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Abstract—Despite the prevailing trend of introducing skip connections 

in deep neural networks for enhanced depth and training efficiency, this 
paper critically examines the limitations of Dense Convolutional Network 
(DenseNet), a prominent state- of-the-art architecture. The analysis 
highlights the drawbacks of connecting each layer to every other layer in 
a feed-forward manner. Additionally, this paper systematically explores 
the shortcomings and challenges associated with DenseNet, shedding light 
on its drawbacks. The study culminates in the identification of critical 
areas for improvement and suggests avenues for optimizing memory 
utilization during training. Ultimately, this paper aims to provide a 
comprehensive understanding of the inherent limitations in DenseNet 
architecture and offers insights into potential advancements in deep 
neural network design. 

I. INTRODUCTION 

Convolution Brain Organizations (CNNs) [1] have prompted a change in 

outlook in the field of PC Vision. CNNs have, as of late, accomplished their 

best in class by bringing about different picture acknowledgment and item 

location errands. This has been made conceivable by the new progressions in 

GPU equipment and the accessibility of enormous, dependable datasets. 

Upgrades in PC equipment and organized structures have empowered the 

preparation of exceptionally profound CNNs. It has additionally made the 

preparation interaction quicker and more productive. LeNet5 [2] presented the 

prin- cipal CNN engineering comprising only five layers. Followed by this, 

VGGNet was presented with 19 layers, and of late, Remaining Organizations 

(ResNets) [3] have outperformed the 100-layer hindrance. 

As the number of layers in a profound neural network increases, it is 

accompanied by the vanishing gradient problem. 

ResNets [3] and Highway Networks [4] bypass the signal from one layer to the 

next via identity connections. This counters the issue of vanishing gradient. 

However, FractalNets (Ultra-Deep Neural Networks without Residuals) [5], 

without including any pass-through or residual connections, achieve a 

comparable performance to deep Residual Networks. This demonstrates that 

residual representations may not be fundamental to the success of intense 

convolutional neural networks. 

Hunag et [6] proposed engineering that tends to the disappearing slope 

issue with a straightforward availability example to guarantee the most 

significant data stream between layers in the organization. In this strategy, all 

layers (with matching element map sizes) are associated straightforwardly 

with one another. To save the feed-forward nature, each layer acquires extra 

contributions from every single going before layer and gives its component 

guides to every single resulting layer. 

 

 
 

 
Fig. 1. A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding 
feature maps as input. 

 

Figure 1 shows this format schematically. Essentially, as opposed to 

ResNet, the elements are never joined through summation before they are 

passed into a layer. The highlights are joined by connection. 

Subsequently, the th ayer has 

sources of info comprising of the component guide 

former  convolutional  blocks.  Its  component maps  are  

given  to  all  the  resulting  layers. This  presents  L(L  

+  1)/2   associations  in  a 

- layer organization rather than just \verb as- sociations, as in 

customary designs. As a result of its thick availability design, the engineering is 

known as a Thick Convolutional Organization (DenseNet). 

II. DENSENET 

The conventional convolutional feed-forward network in- terfaces the 

result of one layer as the contribution to the following layer. ResNet [3] further 

adds a skip association with sidestep the layers with a character capability. 

This assists the angle with streaming straightforwardly through the personality 

capability. 

DenseNet, then again, presents direct associations from any layer to every 
ensuing layer. Thus, the th ayer gets the elements from every former layer, 

x0, . . . , xl-1, as information: 

 

 

xl = Hl([x0, x1, ..., xl−1]) 

Where  [x0, x1, . . . , xl-1]  refers 

to the concatenation of the feature-maps 
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Fig. 2. A profound DenseNet with three thick blocks. The layers between two neighboring blocks are alluded to as progress layers, and the component map 
sizes are changed by means of convolution and pooling. 

 
Model Data Augmentation 

ResNet50 88.2% 
InceptionNet 87.4% 

DenseNet 89.9% 

TABLE I 
ACCURACY OF DIFFERENT MODEL ARCHITECTURES ON DOG-BREED 

IDENTIFICATION  TASK. 

 
Model Without Data Augmentation 

ResNet50 82.7% 
InceptionNet 81.9% 

DenseNet 86.4% 

TABLE II 
ACCURACY OF DIFFERENT MODEL ARCHITECTURES ON DOG-BREED 

IDENTIFICATION  TASK  WITHOUT  DATA  AUGMENTATION. 

 

 

 
 

 
 

 

 
 

 

 
Fig. 3. The architecture has 2 Transition Up (TU) blocks an 2 Transition 
Down (TD) blocks and gray arrows represent the skip connections from TU 
blocks to TD blocks. 

 

 

produced   in   layers    0. . . . . l-1  and 

l is any nonlinearity function. 

 

III. EXPERIMENTS 

A. Performance Evaluation 

DenseNet obtains significant improvements over the state- of-the-art 

results on four highly competitive object recognition benchmark tasks 

(CIFAR-10[7], CIFAR-100[8], SVHN[9], 

and ImageNet [10]). To verify that the DenseNet is as good as mentioned 

by the authors, it was tested on a Kaggle competition task (Dog-Breed 

Identification [11]). The results were compared with ResNet [3] and 

InceptionNet[12] that won the ImageNet [10] Image Recognition Challenge in 

the past. As seen in Table I, DenseNet performs significantly better (89.9% 

accuracy) than ResNet and InceptionNet for Dog- Breed Identification 

[11]. The performance of DenseNet was 

even more significant than other models when no prepro- cessing was 

performed (as seen in Table II). It shows that connecting every layer’s output 

to each subsequent layers allowed the model to learn the features more 

effectively. 

Furthermore, to evaluate the performance of DenseNet, it was applied to 

the task of semantic segmentation. CNNs are used in the state-of-the-art 

methods for semantic segmentation. The architecture for most tasks performs 

(1) a downsampling of the image to get the features, (2) then an upsampling 

to get the image back, (3) and post-processing like Conditional Ran- dom 

Field (CRF)[13], and pre-processing modules like data augmentation is done 

to get better results. A lot of different CNN architectures were tried and 

DenseNet achieved the state- of-the-art results as observed by Jegou [14]. 

Additionally, they also achieved state-of-the-art results on urban scene bench- 

mark datasets, such as CamVid[15] and Gatech, without any post-processing 

or pre-training. This shows the effectiveness of DenseNet on a task other than 

Image Recognition or Object Detection. 

B. Memory Consumption 

DenseNet implementation, in general, requires higher mem- ory, as seen in 

Figure 4. If not adequately managed, pre- activation, batch normalization, and 

contiguous convolution operations can produce feature maps that grow 

quadratically with the network depth. To counter these problems, the concept 

of Shared Memory Storage was proposed by Pleiss [16]. During the forward 

pass, all intermediate outputs were 
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Fig. 4. Unique DenseNet execution is on the left, and its memory-effective execution is on the right. The memory-effective execution stores the result of the 
link, clump standardization, and ReLU layers in brief capacity cradles, though the first execution designates new memory. 

 

assigned to shared memory blocks. During back-propagation, the 

concatenated and normalized features were computed dynamically. 

 

C. Training Time 

DenseNet’s training time per epoch is significantly lower than ResNet and 

InceptionNet on the same dataset. The experiments showed a decrease of 50 

% in training time for DenseNet per epoch. However, to achieve the best 

possible results, DenseNet needs to be trained over 100 epochs as compared 

to 20 epochs for ResNets. This is five times more than the other models. So, a 

tradeoff exists between training time and accuracy for DenseNet. 

 

IV. CONCLUSION 

A large community of researchers believed that the ap- proach of 

DenseNet was not very novel and that it had been directly/indirectly applied 

to a lot of tasks earlier. However, when observed closely, the authors put a 

lot of thought into designing the architecture. This has been proved by the 

state-of-the-art results achieved by DenseNet in a variety of Image 

Recognition competitions. The concept has been further tested by a series of 

experiments performed in this paper and by several other researchers[14]. 

Overall, DenseNet is not a groundbreaking idea, but the way it is 

implemented has achieved the desired results and has proven helpful for 

various tasks. 

V. FUTURE SCOPE 

The core idea of DenseNet has opened a lot of research areas. It has 

already been applied in many domains (Document Analysis, Image 

Recognition, etc.), and it is believed it will be used in many other areas 

in the near future. It would be interesting to see if an architecture similar to 

DenseNet can solve the need for a huge amount of data for training 

deep learning models. The idea of DenseNet can be combined with the 

concept of ResNet (introduce skip connections) to avoid learning redundant 

features over the layers. This is hypothesized to improve the overall training 

time for DenseNet and to solve the problem of overfitting. 
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