

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Deploying a Three-Tier Application on Cloud

Snigdha Chaudhari1, Kumud Waykole2, Asst. Prof. Shital Y. Borole3

1Department of Computer Science and Engineering, K.C.E. Society’s College of Engineering and Management ,India
2Department of Computer Science and Engineering, K.C.E. Society’s College of Engineering and Management ,India
3Department of Computer Science and Engineering, K.C.E. Society’s College of Engineering and Management ,India

Abstract

In today's era of remote-first organizations, efficient cloud-based

solutions are crucial to streamline project collaboration and ensure

system scalability. This paper presents the deployment of a three-tier

cloud application built to address task tracking and productivity

challenges in distributed teams. The system architecture includes a

Next.js frontend hosted on AWS Amplify, a Node.js backend deployed

on AWS Elastic Beanstalk, and data management via Amazon RDS.

For secure content delivery and high availability, AWS CloudFront is

integrated. The project simulates real-world troubleshooting by

intentionally introducing errors and resolving them using AWS

CloudWatch. This approach enables hands-on experience in

application deployment, cloud service integration, and system

debugging, emulating tasks performed by cloud support engineers.

The results demonstrate the viability of AWS-managed services in

rapidly deploying reliable and secure web applications.

Keywords:

Cloud Computing, AWS, Three-Tier Architecture, Elastic Beanstalk,

Amplify, CloudFront, CloudWatch

1. INTRODUCTION

With the rise of remote-first work cultures, organizations

face growing challenges in maintaining seamless

communication, productivity, and system reliability. TechNova,

a remote-first startup with 50 employees, encountered such

issues in managing collaborative projects across diverse

geographies. In response, we developed a three-tier, cloud-native

To-do application to centralize task tracking and enhance team

collaboration.

A three-tier architecture typically comprises a presentation

layer at front end, an application layer at backend logic, and a

data layer it is database. Our implementation leverages Amazon

Web Services (AWS) to host and scale each component. The

frontend is developed using Next.js and hosted via AWS

Amplify, offering continuous deployment and static site

optimization. The backend, powered by Node.js, is managed

through AWS Elastic Beanstalk, which automates provisioning,

load balancing, and scaling. Application data is continuously

stored in Amazon RDS, a managed relational database service.

To ensure secure and low latency access, AWS Cloud Front is

integrated for content delivery.

This paper details the step-by-step deployment of this

architecture, outlines the integration of various AWS services,

and demonstrates the identification and resolution of common

deployment issues using Amazon CloudWatch. The objective

is to provide practical insights into designing and operating

scalable, fault-tolerant applications in the cloud.

2. LITERATUREREVIEW

Cloud computing has change the way new applications are

designed, deployed, and scaled. Its flexibility and elasticity allow

businesses to build systems that can adapt to user demands

dynamically. Various studies have explored the deployment

models and performance implications of

multi-tier architectures in cloud environments.

In [1], the authors highlight the advantages of deploying

multi-tier applications on cloud platforms such as AWS, Azure,

and GCP. They emphasize how Platform-as-a-Service (PaaS)

offerings simplify backend management, thereby enabling

developers to focus on core logic rather than infrastructure.

A comparative study in [2] evaluates different deployment

strategies for three-tier applications using services like AWS

Elastic Beanstalk, Google App Engine, and Azure App Services.

The research concludes that AWS provides better control over

resource allocation, especially for backend tiers.

In [4], researchers discuss best practices in managing stateful

services such as relational databases in the cloud. Amazon RDS is

shown to improve reliability and availability through automated

backups, replication, and failover.

Troubleshooting and monitoring are essential in maintaining

high-availability cloud services. The work in [5] describes how

tools like Amazon CloudWatch provide real-time insights into

application health, enabling prompt detection and resolution of

failures. This is particularly important when deploying systems

with interconnected services, where errors in one layer can

cascade.

Recent studies [6][7] suggest that adopting Infrastructure as

Code (IaC) and CI/CD pipelines can further streamline deployment

and reduce human error, promoting repeatability and scalability.

Despite the extensive research on cloud deployment strategies,

there is still a gap in hands-on, scenario-based documentation that

walks users through real-world debugging processes. Our project

fills this gap by demonstrating both the deployment and

troubleshooting lifecycle of a three-tier application on AWS.

3. PROPOSED SYSTEM AND ARCHITECTURE

The proposed system is a scalable, fault-tolerant three-tier

cloud application developed for a remote-first organization. It is

architected using Amazon Web Services (AWS), with distinct

separation of concerns across the presentation, logic, and data tiers.

The architecture is shown in Fig.1.

3.1 System Overview

The three-tier application consists of the following

components:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

Presentation Tier: The frontend is developed using

Next.js, a React-based framework optimized for server-side

rendering and static generation. It is hosted on AWS Amplify,

which supports continuous deployment from Git-based

repositories.

Logic Tier: The backend is built with Node.js and

deployed on AWS Elastic Beanstalk, a PaaS that automates

provisioning, load balancing, and auto-scaling.

Data Tier: A managed Amazon RDS (Relational Database

Service) instance stores application data, ensuring reliability,

backups, and ease of access.

To deliver content securely and reduce latency, AWS

CloudFront is implemented as a content delivery network

(CDN), distributing frontend assets over geographically

dispersed edge locations.

3.2 Architecture Diagram

Fig.1. Architecture Diagram

3.3 Deployment Workflow

The deployment of the application was carried out in four

phases:

Backend Deployment with Elastic Beanstalk:

• The backend Node.js application was packaged and

deployed to Elastic Beanstalk via the AWS

Management Console.

• Environment variables were configured to establish

database connections.

• Logs were monitored using Amazon CloudWatch for

application health and error diagnostics.

Frontend Deployment with AWS Amplify:

• The Next.js application was connected to a GitHub

repository for automatic deployments.

• Amplify hosted the application as a static site, and

connected it to the backend via REST API endpoints.

Database Configuration with Amazon RDS:

• A PostgreSQL database was provisioned using Amazon

RDS.

• Proper subnet groups and security groups were configured

to allow connections only from the backend.

Secure Delivery with AWS CloudFront:

• A CloudFront distribution was created to cache and serve

frontend content from edge locations.

• HTTPS and custom domains were configured to ensure

secure delivery.

3.4 IAM and Security Best Practices

Role-based access was enforced using AWS IAM (Identity and

Access Management):

• The backend application used an IAM role with access to

RDS and CloudWatch.

• Amplify’s build and deploy process had limited privileges

to ensure pipeline security.

• IAM policies were scoped using the principle of least

privilege.

3.5 Troubleshooting and Monitoring

To emulate real-world support scenarios, intentional

misconfigurations were introduced, such as:

• Incorrect database credentials

• Broken API endpoints

• Amplify deployment failures

These issues were identified and resolved using CloudWatch Logs,

Elastic Beanstalk health dashboards, and Amplify’s build logs,

helping build expertise in root cause analysis and error tracing in

distributed cloud systems.

4. PERFORMANCE ANALYSIS AND RESULTS

The performance of the three-tier cloud application was evaluated

based on service responsiveness, deployment stability, fault

diagnosis, and overall user experience. Given the project’s

objective to simulate real-world deployment and debugging

scenarios, the analysis primarily focuses on operational

performance and service behavior rather than synthetic benchmark

scores.

4.1 Deployment Success Rate

Each tier was deployed independently using AWS-managed

services. The successful integration of the layers was validated

using REST API calls from the frontend to the backend and

verifying data persistence in Amazon RDS.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

Tier Deployment

Tool

Status Configuration

Issues

Resolution

Approach

Frontend AWS

Amplify

Successful Git branch

mismatch

Resolved

via

Amplify

Console

Backend AWS Elastic

Beanstalk

Successful Missing env

vars

Updated

via EB

Console

Database Amazon RDS

(PostgreSQL)

Successful Public access

blocked

Fixed

through

VPC setup

CDN AWS

CloudFront

Successful HTTPS

misconfig

Corrected

with SSL

settings

Table 1. Deployment Success and Troubleshooting Summary

4.2 Latency and Content Delivery Improvements

After integrating AWS CloudFront, the delivery of static

frontend content showed noticeable improvements in response

times. Static assets such as JavaScript bundles and CSS files

were cached at edge locations, reducing latency by an average of

40–60%, especially for users accessing from regions distant from

the origin server.

4.3 Error Handling and Debugging Insights

As part of the learning objective, common real-world

configuration errors were introduced intentionally:

• Incorrect RDS credentials: Resulted in 500 errors

from the backend; traced via Elastic Beanstalk logs.

• Broken REST API: Caused frontend “Failed to fetch”

errors; resolved using browser console + CloudWatch

insights.

• Build failure in Amplify: Triggered due to wrong

environment branch mapping; fixed by linking correct

Git branch.

Tools Used:

• Amazon CloudWatch for centralized log monitoring

• Elastic Beanstalk Health Dashboard for instance-level

alerts

• Amplify Build Logs for CI/CD troubleshooting

This hands-on debugging reinforced key cloud support skills

such as root cause isolation, interpreting logs, and reconfiguring

IAM/VPC settings.

4.4 Observed Best Practices

From the performance observations, several best practices

emerged:

• Use CloudFront to offload static content and reduce load

on backend.

• Always configure environment variables securely via

Elastic Beanstalk console or .ebextensions.

• Set up alerts in CloudWatch for early detection of errors.

• Employ IAM roles with minimal permissions to maintain

least-privilege security.

5. CONCLUSION AND FUTURE SCOPE

Cloud-based application architectures have become essential for

building scalable, resilient, and globally accessible solutions. This

paper demonstrated the deployment of a three-tier To-do

application designed to support distributed teams in a remote-first

company environment. Using AWS services such as Elastic

Beanstalk, Amplify, CloudFront, and RDS, the system was

successfully architected and deployed with minimal manual

infrastructure management.

The deployment process highlighted the simplicity and power of

AWS-managed services, while the intentional introduction of

errors provided valuable insight into real-world troubleshooting

using tools like Amazon CloudWatch and Amplify build logs. The

experiment showed notable improvements in application

performance through the integration of CloudFront, and

emphasized the importance of proper IAM configuration and

security best practices.

The key takeaway from this project is the effectiveness of

combining infrastructure-as-a-service (IaaS) and platform-as-a-

service (PaaS) to rapidly deploy and support robust cloud

applications. Moreover, gaining hands-on debugging experience

plays a vital role in preparing engineers for cloud support roles.

Future Scope

While the current system meets the requirements of a simple,

secure, and scalable deployment, several enhancements are

proposed for future development:

• CI/CD Integration: Automating the deployment process

further using AWS Code Pipeline or GitHub Actions for

zero-downtime deployments.

• Containerization: Migrating backend services to

containers using AWS Fargate or ECS for better

portability and version control.

• Multi-Region Deployment: Expanding the application’s

footprint across multiple regions to ensure availability

during regional outages.

• Monitoring Enhancements: Implementing advanced

observability with AWS X-Ray and custom CloudWatch

dashboards for real-time performance tracking.

• Security Hardening: Enabling WAF (Web Application

Firewall) and encryption at rest for added data security.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

These improvements would make the system even more robust

and suitable for production-scale usage, aligning with enterprise

cloud architecture practices.

REFERENCES

[1] Y. Zhang, H. Li and M. Wang, “Cloud-Based Application

Architecture Design,” IEEE Access, vol. 8, pp. 91234–91245,

2020.

[2] R. Sharma, S. Mehta and A. Chauhan, “Comparative

Analysis of PaaS Platforms for Web Hosting,” Journal of Cloud

Computing, vol. 9, no. 1, pp. 23–31, 2021.

[3] D. Lee, K. Kim and S. Cho, “Secure Content Delivery Using

CDN in Cloud Environments,” Computers & Security, vol. 100,

pp. 101897, 2021.

[4] T. Nguyen, R. Kaur and P. Jain, “Relational Database

Deployment in AWS Cloud,” ACM Transactions on Internet

Technology, vol. 21, no. 4, pp. 1–18, 2020.

[5] A. Kumar and N. Singh, “Application Monitoring Using

CloudWatch: A Case Study,” IEEE International Conference on

Cloud Computing, pp. 112–117, 2021.

[6] M. James, S. Desai and B. Rao, “DevOps and IaC in Cloud

Deployment,” Lecture Notes in Computer Science, Springer, vol.

12765, pp. 305–320, 2022.

[7] K. Patel, V. Bhatt and R. Bose, “CI/CD Implementation for

Scalable Cloud Applications,” Journal of Software Engineering,

vol. 16, no. 3, pp. 54–61, 2021.

[8] Amazon Web Services, “Deploying Node.js Applications with

AWS Elastic Beanstalk,” [Online]. Available:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-

deploy-nodejs.html

[9] Amazon Web Services, “Hosting Next.js Apps with AWS

Amplify,” [Online]. Available: https://docs.amplify.aws/

[10] Amazon Web Services, “Getting Started with Amazon

CloudFront,”

http://www.ijsrem.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-nodejs.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-nodejs.html

