action-value function approximate. It 

successfully used two challenging tasks such as the TORCS race car driving with high-dimensional visual data 

streams and the visual Octopus Arm task. 

The problem of video prediction is another domain that combing deep learning and RL approaches can be an optimal 

solution. One notable work is [33]. It introduces two deep neural networks architectures which integrate 

convolutional neural networks, recurrent neural networks and RL in order to predict action-conditional frames; the 

next frames in video depend on preformed actions in previous time step, the work done by Goulet al. [14] used slow 

UCT to predict future frames. They have shown that using their architectures in some Atari games can extract the 

features both spatial and temporal and generate 100-step action-conditional future frames without suffering of being 

diverged. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                     Volume: 08 Issue: 03 | March - 2024                         SJIF Rating: 8.176                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                                                                                                    |        Page 10 

4.2. Combination of RL Techniques with Unsupervised Learning Approaches of Deep Neural Networks 

There have been several attempts to learn representation which use the unsupervised learning techniques of deep 

neural networks in combination with RL. In the following section, we will address some unsupervised deep neural 

networks which are used in order to learn compact low-dimensional feature space of the RL task. Solving visual-

based reinforcement learning tasks is usually divided into two steps. The first is, mapping high-dimensional input 

data into a low- dimensional representation (which here, our focus is using the unsupervised learning methods of 

deep architectures). The second is, applying an approximation technique to the learned compacted feature space for 

approximating the Q-value function or the control policies. 

The studied research by Lange and Riedmiller [22] to handle high-dimensional visual state spaces problem in RL 

task, presented the Deep Fitted Q-iteration (DFQ) algorithm in which unsupervised training of deep auto-encoder 

networks are integrated with RL methods. DFQ algorithm at the first stage uses a deep auto-encoder to learn a low 

dimensional presentation of the input state (image) and then at the second stage, applies NFQ algorithm [35], a 

batchmode supervised learning, to estimate the Q-value function. DFQ algorithm was successfully applied to some 

continuous grid-world tasks which have had visual input. 

Deep Fitted Q-iteration algorithm has also been successfully used to learn the control policy for two control tasks, a 

pole balancing and a racing slot car, respectively by Matter et al. [29] and Lange et al. [23]. They have followed two 

steps, (1) raw visual input which were captured by a digital camera, is fed into an auto-encoder network in order to 

reducing and condensing the input state space, and (2) to estimate the value function, in former a kernel based 

function approximate [34] has been applied and in latter, the Clusters approach [22] has been utilized. However, any 

function approximation methods can be used for accomplishing this step. 

4.3. Deep RL for Partially Observable MDPs (POMDPs) Environments 

In most real world applications the Markov assumption is not feasible, since real states are only partially observable 

and using only the current states for decision making might not led to reach the optimal strategy. Unlike Markov 

decision processes (MDPs), POMDPs assume the input states of the RL agent are not complete and cannot contain 

all necessary information to select the optimal next action. One way which can facilitate this inconsistency is 

memorizing the history of the past observations, for this purpose [30] have stacked a history of the last 4 frames that 

the agent has recently seen in their experiments when they have used Atari 2600 games as the testbed. 

Recurrent networks are common solutions when the arbitrary background of the past events in a system is in need. 

RNNs are used as function approximates where they can provide condensed feature spaces of the past events which 

have been seen thus far. Indeed, this combination, POMDP RL and DL RNNs, allows the agent to memorize 

important previous observations [38]. One the first use of recurrent networks with RL is the research done by Bakker 

et al. [1] in robotics domain which enabled the RL robot with the memory capability through a Long Short Term 

Memory (LSTM) recurrent neural network, a special kind of the RNNs that can learn long term dependencies of 

states already seen [17]. 

The proposed method by Bauknecht and Stone [15] has adjusted Deep Q-network so as to it can be used in those 

environments which the observations may be noisy and incomplete (e.g., POMDPs environments). For this purpose 

they have integrated a LSTM with a DQN. To test their works they introduced the Flickering Pong POMDP which is 
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a modified version of the game of Pong (one of the Atari 2600 games). The game screen is considered fully obscured 

with probability p = 0.5 to bring the condition of the POMDP for Pong game. In Flickering Pong environment, they 

have shown that a recurrent deep Q-network (DRQN) with a single frame as input, has better performance in 

comparison with DQN with 4 frames and 10 frames as inputs. They have also proved that DRQN is cable to 

generalize its policies to MDP environment, where the states are completely observable. However, it had not 

significant superiority in other Atari games as benchmark, when it has been compared to DQN with the history of 

frames [15]. 

5. Conclusions and Future Work in Deep Reinforcement Learning 

eep learning models with great power of automatically extracting complex data representations from high-

dimensional input data could outperform other state of the art of traditional machine learning methods. A major 

challenge in reinforcement learning is to learn optimal control policies in problems with raw visual input. 

Hierarchical feature extraction and learning abstracted representations of deep architectures, not only made the deep 

learning become a valuable tool for classification, but it has made it to be a great solution for the mentioned 

challenge in RL tasks as well. 

In this paper, the focus was the role of deep neural networks as a solution for dealing with high-dimensional data 

input issue in reinforcement learning problems. We have presented recent advances in combing reinforcement 

learning framework and deep leaning models for both deep supervised and unsupervised learning networks. In 

particular, the deep architectures that have been most used in combination with RL such as deep convolutional 

networks, deep auto encoders and deep recurrent networks. In addition, appropriate deep networks for the problems 

with partially observable MDPs (POMDPs) environment, have been discussed. 

Despite of the significant works done to data in combining RL and DL, research on deep reinforcement learning is at 

its first steps and there are still many unexplored aspects of this combination. Also, their challenges in real 

application such as robotics, are yet unsolved and need more exploration to be done. More work is necessary on 

investigating deep architectures both for end to end leaning, which performs a direct approach to learn non-linear 

control policies, and deep state representation, which does dimension reduction to present low dimensional 

representations then try to approximate Q-values. Especially, developing those mechanisms which make the end to 

end learning can be practical in real world application, those which doing a large number of actions is impossible. 

Furthermore, an open problem that has not yet been addressed is how deep architectures can help deep reinforcement 

learning models to transfer knowledge (transfer learning). Indeed, how to use learned features by the deep networks 

for different tasks, without changing the network architectures. 
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