
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 1

Deepfake Video Detection using Machine Learning

Aditya Dumbre1, Omsai Alladwar2, Venktesh Kale3, Dr. P. A. Kadam4

 1,2,3Student, 4Professor
1,2,3,4Department of Computer Engineering

1,2,3,4 Smt. Kashibai Navale College of Engineering, Pune, Maharashtra, India
---***---

Abstract - The rise of DeepFake (DF)

technology poses a significant threat to the authenticity

and reliability of digital media. While such videos once

required expert skills and high-end software, the recent

advancement of deep learning tools has made the

generation of hyper-realistic synthetic media widely

accessible. This paper presents a robust and efficient deep

learning-based solution for detecting DeepFake videos by

combining spatial and temporal analysis using a

Convolutional Neural Network (CNN) and a Long Short-

Term Memory (LSTM) based Recurrent Neural Network

(RNN). Our final system leverages a ResNeXt50 CNN for

frame-level feature extraction and an LSTM layer to

model temporal inconsistencies across sequential video

frames. Extensive experiments conducted on a balanced

dataset—comprising both real and manipulated videos

sourced from FaceForensics++, YouTube, and the

DeepFake Detection Challenge dataset—demonstrate the

high accuracy and reliability of our model. Additionally,

the developed solution is deployed as a web-based

platform allowing real-time DeepFake video detection

with user-friendly interaction. This paper outlines the

design, implementation, results, and scope of our

complete DeepFake detection system.

Keywords: DeepFake Detection, CNN, LSTM, ResNeXt,

Temporal Analysis, Video Forensics, Media

Authenticity, Deep Learning, Media Verification, Face

Forensics

1.INTRODUCTION

In recent years, we’ve seen a rapid evolution in how

content is created, shared, and consumed online. Among the

most significant—and alarming—developments in this space

is the rise of DeepFakes: videos generated using artificial

intelligence that make it appear as though someone is doing

or saying something they never actually did. These videos are

created using advanced machine learning techniques such as

Generative Adversarial Networks (GANs), and what once

required hours of editing and expert skills can now be

achieved with a few clicks and publicly available tools. The

results are often disturbingly realistic, making it increasingly

difficult for people—even experts—to distinguish between

real and manipulated content.

This growing accessibility has turned DeepFake

technology from an intriguing technical achievement into a

powerful tool for deception. DeepFakes have already been

used to spread fake news, impersonate celebrities or political

figures, create non-consensual explicit content, and commit

fraud. In an age where digital content heavily influences

public perception, trust in media is more important than

ever—and more fragile. As videos become easier to fake, the

line between reality and fiction begins to blur, posing

a real threat to information integrity, online safety, and even

democracy itself.

Our motivation for this project stems from both the

urgency of this issue and the opportunity to apply artificial

intelligence in a meaningful way. While a lot of attention has

been given to the creation of DeepFakes, there’s still a

pressing need for reliable detection tools that can counteract

this misuse. We saw this project as a way to not only

understand the technical workings behind DeepFakes but to

be part of the solution. Working on this system gave us a

chance to explore fields like computer vision, video analysis,

CNNs, and real-world application development—all while

contributing to a tool that can make a real difference.

The core problem we set out to address is the lack of

accessible and accurate systems that can automatically detect

DeepFake videos. These fake videos are often nearly

indistinguishable from real ones, especially when viewed

casually. Unlike photoshopped images, which may show

visible signs of tampering, DeepFakes use AI to match facial

expressions, sync audio with lip movements, and maintain a

high level of visual consistency across frames. This makes

manual detection unreliable and impractical, particularly at

the scale at which content is shared online. Our goal,

therefore, is to build a system that can intelligently detect

whether a video has been tampered with—using deep learning

techniques to uncover the subtle signs that betray a DeepFake.

To achieve this, we designed a two-part machine

learning model. First, we use a Convolutional Neural Network

(CNN), specifically the ResNeXt50 architecture, to analyze

each frame of the video and extract meaningful spatial

features. These features include small inconsistencies around

facial landmarks, blending artifacts, or resolution

mismatches. But analyzing individual frames isn’t enough.

DeepFakes often reveal themselves through unnatural

changes over time—like irregular blinking, inconsistent

lighting, or abrupt shifts in facial motion. That’s where our

second component comes in: a Recurrent Neural Network

(RNN) based on Long Short-Term Memory (LSTM) units,

which evaluates the sequence of frames to detect such

temporal inconsistencies.

Our solution isn’t just theoretical—it’s a fully

functional, web-based application where users can upload any

video and receive a prediction about whether the content is

real or fake, along with a confidence score. The model is

trained on a balanced dataset consisting of both real and

DeepFake videos collected from platforms like YouTube,

FaceForensics++, and the DeepFake Detection Challenge on

Kaggle. For preprocessing, we applied Multi-task Cascaded

Convolutional Networks (MTCNN) to detect and crop faces

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 2

from video frames before passing them to our detection

pipeline.

Of course, our system isn’t without limitations.

High-quality DeepFakes that are crafted with extreme care

may still bypass the model. The detection accuracy may also

be affected by factors like poor video resolution, dark lighting,

or unusual camera angles. Moreover, since the model is

trained on a finite dataset, it might not perform equally well

on all facial types or demographics. That said, our architecture

is designed to be modular and expandable—making it

adaptable to future improvements and additional data sources.

Our approach to solving this problem followed a

clear and structured pipeline: from dataset collection and

frame-level preprocessing to model design, training, testing,

and deployment. The final application was built using Django,

a high-level Python web framework, and is intended to be

user-friendly, fast, and scalable. In the future, this system

could even be extended into a browser plugin or integrated

into social media platforms to offer real-time DeepFake

detection before harmful content spreads.

In conclusion, this project blends cutting-edge AI

techniques with a socially impactful application. It

demonstrates how artificial intelligence can be used not only

to generate impressive content but also to protect the integrity

of digital media. In a time when “seeing is believing” no

longer holds true, tools like this are essential for preserving

truth, trust, and transparency online.

2. LITERATURE SURVEY

With the rise in misuse of AI-generated videos, DeepFake

detection has become an important research area. Several

techniques have been proposed, each focusing on unique

patterns or inconsistencies introduced during video

manipulation.

One early method by Li and Lyu targeted face warping

artifacts. Since many DeepFake generators create fixed-size

face images, they often require geometric transformation,

which leads to noticeable resolution mismatches. Their CNN-

based model showed good results on low-quality fakes, but its

performance dropped when tested on high-resolution or post-

processed videos.

Another technique by the same researchers focused on eye

blinking patterns. Since natural blinking is often missing or

irregular in synthetic videos, detecting this behavior helped

flag fakes. However, this method may not work well if the

generator includes realistic blinking or if subjects blink less

frequently.

Later approaches explored capsule networks, which try to

preserve the spatial hierarchy of features—something

traditional CNNs can overlook. While effective in controlled

datasets, these models struggled with noisy, real-world data

due to limited generalization.

Physiological-based systems like FakeCatcher introduced a

different angle by detecting subtle biological signals, such as

changes in skin tone caused by blood flow. These systems are

more robust across manipulation styles but require high-

resolution input and significant computational resources.

Compared to these individual approaches, our system

combines both spatial and temporal analysis using a hybrid

architecture: ResNeXt for extracting visual features from

frames and LSTM for tracking inconsistencies over time. This

combination allows better detection of manipulations that may

not be obvious in single frames but are revealed across

sequences.

Unlike most research-focused implementations, we’ve

integrated our model into a working web-based platform that

supports real-time video analysis making it more practical and

user-friendly for everyday applications.

3. IMPLEMENTED SYSTEM

This section details the DeepFake video detection system

that we successfully designed, developed, trained, and

deployed. The system leverages a hybrid deep learning

architecture combining CNNs and RNNs to identify

manipulated video content, and it is fully integrated into a

working web-based application.

3.1 System Overview

The implemented system accepts an input video through a

user-friendly web interface, automatically processes it, and

outputs a prediction stating whether the video is real or

DeepFake, along with a confidence score. The pipeline

consists of five main stages:

1. Face detection and frame extraction

2. Feature extraction using a trained ResNeXt50 CNN

3. Temporal sequence analysis using an LSTM layer

4. Prediction and classification

5. Display of results via a Django-based web platform

This architecture enabled the system to analyze both spatial

anomalies and temporal inconsistencies—two key indicators

of DeepFake content.

3.2 Dataset Preparation

For training and testing, we constructed a custom dataset

composed of both real and DeepFake videos. We sourced

these videos from:

• YouTube (for authentic content)

• FaceForensics++

• Kaggle’s DeepFake Detection Challenge dataset

Our final dataset was carefully balanced, with 50% genuine

and 50% manipulated videos, and was split into 70% training

and 30% testing sets.

Each video was processed by:

• Splitting it into frames

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 3

• Detecting and cropping facial regions using MTCNN

• Discarding frames where no faces were detected

• Normalizing the number of frames per video to a

fixed count of 100 frames (based on dataset average)

This preprocessing step ensured uniformity in the input for

model training and reduced computational load without

sacrificing performance.

3.3 Feature Extraction using CNN

We implemented ResNeXt50_32x4d, a highly efficient deep

convolutional neural network, to extract frame-level features

from the face-cropped video frames. The model was fine-

tuned on our custom dataset using transfer learning.

For each frame, the ResNeXt model generated a 2048-

dimensional feature vector from the final pooling layer.

These vectors were saved in sequential order for each video

and served as input to the temporal analysis module.

3.4 Temporal Analysis using LSTM

To capture temporal inconsistencies introduced by

DeepFake generation tools, we used a Long Short-Term

Memory (LSTM) layer. This layer processed the sequence

of feature vectors obtained from the CNN.

The LSTM configuration included:

• 2048 units

• Dropout rate of 0.4

• A final fully connected classification layer with

softmax activation

The LSTM output represented the probability of the video

being real or fake. The temporal model significantly boosted

detection accuracy by focusing on patterns like unnatural

blinking, inconsistent facial expressions, or jerky head

movement over time.

3.5 Training Configuration

The model was trained on the prepared dataset with the

following settings:

• Batch size: 16

• Epochs: 30

• Optimizer: Adam

• Loss Function: CrossEntropyLoss

• Learning Rate: 1e-4

Training was conducted on a GPU-enabled environment

using PyTorch. Both the CNN and LSTM models were

trained end-to-end using mini-batch sequences of frames

from the dataset.

3.6 Web Application Deployment

The trained model was deployed using a Django-based web

application, allowing users to interact with the detection

system through a browser. The user flow is as follows:

1. A user uploads a video via the interface.

2. The backend extracts frames and applies MTCNN for

face detection.

3. Cropped face images are passed directly into the

ResNeXt+LSTM model.

4. The model returns a classification (Real/DeepFake)

and a confidence score.

5. The results are presented visually, including optional

preview frames.

The system runs entirely server-side and processes each

video in near real-time without storing user data

permanently—preserving privacy while ensuring efficient

analysis.

3.7 Prediction Workflow

During runtime, the system handled video input with the

following logic:

• Split video → Detect faces → Crop and normalize →

Extract features → Analyze temporal sequence →

Predict result → Return response.

This approach ensured accuracy, scalability, and

responsiveness, making the application suitable for real-

world use across devices.

A. Dataset:

We are using a mixed dataset which consists of equal

amount of videos from different dataset sources like

YouTube, FaceForensics++[14], Deep fake detection

challenge dataset[13]. Our newly prepared dataset contains

50% of the original video and 50% of the manipulated

deepfake videos. The dataset is split into 70% train and 30%

test set.

B. Preprocessing:

Dataset preprocessing includes the splitting the video into

frames. Followed by the face detection and cropping the

frame with detected face. To maintain the uniformity in the

number of frames the mean of the dataset video is calculated

and the new processed face cropped dataset is created

Fig. 1: System Architecture

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 4

containing the frames equal to the mean. The frames that

doesn’t have faces in it are ignored during preprocessing.

C. Model:

The model consists of resnext50_32x4d followed by one

LSTM layer. The Data Loader loads the preprocessed face

cropped videos and split the videos into train and test set.

Further the frames from the processed videos are passed to the

model for training and testing in mini batches.

D. ResNext CNN for Feature Extraction

Instead of writing the rewriting the classifier, we are proposing

to use the ResNext CNN classifier for extracting the features

and accurately detecting the frame level features. Following,

we will be fine-tuning the network by adding extra required

layers and selecting a proper learning rate to properly converge

the gradient descent of the model. The 2048-dimensional

feature vectors after the last pooling layers are then used as the

sequential LSTM input.

E. LSTM for Sequence Processing

Let us assume a sequence of ResNext CNN feature vectors of

input frames as input and a 2-node neural network with the

probabilities of the sequence being part of a deep fake video or

an untampered video. The key challenge that we need to

address is the de- sign of a model to recursively process a

sequence in a meaningful manner. For this problem, we are

proposing to the use of a 2048

F. Predict:

A new video is passed to the trained model for prediction. A

new video is also preprocessed to bring in the format of the

trained model. The video is split into frames followed by face

cropping and instead of storing the video into local storage the

cropped frames are directly passed to the trained model for

detection.

4.RESULT

After successfully training and deploying the DeepFake

detection system, we conducted extensive testing to evaluate its

performance across multiple dimensions, including

Fig. 3: Prediction flow

Fig. 2: Training Flow

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 5

classification accuracy, confidence scores, model

responsiveness, and robustness on unseen video samples. The

goal was to ensure that the system not only performed well in

a controlled training environment but also generalized

effectively to real-world inputs.

4.1 Model Performance

The system was evaluated on a test dataset that included both

real and manipulated videos from diverse sources. Below are

the key performance metrics obtained from the testing phase:

Metric Score

Accuracy 93.4%

Precision 91.8%

Recall 94.2%

F1-Score 93.0%

AUC-ROC 0.96

Average Confidence 92%

These results confirm the model's effectiveness in

distinguishing DeepFake content, with high recall ensuring

reduced false negatives—crucial in forensic applications.

4.2 Confidence Scoring

Each prediction includes a confidence score to provide

transparency in classification:

• DeepFake – 94% confidence indicates high likelihood

of manipulation.

• Real – 65% confidence suggests uncertainty and may

require manual review.

This scoring mechanism assists users in interpreting results,

especially in borderline cases.

4.3 Sample Prediction Outputs

Sample outputs illustrating model performance across varying

input conditions:

• YouTube interview clip → Real (91% confidence)

• DFDC celebrity speech → Fake (95% confidence)

• Low-resolution user video → Fake (78% confidence)

• Political video with altered identity → Fake (97%

confidence)

These examples demonstrate robustness across different

formats and quality levels.

4.4 Visual Feedback in Web Interface

The web interface, developed using Django, displays:

• Sampled video frames

• Classification label (Real/Fake)

• Confidence score

• Highlighted face regions (if detected)

This visual output enhances usability for non-technical users,

making the system accessible and interpretable.

4.5 System Performance

• Average Detection Time per Video: 12–15 seconds

(100 frames)

• Model Initialization Time: ~3 seconds (with GPU)

• Processing Mode: Real-time inference with no

intermediate storage

• Platform Compatibility: Verified on major browsers

and devices

The system is optimized for fast and efficient performance,

supporting real-time analysis scenarios.

4.6 Error Cases and Observations

Performance degradation was observed in specific scenarios:

• Low lighting or heavy motion blur

• Faces captured in extreme side profiles

• DeepFakes with high-quality post-processing

These edge cases indicate potential avenues for future model

enhancement.

4.7 Summary

The ResNeXt-LSTM-based architecture delivers high accuracy

and responsiveness in detecting manipulated video content.

Integrated with a user-friendly web interface, the system

demonstrates potential for real-world deployment in digital

forensics, media verification, and content moderation

applications.

5. RESULTS AND EVALUATION
After building and deploying our DeepFake detection system,

we thoroughly tested it to understand how well it performs in

real-world conditions. Our goal wasn’t just to achieve high

accuracy in a lab setting, but to build something practical,

reliable, and useful for everyday users who might want to verify

the authenticity of a video.

4.1 How Well Did the Model Perform?

We evaluated our model on a diverse set of real and fake videos.

These weren’t just from the training data—we included new,

unseen videos from sources like YouTube, public datasets, and

manually downloaded DeepFake clips. We wanted to see how

our model handles different lighting conditions, camera angles,

facial expressions, and resolutions.

Here’s how it scored:

• Accuracy: 93.4% – Out of every 100 videos, it

correctly classified over 93.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 6

• Precision: 91.8% – When it said something was fake,

it was right most of the time.

• Recall: 94.2% – It was great at catching DeepFakes,

even tricky ones.

• F1-Score: 93.0% – A balanced metric showing the

model is both smart and consistent.

• Confidence Levels: Most predictions had 90% or

more confidence.

These numbers gave us a lot of confidence that our system

could work reliably, even outside controlled environments.

4.2 Confidence Scores that Make Sense

One of the best parts of our system is that it doesn’t just say

“Real” or “Fake”—it tells you how confident it is. For example:

• A result might say: Fake – 94% confidence, which

means it’s very sure the video is manipulated.

• Another might say: Real – 68% confidence, which

suggests it's not entirely certain and that the video

might need a closer look.

This makes the system more transparent and helpful, especially

when the content is important or sensitive.

4.3 Real Examples We Tested

Here are some actual test cases we ran:

• Interview clip from YouTube

• Predicted as Real with 91% confidence.

• Celebrity DeepFake from the DFDC dataset

• Predicted as Fake with 95% confidence.

• User-uploaded mobile video (low quality)

• Predicted as Fake, but with slightly lower confidence

(78%), due to poor lighting.

• Political speech with altered face

• Detected as Fake with 97% confidence.

These examples show that the system works well across

different types of videos—from high-resolution studio footage

to everyday mobile phone clips.

4.4 What the Web Interface Shows

We built a simple, clean web interface using Django where

users can upload any video and see the results. The system

shows:

• A few sampled frames from the video

• Whether the system thinks it’s Real or DeepFake

• The confidence score (in percentage)

• A short explanation of the result

This visual feedback helps users quickly understand what's

going on behind the scenes, even if they’re not technically

inclined.

4.5 Speed and Performance

The system is also fast and efficient:

• It takes about 12–15 seconds to analyze a short video (100

frames).

• The model loads in about 3 seconds when the server starts.

• We designed it to process videos on-the-fly—no need to

store large data on disk, which keeps things both secure

and fast.

The web app ran smoothly in our tests, both locally and on

cloud-hosted servers. It’s responsive, doesn’t overload the

server, and supports real-time interactions.

4.6 Where It Struggled (Just a Little)

Even though the system works well overall, we did observe a

few weak spots:

• Very high-quality DeepFakes that were edited using

advanced post-processing tricks were sometimes harder to

catch.

• Videos with low lighting, heavy shadows, or blurry faces

occasionally confused the model.

• Side-profile faces or faces partially outside the frame were

tougher for the face detection step (MTCNN), which

slightly impacted accuracy.

These are known challenges in video forensics, and we see

them as opportunities to improve our model in the future.

4.7 Final Thoughts on Performance

All in all, our system didn’t just perform well in terms of

numbers, it worked the way we hoped it would. It’s smart

enough to catch subtle manipulations, fast enough for real-time

use, and simple enough for anyone to use through a web

browser. The confidence scoring system adds an extra layer of

insight, and the clean interface makes it user-friendly.

This evaluation shows that with the right combination of

tools—ResNeXt, LSTM, MTCNN, and Django—it’s entirely

possible to build a real, working DeepFake detection system

that can be useful in the fight against misinformation.

6.CONCLUSION
This project resulted in a fully functional DeepFake detection

system that works beyond theoretical design. By combining

ResNeXt50 with an LSTM network, we were able to capture

both spatial and temporal inconsistencies present in

manipulated videos. The system was trained on a balanced

dataset and deployed through a user-friendly web interface for

real-time predictions. It is fast, accurate, and ready for

practical use.

More than just a technical achievement, this project gave us a

deeper understanding of the ethical responsibilities that come

with working in AI. In an age where digital misinformation

spreads quickly, tools like this are essential for helping people

verify the truth behind visual content.

REFERENCES
[1] Yuezun Li, Siwei Lyu, “ExposingDF Videos By

Detecting Face Warping Artifacts,” in

arXiv:1811.00656v3.

[2] Yuezun Li, Ming-Ching Chang and Siwei Lyu

“Exposing AI Created Fake Videos by Detecting Eye

Blinking” in arxiv.

[3] Huy H. Nguyen , Junichi Yamagishi, and Isao Echizen

“ Using capsule networks to detect forged images and

videos ”.

[4] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari and

Weipeng Xu “Deep Video Portraits” in

arXiv:1901.02212v2.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46035 | Page 7

[5] Umur Aybars Ciftci, ˙Ilke Demir, Lijun Yin “Detection

of Synthetic Portrait Videos using Biological Signals” in

arXiv:1901.02212v2.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial

nets. In NIPS, 2014.

[7] David G¨uera and Edward J Delp. Deepfake video

detection using recurrent neural networks. In AVSS,

2018.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, 2016.

[9] An Overview of ResNet and

 its

 Variants: https://towardsdatascience.com/anoverview-

of-resnet- and-its-variants-5281e2f56035

[10] Long Short-Term Memory: From Zero to Hero with

Pytorch: https://blog.floydhub.com/long-short-term-

memory-from-zero-to-hero-with-pytorch/

[11] Sequence Models And LSTM Networks

https://pytorch.org/tutorials/beginner/nlp/sequence_mo

d els_tutorial.html

[12] https://discuss.pytorch.org/t/confused-about-theimage-

preprocessing-in-classification/3965

[13] https://www.kaggle.com/c/deepfakedetection-

challenge/data

[14] https://github.com/ondyari/FaceForensics

[15] Y. Qian et al. Recurrent color constancy. Proceedings of

the IEEE International Conference on Computer Vision,

pages 5459–5467, Oct. 2017. Venice, Italy.

[16] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks.

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5967–5976, July

2017. Honolulu, HI.

[17] R. Raghavendra, Kiran B. Raja, Sushma Venkatesh, and

Christoph Busch, “Transferable deep-CNN features for

detecting digital and print-scanned morphed face

images,” in CVPRW. IEEE, 2017.

[18] Tiago de Freitas Pereira, Andr´e Anjos, Jos´e Mario De

Martino, and S´ebastien Marcel, “Can face anti spoofing

countermeasures work in a real world scenario?,”in ICB.

IEEE, 2013.

[19] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi,

and Isao Echizen, “Distinguishing computer graphics

from natural images using convolution neural

networks,” in WIFS. IEEE, 2017.

http://www.ijsrem.com/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://blog.floydhub.com/long-short-term-%20memory-from-zero-to-hero-with-pytorch/
https://pytorch.org/tutorials/beginner/nlp/sequence_mod%20els_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_mod%20els_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_mod%20els_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_mod%20els_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_mod%20els_tutorial.html
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
https://discuss.pytorch.org/t/confused-about-the-image-%20preprocessing-in-classification/3965
http://www.kaggle.com/c/deepfake-detection-
http://www.kaggle.com/c/deepfake-detection-
http://www.kaggle.com/c/deepfake-detection-
http://www.kaggle.com/c/deepfake-detection-
http://www.kaggle.com/c/deepfake-detection-
https://github.com/ondyari/FaceForensics
https://github.com/ondyari/FaceForensics

