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Abstract - The rise of DeepFake (DF) 

technology poses a significant threat to the authenticity 

and reliability of digital media. While such videos once 

required expert skills and high-end software, the recent 

advancement of deep learning tools has made the 

generation of hyper-realistic synthetic media widely 

accessible. This paper presents a robust and efficient deep 

learning-based solution for detecting DeepFake videos by 

combining spatial and temporal analysis using a 

Convolutional Neural Network (CNN) and a Long Short-

Term Memory (LSTM) based Recurrent Neural Network 

(RNN). Our final system leverages a ResNeXt50 CNN for 

frame-level feature extraction and an LSTM layer to 

model temporal inconsistencies across sequential video 

frames. Extensive experiments conducted on a balanced 

dataset—comprising both real and manipulated videos 

sourced from FaceForensics++, YouTube, and the 

DeepFake Detection Challenge dataset—demonstrate the 

high accuracy and reliability of our model. Additionally, 

the developed solution is deployed as a web-based 

platform allowing real-time DeepFake video detection 

with user-friendly interaction. This paper outlines the 

design, implementation, results, and scope of our 

complete DeepFake detection system. 
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1.INTRODUCTION  

In recent years, we’ve seen a rapid evolution in how 

content is created, shared, and consumed online. Among the 

most significant—and alarming—developments in this space 

is the rise of DeepFakes: videos generated using artificial 

intelligence that make it appear as though someone is doing 

or saying something they never actually did. These videos are 

created using advanced machine learning techniques such as 

Generative Adversarial Networks (GANs), and what once 

required hours of editing and expert skills can now be 

achieved with a few clicks and publicly available tools. The 

results are often disturbingly realistic, making it increasingly 

difficult for people—even experts—to distinguish between 

real and manipulated content. 

 

This growing accessibility has turned DeepFake 

technology from an intriguing technical achievement into a 

powerful tool for deception. DeepFakes have already been 

used to spread fake news, impersonate celebrities or political 

figures, create non-consensual explicit content, and commit 

fraud. In an age where digital content heavily influences 

public perception, trust in media is more important than 

ever—and more fragile. As videos become easier to fake, the  

 

line between reality and fiction begins to blur, posing 

a real threat to information integrity, online safety, and even 

democracy itself. 

 

Our motivation for this project stems from both the 

urgency of this issue and the opportunity to apply artificial 

intelligence in a meaningful way. While a lot of attention has 

been given to the creation of DeepFakes, there’s still a 

pressing need for reliable detection tools that can counteract 

this misuse. We saw this project as a way to not only 

understand the technical workings behind DeepFakes but to 

be part of the solution. Working on this system gave us a 

chance to explore fields like computer vision, video analysis, 

CNNs, and real-world application development—all while 

contributing to a tool that can make a real difference. 

 

The core problem we set out to address is the lack of 

accessible and accurate systems that can automatically detect 

DeepFake videos. These fake videos are often nearly 

indistinguishable from real ones, especially when viewed 

casually. Unlike photoshopped images, which may show 

visible signs of tampering, DeepFakes use AI to match facial 

expressions, sync audio with lip movements, and maintain a 

high level of visual consistency across frames. This makes 

manual detection unreliable and impractical, particularly at 

the scale at which content is shared online. Our goal, 

therefore, is to build a system that can intelligently detect 

whether a video has been tampered with—using deep learning 

techniques to uncover the subtle signs that betray a DeepFake. 

 

To achieve this, we designed a two-part machine 

learning model. First, we use a Convolutional Neural Network 

(CNN), specifically the ResNeXt50 architecture, to analyze 

each frame of the video and extract meaningful spatial 

features. These features include small inconsistencies around 

facial landmarks, blending artifacts, or resolution 

mismatches. But analyzing individual frames isn’t enough. 

DeepFakes often reveal themselves through unnatural 

changes over time—like irregular blinking, inconsistent 

lighting, or abrupt shifts in facial motion. That’s where our 

second component comes in: a Recurrent Neural Network 

(RNN) based on Long Short-Term Memory (LSTM) units, 

which evaluates the sequence of frames to detect such 

temporal inconsistencies. 

 

Our solution isn’t just theoretical—it’s a fully 

functional, web-based application where users can upload any 

video and receive a prediction about whether the content is 

real or fake, along with a confidence score. The model is 

trained on a balanced dataset consisting of both real and 

DeepFake videos collected from platforms like YouTube, 

FaceForensics++, and the DeepFake Detection Challenge on 

Kaggle. For preprocessing, we applied Multi-task Cascaded 

Convolutional Networks (MTCNN) to detect and crop faces 
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from video frames before passing them to our detection 

pipeline. 

 

Of course, our system isn’t without limitations. 

High-quality DeepFakes that are crafted with extreme care 

may still bypass the model. The detection accuracy may also 

be affected by factors like poor video resolution, dark lighting, 

or unusual camera angles. Moreover, since the model is 

trained on a finite dataset, it might not perform equally well 

on all facial types or demographics. That said, our architecture 

is designed to be modular and expandable—making it 

adaptable to future improvements and additional data sources. 

 

Our approach to solving this problem followed a 

clear and structured pipeline: from dataset collection and 

frame-level preprocessing to model design, training, testing, 

and deployment. The final application was built using Django, 

a high-level Python web framework, and is intended to be 

user-friendly, fast, and scalable. In the future, this system 

could even be extended into a browser plugin or integrated 

into social media platforms to offer real-time DeepFake 

detection before harmful content spreads. 

 

In conclusion, this project blends cutting-edge AI 

techniques with a socially impactful application. It 

demonstrates how artificial intelligence can be used not only 

to generate impressive content but also to protect the integrity 

of digital media. In a time when “seeing is believing” no 

longer holds true, tools like this are essential for preserving 

truth, trust, and transparency online.  

  

2. LITERATURE SURVEY  

With the rise in misuse of AI-generated videos, DeepFake 

detection has become an important research area. Several 

techniques have been proposed, each focusing on unique 

patterns or inconsistencies introduced during video 

manipulation. 

 

One early method by Li and Lyu targeted face warping 

artifacts. Since many DeepFake generators create fixed-size 

face images, they often require geometric transformation, 

which leads to noticeable resolution mismatches. Their CNN-

based model showed good results on low-quality fakes, but its 

performance dropped when tested on high-resolution or post-

processed videos. 

 

Another technique by the same researchers focused on eye 

blinking patterns. Since natural blinking is often missing or 

irregular in synthetic videos, detecting this behavior helped 

flag fakes. However, this method may not work well if the 

generator includes realistic blinking or if subjects blink less 

frequently. 

 

Later approaches explored capsule networks, which try to 

preserve the spatial hierarchy of features—something 

traditional CNNs can overlook. While effective in controlled 

datasets, these models struggled with noisy, real-world data 

due to limited generalization. 

 

Physiological-based systems like FakeCatcher introduced a 

different angle by detecting subtle biological signals, such as 

changes in skin tone caused by blood flow. These systems are 

more robust across manipulation styles but require high-

resolution input and significant computational resources. 

 

Compared to these individual approaches, our system 

combines both spatial and temporal analysis using a hybrid 

architecture: ResNeXt for extracting visual features from 

frames and LSTM for tracking inconsistencies over time. This 

combination allows better detection of manipulations that may 

not be obvious in single frames but are revealed across 

sequences. 

 

Unlike most research-focused implementations, we’ve 

integrated our model into a working web-based platform that 

supports real-time video analysis making it more practical and 

user-friendly for everyday applications. 

  

3. IMPLEMENTED SYSTEM  

This section details the DeepFake video detection system 

that we successfully designed, developed, trained, and 

deployed. The system leverages a hybrid deep learning 

architecture combining CNNs and RNNs to identify 

manipulated video content, and it is fully integrated into a 

working web-based application. 

 

3.1 System Overview 

The implemented system accepts an input video through a 

user-friendly web interface, automatically processes it, and 

outputs a prediction stating whether the video is real or 

DeepFake, along with a confidence score. The pipeline 

consists of five main stages: 

1. Face detection and frame extraction 

2. Feature extraction using a trained ResNeXt50 CNN 

3. Temporal sequence analysis using an LSTM layer 

4. Prediction and classification 

5. Display of results via a Django-based web platform 

This architecture enabled the system to analyze both spatial 

anomalies and temporal inconsistencies—two key indicators 

of DeepFake content. 

 

3.2 Dataset Preparation 

For training and testing, we constructed a custom dataset 

composed of both real and DeepFake videos. We sourced 

these videos from: 

• YouTube (for authentic content) 

• FaceForensics++ 

• Kaggle’s DeepFake Detection Challenge dataset 

Our final dataset was carefully balanced, with 50% genuine 

and 50% manipulated videos, and was split into 70% training 

and 30% testing sets. 

Each video was processed by: 

• Splitting it into frames 

http://www.ijsrem.com/
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• Detecting and cropping facial regions using MTCNN 

• Discarding frames where no faces were detected 

• Normalizing the number of frames per video to a 

fixed count of 100 frames (based on dataset average) 

This preprocessing step ensured uniformity in the input for 

model training and reduced computational load without 

sacrificing performance. 

 

3.3 Feature Extraction using CNN 

We implemented ResNeXt50_32x4d, a highly efficient deep 

convolutional neural network, to extract frame-level features 

from the face-cropped video frames. The model was fine-

tuned on our custom dataset using transfer learning. 

For each frame, the ResNeXt model generated a 2048-

dimensional feature vector from the final pooling layer. 

These vectors were saved in sequential order for each video 

and served as input to the temporal analysis module. 

 

3.4 Temporal Analysis using LSTM 

To capture temporal inconsistencies introduced by 

DeepFake generation tools, we used a Long Short-Term 

Memory (LSTM) layer. This layer processed the sequence 

of feature vectors obtained from the CNN. 

The LSTM configuration included: 

• 2048 units 

• Dropout rate of 0.4 

• A final fully connected classification layer with 

softmax activation 

The LSTM output represented the probability of the video 

being real or fake. The temporal model significantly boosted 

detection accuracy by focusing on patterns like unnatural 

blinking, inconsistent facial expressions, or jerky head 

movement over time. 

 

3.5 Training Configuration 

The model was trained on the prepared dataset with the 

following settings: 

• Batch size: 16 

• Epochs: 30 

• Optimizer: Adam 

• Loss Function: CrossEntropyLoss 

• Learning Rate: 1e-4 

Training was conducted on a GPU-enabled environment 

using PyTorch. Both the CNN and LSTM models were 

trained end-to-end using mini-batch sequences of frames 

from the dataset. 

 

3.6 Web Application Deployment 

The trained model was deployed using a Django-based web 

application, allowing users to interact with the detection 

system through a browser. The user flow is as follows: 

1. A user uploads a video via the interface. 

2. The backend extracts frames and applies MTCNN for 

face detection. 

3. Cropped face images are passed directly into the 

ResNeXt+LSTM model. 

4. The model returns a classification (Real/DeepFake) 

and a confidence score. 

5. The results are presented visually, including optional 

preview frames. 

The system runs entirely server-side and processes each 

video in near real-time without storing user data 

permanently—preserving privacy while ensuring efficient 

analysis. 

 

3.7 Prediction Workflow 

 

During runtime, the system handled video input with the 

following logic: 

• Split video → Detect faces → Crop and normalize → 

Extract features → Analyze temporal sequence → 

Predict result → Return response. 

This approach ensured accuracy, scalability, and 

responsiveness, making the application suitable for real-

world use across devices. 

  

 

A. Dataset:  

We are using a mixed dataset which consists of equal 

amount of videos from different dataset sources like 

YouTube, FaceForensics++[14], Deep fake detection 

challenge dataset[13]. Our newly prepared dataset contains 

50% of the original video and 50% of the manipulated 

deepfake videos. The dataset is split into 70% train and 30% 

test set.  

B. Preprocessing:  

Dataset preprocessing includes the splitting the video into 

frames. Followed by the face detection and cropping the 

frame with detected face. To maintain the uniformity in the 

number of frames the mean of the dataset video is calculated 

and the new processed face cropped dataset is created 

  
Fig.   1:   System   Architecture   

  

http://www.ijsrem.com/
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containing the frames equal to the mean. The frames that 

doesn’t have faces in it are ignored during preprocessing. 

 

C. Model: 

The model consists of resnext50_32x4d followed by one 

LSTM layer. The Data Loader loads the preprocessed face 

cropped videos and split the videos into train and test set. 

Further the frames from the processed videos are passed to the 

model for training and testing in mini batches. 

 

D. ResNext CNN for Feature Extraction  

Instead of writing the rewriting the classifier, we are proposing 

to use the ResNext CNN classifier for extracting the features 

and accurately detecting the frame level features. Following, 

we will be fine-tuning the network by adding extra required 

layers and selecting a proper learning rate to properly converge 

the gradient descent of the model. The 2048-dimensional 

feature vectors after the last pooling layers are then used as the 

sequential LSTM input.  

E. LSTM for Sequence Processing   

Let us assume a sequence of ResNext CNN feature vectors of 

input frames as input and a 2-node neural network with the 

probabilities of the sequence being part of a deep fake video or 

an untampered video. The key challenge that we need to 

address is the de- sign of a model to recursively process a 

sequence in a meaningful manner. For this problem, we are 

proposing to the use of a 2048 

F. Predict:  

A new video is passed to the trained model for prediction. A 

new video is also preprocessed to bring in the format of the 

trained model. The video is split into frames followed by face 

cropping and instead of storing the video into local storage the 

cropped frames are directly passed to the trained model for 

detection.  

 

 

 

4.RESULT  

After successfully training and deploying the DeepFake 

detection system, we conducted extensive testing to evaluate its 

performance across multiple dimensions, including 

  
  

Fig.   3:   Prediction   flow   

Fig.   2:   Training   Flow   

http://www.ijsrem.com/
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classification accuracy, confidence scores, model 

responsiveness, and robustness on unseen video samples. The 

goal was to ensure that the system not only performed well in 

a controlled training environment but also generalized 

effectively to real-world inputs. 

 

 
 

 

4.1 Model Performance 

The system was evaluated on a test dataset that included both 

real and manipulated videos from diverse sources. Below are 

the key performance metrics obtained from the testing phase: 

 

Metric Score 

Accuracy 93.4% 

Precision 91.8% 

Recall 94.2% 

F1-Score 93.0% 

AUC-ROC 0.96 

Average Confidence 92% 

 

 

 

These results confirm the model's effectiveness in 

distinguishing DeepFake content, with high recall ensuring 

reduced false negatives—crucial in forensic applications. 

 

4.2 Confidence Scoring 

Each prediction includes a confidence score to provide 

transparency in classification: 

• DeepFake – 94% confidence indicates high likelihood 

of manipulation. 

• Real – 65% confidence suggests uncertainty and may 

require manual review. 

This scoring mechanism assists users in interpreting results, 

especially in borderline cases. 

 

4.3 Sample Prediction Outputs 

Sample outputs illustrating model performance across varying 

input conditions: 

• YouTube interview clip → Real (91% confidence) 

• DFDC celebrity speech → Fake (95% confidence) 

• Low-resolution user video → Fake (78% confidence) 

• Political video with altered identity → Fake (97% 

confidence) 

These examples demonstrate robustness across different 

formats and quality levels. 

 

4.4 Visual Feedback in Web Interface 

The web interface, developed using Django, displays: 

• Sampled video frames 

• Classification label (Real/Fake) 

• Confidence score 

• Highlighted face regions (if detected) 

This visual output enhances usability for non-technical users, 

making the system accessible and interpretable. 

 

4.5 System Performance 

• Average Detection Time per Video: 12–15 seconds 

(100 frames) 

• Model Initialization Time: ~3 seconds (with GPU) 

• Processing Mode: Real-time inference with no 

intermediate storage 

• Platform Compatibility: Verified on major browsers 

and devices 

The system is optimized for fast and efficient performance, 

supporting real-time analysis scenarios. 

 

4.6 Error Cases and Observations 

Performance degradation was observed in specific scenarios: 

• Low lighting or heavy motion blur 

• Faces captured in extreme side profiles 

• DeepFakes with high-quality post-processing 

These edge cases indicate potential avenues for future model 

enhancement. 

 

4.7 Summary 

The ResNeXt-LSTM-based architecture delivers high accuracy 

and responsiveness in detecting manipulated video content. 

Integrated with a user-friendly web interface, the system 

demonstrates potential for real-world deployment in digital 

forensics, media verification, and content moderation 

applications. 

 

5. RESULTS AND EVALUATION 
After building and deploying our DeepFake detection system, 

we thoroughly tested it to understand how well it performs in 

real-world conditions. Our goal wasn’t just to achieve high 

accuracy in a lab setting, but to build something practical, 

reliable, and useful for everyday users who might want to verify 

the authenticity of a video. 

 

4.1 How Well Did the Model Perform? 

We evaluated our model on a diverse set of real and fake videos. 

These weren’t just from the training data—we included new, 

unseen videos from sources like YouTube, public datasets, and 

manually downloaded DeepFake clips. We wanted to see how 

our model handles different lighting conditions, camera angles, 

facial expressions, and resolutions. 

Here’s how it scored: 

• Accuracy: 93.4% – Out of every 100 videos, it 

correctly classified over 93. 

http://www.ijsrem.com/
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• Precision: 91.8% – When it said something was fake, 

it was right most of the time. 

• Recall: 94.2% – It was great at catching DeepFakes, 

even tricky ones. 

• F1-Score: 93.0% – A balanced metric showing the 

model is both smart and consistent. 

• Confidence Levels: Most predictions had 90% or 

more confidence. 

These numbers gave us a lot of confidence that our system 

could work reliably, even outside controlled environments. 

 

4.2 Confidence Scores that Make Sense 

One of the best parts of our system is that it doesn’t just say 

“Real” or “Fake”—it tells you how confident it is. For example: 

• A result might say: Fake – 94% confidence, which 

means it’s very sure the video is manipulated. 

• Another might say: Real – 68% confidence, which 

suggests it's not entirely certain and that the video 

might need a closer look. 

This makes the system more transparent and helpful, especially 

when the content is important or sensitive. 

 

4.3 Real Examples We Tested 

Here are some actual test cases we ran: 

• Interview clip from YouTube 

• Predicted as Real with 91% confidence. 

• Celebrity DeepFake from the DFDC dataset 

• Predicted as Fake with 95% confidence. 

• User-uploaded mobile video (low quality) 

• Predicted as Fake, but with slightly lower confidence 

(78%), due to poor lighting. 

• Political speech with altered face 

• Detected as Fake with 97% confidence. 

These examples show that the system works well across 

different types of videos—from high-resolution studio footage 

to everyday mobile phone clips. 

 

4.4 What the Web Interface Shows 

We built a simple, clean web interface using Django where 

users can upload any video and see the results. The system 

shows: 

• A few sampled frames from the video 

• Whether the system thinks it’s Real or DeepFake 

• The confidence score (in percentage) 

• A short explanation of the result 

This visual feedback helps users quickly understand what's 

going on behind the scenes, even if they’re not technically 

inclined. 

 

4.5 Speed and Performance 

The system is also fast and efficient: 

• It takes about 12–15 seconds to analyze a short video (100 

frames). 

• The model loads in about 3 seconds when the server starts. 

• We designed it to process videos on-the-fly—no need to 

store large data on disk, which keeps things both secure 

and fast. 

The web app ran smoothly in our tests, both locally and on 

cloud-hosted servers. It’s responsive, doesn’t overload the 

server, and supports real-time interactions. 

 

4.6 Where It Struggled (Just a Little) 

Even though the system works well overall, we did observe a 

few weak spots: 

• Very high-quality DeepFakes that were edited using 

advanced post-processing tricks were sometimes harder to 

catch. 

• Videos with low lighting, heavy shadows, or blurry faces 

occasionally confused the model. 

• Side-profile faces or faces partially outside the frame were 

tougher for the face detection step (MTCNN), which 

slightly impacted accuracy. 

These are known challenges in video forensics, and we see 

them as opportunities to improve our model in the future. 

 

4.7 Final Thoughts on Performance 

All in all, our system didn’t just perform well in terms of 

numbers, it worked the way we hoped it would. It’s smart 

enough to catch subtle manipulations, fast enough for real-time 

use, and simple enough for anyone to use through a web 

browser. The confidence scoring system adds an extra layer of 

insight, and the clean interface makes it user-friendly. 

This evaluation shows that with the right combination of 

tools—ResNeXt, LSTM, MTCNN, and Django—it’s entirely 

possible to build a real, working DeepFake detection system 

that can be useful in the fight against misinformation. 

  

  

6.CONCLUSION  
This project resulted in a fully functional DeepFake detection 

system that works beyond theoretical design. By combining 

ResNeXt50 with an LSTM network, we were able to capture 

both spatial and temporal inconsistencies present in 

manipulated videos. The system was trained on a balanced 

dataset and deployed through a user-friendly web interface for 

real-time predictions. It is fast, accurate, and ready for 

practical use. 

More than just a technical achievement, this project gave us a 

deeper understanding of the ethical responsibilities that come 

with working in AI. In an age where digital misinformation 

spreads quickly, tools like this are essential for helping people 

verify the truth behind visual content. 
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