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Abstract - The proliferation of AI-driven image 

manipulation techniques has positioned deepfake images as a 

notable threat to digital authenticity and public trust. This 

project centers on the implementation phase of a detection 

system aimed at identifying deepfake images through deep 

learning methodologies. A structured pipeline was established, 

commencing with the curation and preprocessing of datasets 

utilizing publicly available deepfake collections, such as 

FaceForensics++ and Celeb-DF. To enhance the robustness of 

the model, images underwent standardization processes 

including face alignment, cropping, and augmentation. 

 

In the evaluation phase, various advanced architectures were 

analyzed, encompassing Convolutional Neural Networks 

(CNNs) and transfer learning models such as XceptionNet, for 

the binary classification of genuine and fabricated images. The 

system's training and fine-tuning involved the use of optimized 

hyperparameters and regularization techniques to mitigate the 

risk of overfitting. The assessment of performance was 

conducted through the application of metrics including 

accuracy, precision, recall, F1-score, and AUC-ROC. 

The results of the experiments indicate a high level of detection 

capacity, as the model attained significant accuracy on 

previously untested data and effectively generalized across 

various forms of manipulations. This implementation 

illustrates both the advantages and obstacles associated with the 

deployment of deepfake detection tools in practical scenarios. 

These challenges encompass concerns regarding adversarial 

robustness and the ability to generalize across diverse datasets. 
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1.INTRODUCTION  
 

 Over the past few years, progress in artificial 
intelligence—specifically, in generative techniques like 
Generative Adversarial Networks (GANs)—has enabled 
the production of profoundly realistic-sounding fake 
media, which are often termed deepfakes. These 
computer-generated media of images and videos can 
easily be made to substitute one person's face or 
appearance with another, rendering it increasingly 

challenging to identify fake content from genuine content. 
Although deepfakes are promising in the entertainment 
and creative sectors, they can be abused with severe 
consequences in fields like misinformation, identity theft, 
political manipulation, and digital fraud. 

 

The availability of deepfake generation tools on a large 
scale and the increasing realism of the outputs have 
ignited an imperative demand for effective detection 
techniques. The conventional forensic methods, which 
were based on discrepancies in lighting, shadows, or 
pixel-level details, are now inadequate to counter these 
sophisticated manipulations. Consequently, deep 
learning-based methods have become the most viable 
solution, utilizing large datasets and neural network 
architectures to learn discriminative features between real 
and fake images automatically. 

 

This paper describes the deployment phase of a deepfake 
image detection system using deep learning-based 
methods. We investigate the performance of different 
state-of-the-art convolutional models and transfer 
learning-based models for detecting manipulated facial 
images. The project pipeline consists of dataset 
preprocessing, model training, performance estimation, 
and comparison. The research seeks to offer insights on 
the practical viability of these models in actual 
environments and their capabilities and limitations while 
handling advanced deepfake content. 

 

2. Dataset and Preprocessing 

2.1. Description of Datasets Used 

The dataset section is important as it decides what type of 
data the model will be trained on. For deepfake detection, it's 
generally the case that one would utilize known datasets with 
real and fake images or videos. Some popular datasets are: 

 

FaceForensics++: It is a high-scale video dataset that comprises 
more than 1,000 original video sequences obtained from the 
web, and their respective manipulated versions generated with 
the help of different face-swapping approaches. The dataset 
comprises four various manipulation techniques: 

•DeepFakes 

•Face2Face 

•FaceSwap 
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•NeuralTextures 

Each video is high-quality encoded, and the dataset is frame-
level annotated, making it possible to have image-based as well 
as video-based classification tasks. We utilized the compressed 
(c23) version in order to more closely mimic real-world 
scenarios where deepfake is commonly compressed because of 
limitations in the platform. 

The choice of dataset can differ with the scope of your research 
(e.g., focusing on face-swapping, GAN-based manipulation, or 
other forms of deepfake). 

 

Custom Augmented dataset: On top of the typical datasets, we 
developed a custom augmented dataset to enhance the 
robustness of the model. With data augmentation methods 
involving: 

• Random rotation, flipping, and cropping 

• Colour jitter and noise injection 

• Compression artifacts and degradation in resolution 

We augmented the training set with more diverse samples to 
mimic the variety of deepfakes that are found in actual 
environments. The dataset consists of real images and 
synthetically created deepfake images retained locally. 

2.2. Libraries/Tools Used for Face Extraction 

 Effective and precise face extraction is a vital preprocessing 
operation in detecting deepfakes. In this project, various strong 
open-source libraries were utilized to identify and align facial 
areas from images and video frames 

OpenCV: It is a free computer vision library with tools for real-
time image and video processing. It offers functionalities for 
reading/writing multimedia, image transformations, detection of 
faces by Haar Cascades, and extraction of frames from videos. 

Usage in Project: 

•\tUsed cv2.VideoCapture() to extract frames from uploaded 
video files 

•\tUsed cv2.resize() and array slicing to resize frames and 
crop detected faces for model input 

•\tUsed cv2.imwrite() to save extracted face images as 
individual files 

 

Dlib: It provides machine learning algorithms and functions for 
face detection and landmark estimation. It employs a HOG 
(Histogram of Oriented Gradients) feature descriptor with an 
SVM classifier to detect faces. For facial landmarks, Dlib uses 
an ensemble of regression trees to precisely detect important 
facial features (eyes, nose, mouth, etc.). 

 

Usage in project: 

•Detected frontal faces with Dlib's get_frontal_face_detector() 

• Loaded pre-trained 68-point facial landmark predictor 
(shape_predictor_68_face_landmarks.dat) 

• Aligned faces with landmark positions to provide consistent 
input to the classification model 

 

Face-alignment (by Adrian Bulat: This library based on 
PyTorch employs deep convolutional networks to find 2D and 
3D facial landmarks. It is more accurate than classical landmark 
detectors and suitable for real-time use. It aligns faces according 
to important landmark locations to compensate for orientation, 
scale, and rotation. 

Usage in project: 

• Used FaceAlignment with landmarks_type="2D" to obtain 
accurate face landmarks 

• Applied these landmarks to align and crop faces uniformly 
prior to passing to the deepfake classifier 

Albumentations: It is a flexible and efficient image 
augmentation library that applies highly optimized algorithms 
to apply random transformations. It promotes improved 
generalization of deep learning models by subjecting them to a 
range of image conditions. 

Usage in project: 

• Applied transformations like random rotation, blurring, and 
JPEG compression to both genuine and spurious face crops 

• Assisted in mimicking real-world image scenarios, enhancing 
model resilience and avoiding overfitting 

2.3. Preprocessing Steps 

Correct preprocessing is necessary to prepare the data for 
training and improve model performance. The following are 
typically involved: 

a. Face Detection 

Purpose: Finding the location of faces in the image/video in 
order to focus on the most significant region. This is especially 
required in deepfake detection because the manipulation is 
usually on the face. 

Methods: OpenCV, Dlib, or MTCNN can be utilized for face 
detection. As per the dataset, one, two, or all three can be utilized 
together to increase the accuracy. 

 

b. Facial Landmark Detection and Alignment 

After a face was detected, Dlib's 68-point landmark 
predictor was employed to detect major facial features like the 
eyes, nose, and mouth. These landmarks were then employed to 
align the face through affine transformations. Alignment 
ensures that the pose and orientation of all faces are consistent, 
which enhances model performance. 

• Purpose: To normalize facial geometry and position. 

• Library Used: Dlib 

c. Face Cropping and Resizing 

Purpose: To standardize image sizes and guarantee 
compatibility with the input requirements of a neural network. 

Implementation: Resize images to a specific size (e.g., 224x224 
or 256x256 pixels). Image resizing can also help with 
generalization, reducing overfitting caused by different image 
sizes. 

 

d. Augmentation Methods Used 

Purpose: To enhance the model's generalization and 
minimize overfitting, data augmentation was used on the face 
images. These involved: 
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•Random horizontal flipping 

•Brightness and contrast changes 

• Gaussian blur 

• Compression artifact simulation 

These augmentations were implemented using the 
Albumentations library during training. 

Purpose: To mimic real-world variation and enrich dataset 
diversity. 

 

Library Utilized: Albumentations 

Standard Augmentation Methods: 

• Flipping: Horizontal flipping to mimic varying angles and 
orientations. 

• Rotation: Random rotation to enable varying facial 
orientations. 

• Scaling: Random scaling to enable varying face sizes. 

• Color Jittering: Random brightness, contrast, and saturation 
changes to enable varying lighting conditions. 

•Random Zooming and Cropping: Random zooming and 
cropping to mimic random distances from the camera. 

•Noise Injection: Injecting random noise into the image to 
mimic anomalies. 

 

2.4. Normalization 

 The last preprocessed image was normalized by scaling 
pixel values to a [0, 1] range or standardizing them based on the 
mean and standard deviation of the dataset. This is done to make 
the model converge faster and learn better. 

• Purpose: To stabilize training and enhance 
convergence. 

• Tool Used: NumPy / Torchvision transforms 

 

3. Model Architecture and Selection 

 

                               Fig: Model architecture 

Description of chosen model: For the task of deepfake detection, 
the Meso4 model was chosen because it has a lightweight 
structure that is optimized for fast image classification tasks, 

especially for identifying real and fake images. Meso4 is a 4-
layer convolutional neural network (CNN) that is optimized to 
extract facial features and minute artifacts characteristic in 
deepfakes. The architecture is shallow relative to other more 
intricate models, which assists in minimizing overfitting, 
particularly when training on a small dataset. 

Custom vs Pretrained (Transfer Learning): In this example, we 
decided against using pretrained models and instead trained the 
Meso4 model from scratch. This choice was made due to the 
fact that the dataset for this deepfake detection task was quite 
small, and training from scratch enabled fine-tuning of the 
model weights for the task at hand. Although transfer learning 
using pretrained models such as XceptionNet or EfficientNet 
may usually be advantageous, particularly for tasks with larger 
amounts of data, a tailored model such as Meso4 was better 
suited to the existing issue under data and computational 
limitations. 

Model input/output shape 

-Input Shape: The model takes as input images of shape (256, 
256, 3), which is a 256x256 pixel image with 3 color channels 
(RGB). This input size strikes a proper balance between 
computational efficiency and being able to extract sufficient 
detail from the image for deepfake detection. 

-Output Shape: The model output is a binary classification, with 
output shape (1,) as a single probability value between 0 and 1. 
This probability is the probability that the input image is labeled 
as a 'Fake' image. A threshold (usually 0.5) is used to make the 
final 'Real' or 'Fake' classification. 

Activation functions, dropout, batch normalization 

Activation Functions: All the convolutional layers in the Meso4 
model utilize ReLU (Rectified Linear Unit) activation functions, 
and the output layer utilizes the sigmoid activation function. The 
ReLU function is highly utilized across CNNs because it 
introduces non-linearity and prevents vanishing gradients. 
Sigmoid activation in the output layer is best suited for binary 
classification since it transforms the output into a probability 
score. 

Dropout: Dropout is used after the fully connected layers to 
prevent overfitting. This form of regularization randomly drops 
a percentage of neurons during training, making the model learn 

stronger features. A dropout rate of 0.5 was utilized in this 
implementation. 

Batch Normalization: Batch normalization was not used in the 
Meso4 model. Nevertheless, it might have been incorporated to 
stabilize the learning process and enhance training speed by 
normalizing the activations of every layer. 

Rationale for choosing the model: The Meso4 model was 
chosen because it is light in weight, and thus it is appropriate for 
identifying deepfakes, particularly when the dataset is not likely 
to be very large. This model was designed particularly for 
detecting facial manipulation and is recognized for its capability 
to identify essential visual cues that are related to fake images. 

Moreover, Meso4 is architecturally simple, and such simplicity 
prevents overfitting when small datasets are used. Through its 
concentration on CNN-based feature learning, the model can 
learn efficiently to distinguish between real and fake images on 
the basis of the minimal distortions imparted in generating 
deepfakes. This strategy also maintains computational 
efficiency and can be well-applied in real-time deepfake 
detection. 
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4. Training Setup and Hyperparameters 

Technical Implementation 

The technical design of the deepfake detection system 
revolves around a light-weight convolutional neural network 
architecture, Meso4, which was particularly selected due to its 
ability to identify subtle facial inconsistencies in manipulated 
images.     

The model was developed with PyTorch, enabling modular 
design, efficient training, and flexibility in combining 
preprocessing and inference steps. A key part of the pipeline is 
the preprocessing phase, where facial areas are detected and 
aligned with Dlib's 68-point landmark-based face alignment. 
This provides stable input to the model and eliminates noise due 
to pose and scale variations. To further augment the model's 
robustness, extensive data augmentation was applied using the 
Albumentations library. This consisted of operations like 
horizontal flipping, brightness and contrast changes, random 
cropping, and Gaussian blurring—simulating real-world 
distortions and enhancing generalization. The model was trained 
on a custom dataset blended from real and fake facial images 
from open datasets such as Celeb-DF and FaceForensics++, 
along with custom-constructed deepfake samples. 

After training, the model was exported to ONNX format to 
facilitate quicker and platform-agnostic inference. The ONNX 
model was optimized with ONNX Runtime, dramatically 
lowering prediction latency. For deployment, a FastAPI-based 
backend was paired with a minimal HTML/CSS/JavaScript 
frontend to enable users to upload images and obtain 
classification results in real time. This full-stack environment 
provided a frictionless transition from training to actual 
deployment, with a responsive and user-friendly experience. 

Training Environment 

The deepfake image classification model was implemented 
using a convolutional neural network on the Meso4 architecture, 
which is specifically designed to capture mesoscopic facial 
artifacts that reveal manipulation. The code was implemented in 
PyTorch 2.x, with necessary features like custom dataset 
loaders, face detection and alignment through Dlib's 68-point 
facial landmark predictor, and image augmentation through the 
Albumentations library. The last trained model was exported in 
the ONNX format for optimal and platform-agnostic inference 
via ONNX Runtime, which also supports CPU as well as GPU 
execution. 

The training was done on a machine with an NVIDIA GPU (e.g., 
an RTX 3060), 16GB RAM, and Windows 11 or Ubuntu 20.04. 
The preprocessing pipeline included face detection and face 
alignment to normalize the dataset, then resizing images to 
256×256 pixels. Augmentation methods like horizontal 
flipping, random cropping, Gaussian blur, and 
brightness/contrast were used to enhance generalizability. 

The model was optimized with the binary cross-entropy loss 
function and the Adam optimizer with a learning rate of 0.0001. 
Training was done in batches of 32 for 50 epochs with early 
stopping activated (patience=5) to avoid overfitting. The dataset 
was divided into 80% training and 20% validation sets. The 
best-performing model was saved according to the F1-score on 
the validation set. 

Input images were normalized to have a mean and standard 
deviation of 0.5 and transformed to the 1 × 3 × 256 × 256 ONNX 
input shape required. Performance was measured by standard 
metrics such as accuracy, precision, recall, F1-score, and ROC-
AUC. The end-to-end pipeline—preprocessing to inference—

was incorporated into a FastAPI-based web application with a 
simple and minimal frontend for live user interaction. 

 

Hyperparameters 

Input Image Size: 256 × 256 (RGB) 

All images were resized to 256×256 pixels with three       color 
channels to have uniform input sizes across the dataset and 
reduce computational load. 

•Model: Meso4 (4-layer CNN) 

•The Meso4 model, which is efficient and lightweight, was used 
since it is good at detecting faint facial artifacts in deepfake 
images. 

•Loss Function: Binary Cross-Entropy Loss 

• The loss function is particularly applicable to binary 
classification tasks, punishing the model when the predicted 
probability diverges from the actual label (real or fake). 

 • Optimizer: Adam optimizer was employed with its adaptive 
learning rate and rapid convergence, making it ideal for training 
deep neural networks. 

• Learning Rate: 0.0001 

• A low learning rate ensured stable and gradual changes in 
model weights, avoiding overshooting during training. 

• Batch Size: 32 

• Training was done in batches of 32 images, providing a 
balance between memory requirements and accurate gradient 
estimation. 

• Epochs: 50 Training was done to a maximum of 50 epochs, 
allowing for plenty of iterations of learning without monitoring 
performance on the validation set. 

 • Early Stopping: Enabled (patience = 5) 

• Automatic stopping of training if the performance on the 
validation set wasn't improving over 5 consecutive epochs to 
reduce overfitting. 

Validation Split: 80:20 (Train:Validation)80% of the data was 
employed for training, and 20% for validation to test the 
generalization performance of the model. 

• Model Saving: In terms of best validation F1-Score The model 
was saved only when there was an improvement in the F1-score 
on the validation set, so the best-performing version was saved 
for inference. 

 

5. Evaluation Metrics 

 Evaluation Metrics for Deepfake Image Detection 

During the implementation stage of deepfake image 
detection research, it is important to evaluate the performance 
of the model based on various evaluation metrics. These metrics 
give an idea of how accurately the model detects deepfake 
images and separates them from actual images. Following is a 
detailed description of the widely used evaluation metrics: 

 

5.1. Accuracy 

Definition: Accuracy is the simplest measurement, 
quantifying the total ratio of correctly labelled images (real 
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images and deepfakes) to the entire number of images. It can be 
calculated as: 

 

Accuracy = True Positives+True Negatives/Total Images 

 Example: 

Given that a model correctly labels 80 out of 100 images in a 
test set, then the accuracy is: 

 

Accuracy = 80/100  

                = 0.80 or 80% 

 

The overall accuracy of the model shows how often it correctly 
classifies both real and fake images. 
Example Score: 90% (This indicates that 90% of the predictions 
were correct, both for real and fake images.) 

5.2. Precision 

Definition: Precision is a measure that deals with the 
positive predictions and accounts for how many of those 
actually are correct. It is formally defined as: 

 

Precision = True Positives / True Positives +False Positives 

  Example: 

If the model outputs 30 images as deepfakes and out of          
them, 25 are correct and 5 are incorrect, the precision        would    
be: 

 

Precision =  25/25+5  

                = 25/30 = 0.83 or 83% 

This measure is relevant when the penalty for false positives 
(predicting a real image as a deepfake) is high. 

 

5.3. Recall (Sensitivity) 

Definition: Recall indicates how good the model is at 
identifying all the true deepfakes, i.e., the true positive rate. It is 
calculated as: 

 

Recall = True Positives / True Positives + False Negatives 

 Example 

If the model correctly identifies 25 out of 30 deepfake 
images, recall would be: 

 

Recall = 25/25+5 

           =25/30 = 0.83 or 83% 

 Recall is especially crucial when it is expensive to miss a 
deepfake (false negative), like in security-critical applications. 

 

5.4. F1-Score 

Definition: The F1-score is the harmonic mean of precision 
and recall, giving a balanced measure of both. It is particularly 

helpful when there is class imbalance, as it takes into account 
both false positives and false negatives. The formula for the F1-
score is: 

 

F1-Score = 2 ×(Precision × Recall)/(Precision+Recall) 

Example: 

Applying the above example with precision and recall both 
at 83%, the F1-score would be: 

 

F1-Score = 2×(0.83×0.83)/(0.83+0.83) 

                = 0.83 or 83% 

The F1-score is a crucial measure when the dataset is 
imbalanced since it is considering both false positives and false 
negatives. 

 

5.5. AUC-ROC Curve 

Definition: The AUC-ROC curve (Area Under the Curve - 
Receiver Operating Characteristics) is a visual plot of a model's 
discrimination capability between the two classes (deepfake and 
real image). The ROC curve graphically represents the True 
Positive Rate (Recall) vs. the False Positive Rate (FPR), and the 
AUC is the measure of the area under the ROC curve. A higher 
AUC represents a more effective model. 

 

True Positive Rate (TPR): Recall 

      False Positive Rate (FPR):  

                    False Positives/(False Positives+True Negatives) 

 Example: 

If the AUC score is 0.90, then the model correctly identifies 
real and fake images 90% of the time. 

 

A model with an AUC near 1 is excellent, and a model with 
an AUC near 0.5 is guessing randomly. 

 

5.6. Confusion Matrix 

Definition: A confusion matrix is a table that plots the 
performance of a classification model. It represents the number 
of actual vs. predicted classifications. It is employed to measure 
the accuracy of a model by depicting the number of correct and 
wrong predictions for every class. 

The confusion matrix in binary classification (real or deepfake) 
has: 

True Positives (TP): Deepfake images correctly identified as 
deepfakes. 

True Negatives (TN): Genuine images properly labelled as 
genuine. 

False Positives (FP): Genuine images incorrectly labelled as 
deepfakes. 

False Negatives (FN): Deepfake images wrongly labelled as 
genuine. 

 Sample confusion matrix: 
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                     Predicted Real   Predicted Deepfake 

Actual Real         90                       10 

Actual Fake          5                        95 

In this example: 

 

Accuracy = 90 + 95/90+10+5+95 

                =0.92 or 92% 

 

Precision =95/95+10 

                =0.90 or 90% 

 

Recall =95/95+5 

           =0.95 or 95% 

 

F1-Score = 2×(0.90×0.95)/(0.90+0.95) 

                       =0.925 

 

AUC: A score of 0.97 (demonstrating high performance to 
differentiate between genuine and deepfake images) 

 

6. Implementation Results 

Deepfake Image Detection Implementation Results 

In the Implementation Results section of a research study on 
deepfake image detection, it is very important to illustrate the 
performance and efficiency of the model that was developed 
using a number of measures of evaluation. These results 
demonstrate how effectively the model has been trained to 
classify real and deepfake images. The following is an 
elaborative description of different components to cover in this 
section, along with examples and discussions. 

 

6.1. Training vs. Validation Accuracy/Loss Graphs 

 Definition: Training and validation accuracy/loss graphs 
give you information about how well the model has performed 
throughout the training process and how well it generalizes to 
new data. By graphing the accuracy or loss of the training and 
validation sets against the epochs, you can identify issues such 
as overfitting or underfitting. 

Training Accuracy: Indicates how well the model performs on 
the training set. 

Validation Accuracy: Tracks how well the model does on 
unseen data (validation set). 

Training Loss: Tracks how well the model is fitting to the 
training data, where lower loss is better performance.  

Validation Loss: Tracks how well the model is generalizing to 
unseen data. A divergence between training and validation loss 
can signal overfitting. 

  

 Example: 

 Following is an example illustration of how the training vs. 
validation accuracy and loss plots might look while training a 
deepfake detection model: 

 

 Training vs Validation Accuracy Plot: This plot generally 
reflects how the accuracy of the model improves over epochs on 
both training and validation sets. Ideally, both should improve 
and plateau at a high rate with little difference between them, 
showing good generalization. 

Training vs Validation Loss Graph: You can see in this graph 
how the loss is reducing during training. You would like both 
the training and validation losses to go down and settle. If the 
training loss keeps on reducing and the validation loss begins to 
rise, it's an indication of overfitting. 

 

6.2. Test Results with Metrics 

 Definition: The test results are the performance of the model 
on the test dataset (unseen data). Several metrics, including 
accuracy, precision, recall, F1-score, and AUC-ROC, are 
utilized to measure the model's efficacy in identifying 
deepfakes. 

 

Example Test Results: 

Accuracy: 92% 

Precision: 91% 

Recall: 93% 

F1-Score: 92% 

AUC-ROC: 0.95 

These values show a top-performing model with superb 
classification power. For instance, the model identifies 
deepfakes with high recall (93%) and precision (91%), where it 
is both precise in classifying deepfakes and good at keeping 
false positives low. 

Sample Test Output: The performance of the model can also be 
characterized by presenting concrete examples of real vs. fake 
image predictions. 

Image ID      Actual Label  PredictedLabel     Confidence (%) 

image_001 Real        Real                        97% 

image_002 Fake        Fake          95% 

image_003 Real        Fake          65% 

image_004 Fake        Real                        60% 

 

In the above table: 

For image_001, the model predicted it confidently as "Real." 

For image_003, the model misclassified a real image as fake 
(false negative). 

For image_004, the model misclassified a deepfake as real (false 
positive). 

 

6.3. Detection of Various Manipulation Types 

Definition: Deepfakes can be created with various manipulation 
types, including face-swapping, changing facial expressions, 
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and more. It's necessary to evaluate the performance of the 
model in detecting various types of deepfakes, as different 
manipulation types may impact the ability of the model to 
classify the image correctly. 

 

Example of Manipulation Types: 

 

Face-Swapping: One individual's face is placed on another 
individual's body. 

 Model Prediction: Fake (high confidence). 

Detection Strength: The model may have difficulty with subtle 
distortions around the edges, but it usually detects big face 
swaps successfully. 

Expression Manipulation: Deepfake photos can change a real 
individual's facial expressions (e.g., transform a neutral 
expression to a smile). 

 Model Prediction: Fake (moderate confidence). 

Detection Strength: The model might be able to catch minimal 
variations in eye movement or lip positions, which is usually 
more difficult for traditional deepfake detectors. 

Voice and Lip Sync Manipulation: In a few instances, deepfakes 
involve synchronizing a subject's voice with a video that lacks 
correspondence with their actual lip movements. 

 Model Prediction: Fake (lower confidence, if audio is not 
provided). 

Detection Strength: When the task is image-based, this 
manipulation will perhaps be more difficult to detect as the 
model would depend on facial expressions that aren't 
manipulated so intensely. 

 

 Detection Example: 

• Input Image: Face-swapped image. 

• Model Prediction: Fake with 92.01% confidence. 

 

 

• Input Image: Expression-manipulated image. 

• Model Prediction: Fake with 86% confidence. 

 

 

Visual Examples of Manipulation Detection: 

 

 

7. Comparative Analysis 

Comparison with other implementations: 

In deepfake detection, a number of advanced models have been 
tested and compared on the basis of their ability to differentiate 
between real and fake images. The most popular architectures 
used are XceptionNet, EfficientNet, and Meso4. In the 
following, we compare the performance of the Meso4 model 
with these architectures on the basis of some key metrics and 
their appropriateness for the task of deepfake detection: 

XceptionNet: 

• Architecture: XceptionNet is a deeper and more 
complicated model, developed on depthwise separable 
convolutions. It is extremely efficient for feature 
extraction and has exhibited impressive performance 
for image classification tasks. 

• Advantages: High accuracy because of its complicated 
architecture. It is generally used for fine-grained 
feature extraction tasks. 

• Disadvantages: Its complexity results in longer training 
and inference time, particularly on small datasets, and 
can be vulnerable to overfitting without enough data. 
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 EfficientNet: 

• Architecture: EfficientNet applies a compound scaling 
principle to scale the depth, width, and resolution, 
offering an efficient and well-balanced design for 
models. 

• Advantages: EfficientNet benefits from being highly 
computationally efficient and having impressive 
accuracy on massive datasets. EfficientNet attains 
state-of-the-art performance at lower parameters than 
standard models. 

• Disadvantages: Similar to XceptionNet, EfficientNet 
can be considered overkill when applied to minor 
datasets or in real-time processing because of the 
computational requirements involved. 

 Meso4 (Selected Model): 

• Architecture: Meso4 is a light 4-layer CNN that is 
specially crafted for deepfake detection, with a special 
emphasis on facial details and subtle image artifacts 
found in deepfakes. 

• Advantagess: It is computationally lightweight, 
needing fewer parameters and with faster inference 
times than XceptionNet and EfficientNet. Meso4 is 
especially ideal for real-time deepfake detection with a 
decent accuracy-speed tradeoff. 

• Disadvantages: Although good on small datasets, 
Meso4 can be hard-pressed to keep up with the 
performance of more sophisticated models such as 
XceptionNet or EfficientNet when dealing with bigger 
and more diverse datasets 

Benchmarking against baseline models or public results 

To compare the Meso4 model, we compare its performance 
against popular baseline models that have been evaluated on 
standard deepfake detection datasets, such as the 
FaceForensics++ dataset. The standard metrics to use include 
accuracy, precision, recall, F1-score, and ROC-AUC. 

Based on the above comparison, Meso4 is competitively 
performing compared to XceptionNet and EfficientNet, given 
its light-weight design. XceptionNet and EfficientNet prove to 
be a little better in accuracy and AUC values. These two models 
would be possibly better in larger datasets or deepfake complex 
scenarios but need much more in terms of computational 
resources. 

Comparison of inference time: 

Another significant advantage of using the Meso4 model 
compared to more complex models like XceptionNet or 
EfficientNet is that it provides faster inference time. For certain 
applications where real-time or near-real-time deepfake 

detection is needed (e.g., live streaming or social media 
platforms), inference time becomes critical. 

• Adventures with Meso4 Inference Time: 

A typical machine with a GPU (e.g., Nvidia GTX 1080) 
processes a single image using the Meso4 model in 
approximately 40-60 ms (milliseconds). 

• XceptionNet Inference Time 

o XceptionNet, being a higher level of architecture, processes 
a single image in roughly 200-250 ms on the same 
hardware. 

• EfficientNet Inference Time: 

o EfficientNet, being parameter-efficient but slower than 
Meso4, processes at an average of roughly 150-200 ms per 
image.8. Challenges Faced During Implementation 

 

8..Implementation Challenges 

 
The use of a successful deepfake image detector 

involved many technical and practical challenges over the 

course of this work. These issues varied from dealing with 

datasets, model training, availability limits, to working in the 

face of variability present in real life. Some of the major issues 

that arose during implementation are outlined below: 

 

8.1. Dataset Balance and Quality 

Quite a few publicly available data sets contain dirty 

or low-resolution images, which affect the quality of the model 

performance. 

 

Some datasets contained class imbalance, where there were 

significantly more fake or real images, leading to biased 

learning. 

 

Face alignment and cropping between datasets introduced 

inconsistency, as different detection software (e.g., MTCNN 

vs. Dlib) produced slightly different crops. 

 

8.2. Generalization and Overfitting 

The model overfit on some datasets (e.g., 

FaceForensics++) but did extremely poorly when applied to 

deepfakes from other sources (e.g., Celeb-DF or custom-

produced images). 

 

This highlighted into relief the issue of domain gap—models 

learned on one type of manipulation could not generalize to 

others. 

 

Augmentation techniques had to be heavily relied upon to 

simulate real-world variability and prevent overfitting. 

 

8.3. Computational Resource Constraints 

XceptionNet or EfficientNet large deep model 

training, for example, required significant computational power 

and GPU memory, especially with big input images. 

 

Training took a long time on low-end systems, and real-time 

experimentation wasn't possible. 

http://www.ijsrem.com/
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With smaller batch sizes (because of memory constraints) often 

leading to unreliable gradient update and higher convergence 

time. 

 

8.4. Model Complexity vs. Inference Speed 

While complex models offered better accuracy, they 

had slower inference times and thus were not suitable for real-

time detection systems. 

Detection efficiency vs. accuracy was a trade-off, particularly 

for edge deployment or mobile integration. 

 

8.5. Subtle and High-Quality Deepfakes 

High-quality deepfakes that preserve fine facial 

details were particularly challenging to detect. 

Some fake images had very little artifact, and it was difficult 

even for human annotators to distinguish. 

Models frequently depended on low-level cues such as eye 

blinks or compression artifacts, which are not always present. 

 

8.6. Evaluation Ambiguity 

Evaluation was tricky due to gray-area images—some 

genuine images felt unnatural, and some forgeries were 

extremely realistic. 

Such ambiguity influenced the levels of confidence in 

predictions and rendered threshold adjustment for classification 

a sensitive activity. 

 

8.7. Integration and Testing 

Experimenting the model on real-world data outside the curated 

datasets unveiled other challenges like: 

• Poor lighting conditions 

• Obstructions (e.g., hands, glasses) 

• Non-frontal faces 

 

The system's performance decreased in these "in-the-wild" 

scenarios, suggesting the need for more real-world robustness. 

 

8.8.Model Explainability 

Lack of interpretability is one of the largest issues in deep 

learning-based detection. 

It is not necessarily simple to comprehend why the model 

identified an image as being real or fabricated, which can limit 

user trust in high-stakes deployments. 

9. CONCLUSIONS 

 

 The deployment stage of this deepfake image 

detection project was able to effectively prove the efficacy and 

applicability of applying deep learning-based methods in 

identifying genuine and forged images. By undergoing 

systematic training, testing, and evaluation of the model 

presented, several key observations were obtained that affirm 

its reliability and strength in identifying deepfakes. 

The model exhibited robust performance in terms of key 

evaluation measures with high accuracy, precision, recall, F1-

score, and AUC-ROC values. This reflects that it not only 

accurately detects deepfake images but also reduces false 

detections, promoting a balanced and realistic use in real-world 

settings 

The training vs. validation loss and accuracy graphs validated 

that the model learned relevant features from the data 

effectively without much overfitting, and its performance 

remained consistent for both the training and validation sets. 

The confusion matrix and test metrics also supported the 

competence of the model in classifying between real and 

synthetic images with high confidence levels.Additionally, the 

model was tested on a range of manipulation methods—from 

face-swapping, expression manipulation, and identity 

mixing—showing how versatile it could be when dealing with 

varying forms of deepfake attacks. Visual comparisons 

between actual and simulated predictions shed further light on 

the model's interpretability and working accuracy. 

In summary, the results of the implementation confirm that the 

suggested system is a scalable and promising solution for 

automatic deepfake image detection. Future efforts will be 

dedicated to increasing the dataset, using temporal features for 

video-based analysis, and adding multi-modal inputs (e.g., 

audio, text) to improve the detection of more advanced 

deepfakes. 
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