
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 1

Deploying Stateful Applications in Kubernetes: Best Practices with StatefulSets

Author:

Pradeep Bhosale

Senior Software Engineer (Independent Researcher)

Email: bhosale.pradeep1987@gmail.com

Abstract

As container orchestration transitions from experimental deployments to mission-critical, large-scale operations, running

stateful workloads in Kubernetes becomes a pressing topic. Historically, Kubernetes excelled at stateless microservices,

quickly scaling ephemeral pods. However, many real-world systems rely on persistent data; databases, caches, key-value

stores, and distributed queues. StatefulSets are a Kubernetes feature specifically designed to handle pods requiring stable

identities, ordered startup, and persistent storage. Deploying these stateful applications demands nuanced architectural

decisions, from volume management and data replication to orchestrating rolling upgrades while preserving data

integrity.

This paper provides a comprehensive, hands-on guide to best practices with StatefulSets. We begin by comparing stateful

and stateless workloads, illustrating how StatefulSets differ from Deployments or ReplicaSets. We then cover persistent

volumes, storage classes, node affinity, scaling, advanced update strategies, and the interplay between stateful containers

and multi-environment DevOps pipelines. Along the way, we highlight anti-patterns like overusing a single shared

volume or ignoring readiness checks and propose real-world solutions drawn from production experiences. The aim is

to furnish architects, operators, and developers with the insights and practical steps necessary to reliably run mission-

critical, data-centric services in a Kubernetes ecosystem.

Keywords

Kubernetes, StatefulSets, Persistent Volumes, Data Persistence, Distributed Systems, High Availability, Rolling

Upgrades, Best Practices, Storage asses, DevOps,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 2

1. Introduction

1.1 The Shifting Landscape of Kubernetes Workloads

Kubernetes, initially lauded for its robust handling of stateless workloads, has steadily matured to meet the demands of

stateful applications; databases, caching layers, and streaming platforms. These stateful components are essential to

many production stacks, storing critical user data, financial transactions, or logs. Historically, operators were reluctant

to store valuable data in ephemeral containers lacking stable storage or identity, relying instead on external VMs or

specialized bare-metal servers. However, the desire for a single orchestration plane covering both stateless and stateful

services has led to widespread adoption of StatefulSets, specialized controllers within Kubernetes that address these

complexities [1].

1.2 Purpose and Scope

This paper focuses on:

● Designing and deploying stateful apps with Kubernetes StatefulSets, from fundamental concepts to

advanced topics like parallel updates, node affinity, and multi-environment pipelines.

● Comparison of stateful vs. stateless patterns, analyzing why Deployments alone are often insufficient

for stateful use cases.

● Guidelines and anti-patterns gleaned from real-world experiences covering data persistence, rolling

upgrades, volume claim management, and synergy with DevOps workflows.

Our ultimate goal is to help SREs, DevOps engineers, and platform owners build robust, high-availability clusters that

seamlessly accommodate data-centric services. Each section includes references, code snippets, and diagrams to

illustrate best practices from 2019 or earlier.

2. Background: Stateless vs. Stateful in a Containerized World

2.1 The Rise of Stateless Microservices

Early container orchestration solutions, including the initial versions of Kubernetes, championed ephemeral pods well-

suited to stateless services. Deployments or ReplicaSets easily scaled these pods horizontally. If a pod died or a new

release was deployed, the system replaced it with minimal friction. Data could be offloaded to external databases or

object stores [2]. This approach allowed near-limitless elasticity for web front-ends, background tasks, or ephemeral

APIs.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 3

2.2 When Stateful Needs Emerge

Yet, many complex applications revolve around data that must persist across pod restarts: relational databases,

distributed caches, queue brokers, or search engines. These services rely on local data replication or unique addresses to

form clusters. StatefulSets were introduced to handle exactly these needs providing stable network identities and

persistent volumes for each replica [3].

 Figure 1: deployment strategies

2.3 Anti-Pattern: Attempting to Run Databases on a Basic Deployment

● Problem: A standard Deployment does not guarantee stable pod names or per-replica volumes.

● Impact: When pods are rescheduled, data may be lost or assigned incorrectly.

● Solution: Migrate to StatefulSets to maintain stable references, preserving data as the cluster changes.

3. An Overview of StatefulSets

3.1 Definition and Key Characteristics

A StatefulSet is a workload API object in Kubernetes that provides:

1. Stable, unique pod names (ordinal-based, e.g., myapp-0, myapp-1).

2. Ordered creation, update, or deletion (configurable).

3. Persistent storage typically through volumeClaimTemplates, ensuring each replica has its own volume.

4. Headless Service often used for stable network identities, letting each replica be individually

addressable [4].

Snippet (Minimal Example):

apiVersion: apps/v1

kind: StatefulSet

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 4

metadata:

 name: mydb

spec:

 serviceName: "mydb-headless"

 replicas: 3

 selector:

 matchLabels:

 app: mydb

 template:

 metadata:

 labels:

 app: mydb

 spec:

 containers:

 - name: mydb-container

 image: mydb:latest

 ports:

 - containerPort: 5432

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: "fast-ssd"

 resources:

 requests:

 storage: 10Gi

3.2 The Headless Service

By specifying serviceName in a StatefulSet, one typically pairs it with a headless service (i.e., clusterIP: None). This

service allows pods to register their DNS records in a form like mydb-0.mydb-headless.namespace.svc.cluster.local,

enabling direct pod-to-pod communication a must for databases requiring stable hostnames or ordinal-based cluster

membership [5].

3.3 Pod Management Policies

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 5

● OrderedReady (default): Pods are created or updated one at a time in ascending order (0, 1, 2...).

● Parallel: Pods can be created or updated concurrently. This might speed rollout but demands the

application handle multiple node changes gracefully.

4. Persistent Volumes and Claims

4.1 VolumeClaimTemplates

A significant difference between a Deployment and StatefulSet lies in volumeClaimTemplates. This subsection defines

how each replica claims a persistent volume. For example, if we have replicas = 3, we get pvc: data-mydb-0, data-mydb-

1, and data-mydb-2, each bound to separate storage [6].

 Figure 2: StatefulSet Persistent Volumes and Claims

4.2 Storage Class and Retention

The storageClassName dictates which storage backend is used (e.g., AWS EBS, GCE PD, local disk). Each volume’s

reclaimPolicy can be Delete or Retain. For high-value data, using Retain can prevent accidental volume deletion.

However, leftover volumes might require manual cleanup if pods are removed [7].

Anti-Pattern: Using ephemeral or hostPath volumes for critical data. If a node fails, data is lost or inaccessible.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 6

5. Deployment and Scaling Patterns

5.1 Initial Deployment

When applying a new StatefulSet, the controller will create mydb-0. Once it reaches Ready state, it proceeds to mydb-

1, etc. If a readiness check fails, the process is halted, preventing partial cluster corruption. This is especially helpful for

setups where a node must join a cluster or replicate data before the next node starts [8].

5.2 Scaling Up or Down

● Scaling Up: Increase replicas from 3 to 5. The system spawns mydb-3 and mydb-4, each with a new

volume claim. Some distributed systems automatically rebalance data or require a manual rebalancing process.

● Scaling Down: Decreasing from 5 to 3 replicas. Pods mydb-4 and mydb-3 are removed (in that order).

Unless the volumes are dynamically reclaimed, leftover data might remain if not configured otherwise. Admins

must handle data migrations or partial data states gracefully [9].

5.3 Rolling Updates with Ordered or Parallel

Ordered updates minimize disruptions for sensitive data platforms (like MySQL or Zookeeper). If the system can handle

multiple nodes offline, parallel updates reduce downtime. The decision depends on the distributed app’s resilience to

multiple restarts at once.

6. Networking and DNS for Stateful Pods

6.1 Headless Service Mechanics

A typical statefulset includes:

apiVersion: v1

kind: Service

metadata:

 name: mydb-headless

spec:

 clusterIP: None

 selector:

 app: mydb

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 7

This “headless” service doesn’t provide a stable IP. Instead, each pod is directly resolvable via mydb-0.mydb-

headless.namespace.svc.cluster.local. This stable DNS name allows internal cluster applications to reference each

replica by name, which is critical for certain configurations (like “master-0” or “shard-1” logic) [10].

6.2 Anti-Pattern: Relying on Pod IP Instead of DNS

● Issue: Hard-coding ephemeral IP addresses in application config.

● Consequence: If the pod is rescheduled to another node, the IP changes, possibly breaking the cluster.

● Remedy: Use the stable DNS approach with the mydb-

<ordinal>.<service>.<namespace>.svc.cluster.local pattern.

7. Anti-Patterns with StatefulSets

1. Using Deployments for Highly Stateful Databases:

○ Problem: Each new pod might attach the same volume or lose track of data.

○ Solution: Switch to a dedicated StatefulSet that ensures stable volume claims.

2. Storing Data on ephemeral volumes:

○ Result: Once a node is re-created or the container restarts, data is lost.

○ Fix: Use PersistentVolumes with a suitable storage class for durability.

3. No Readiness Probes:

○ Impact: The system might consider the pod Running but the database is not fully initialized,

leading to partial writes or cluster instability.

○ Solution: Implement readiness checks to confirm that each replica is ready to serve or replicate

data.

8. Node Affinity, Zoning, and High Availability

8.1 Node Affinity for High I/O

For I/O-heavy stateful apps, using node affinity can place pods on nodes with local SSD or special performance

capabilities. However, being too strict can hamper scheduling if those nodes are at capacity. A soft

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 8

preferredDuringSchedulingIgnoredDuringExecution approach can attempt to place pods on high-performance nodes but

still run them elsewhere if necessary [11].

8.2 Geo-Aware or Zone-Aware Architecture

In large clusters spanning multiple zones, each replica might be pinned to a different zone to ensure regional redundancy.

The volumes must also be provisioned in that zone. This approach fosters resilience: if zone A fails, zone B and C

replicas remain [12].

 Figure 3: Geo-aware Architecture

Hence, each replica uses storage in its own zone for local performance, while the distributed system replicates data

across zones.

9. Lifecycle Hooks, Startups, and Shutdowns

9.1 Init Containers for Setups

Some stateful apps require an init container to set up directories, run data migrations, or ensure environment readiness.

For example, a script verifying the presence of a configuration file or performing minor cluster membership tasks. This

approach ensures the main container only starts when prerequisites are satisfied [13].

9.2 Post-Start or Pre-Stop Hooks

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 9

PreStop can gracefully remove a pod from the cluster. For instance, a database node might replicate data or inform the

cluster manager that it’s leaving. This reduces data inconsistency if the new pod is not fully recognized in the cluster

membership.

10. Multi-Environment DevOps Pipelines

10.1 Dev, Stage, Prod

Some organizations prefer separate Kubernetes clusters for dev, staging, and production. Others unify them with distinct

namespaces. Either way, each environment’s statefulset might differ in the number of replicas or storage size.

Maintaining these differences in a version-controlled approach fosters consistency [14].

10.2 Canary or Blue-Green for Databases?

Rolling or canary deployments of stateful DBs are trickier than stateless services. Typically, one might upgrade a single

node (mydb-0), confirm replication stability, then proceed to mydb-1, etc. True canary for data can be complicated

unless the underlying database supports read replicas or internal versioning. Thorough testing is mandatory to ensure

data correctness.

11. Observability Revisited

11.1 Monitoring Tools

Prometheus collects metrics from pods. For example, if running a stateful Cassandra cluster, a sidecar or direct

jmx_exporter might provide metrics on read/write latencies, compaction, or replication status. An alert can fire if a newly

started replica fails readiness or if disk usage approaches capacity [15].

11.2 Logging Strategies

Stateful workloads often produce logs about replication events or cluster membership changes. Centralizing them in an

ELK stack or Splunk environment is critical for diagnosing issues such as partial data ingestion or consistent node

restarts. If a newly added replica experiences repeated restarts, logs can reveal misconfigurations or insufficient

resources.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 10

12. Security with Pod Security Policies and Secrets

12.1 PSP (Pod Security Policy) or Alternatives

Pod Security Policies restricted what a pod can do like running as root or using host networking. Combining them with

stateful workloads ensures that each DB or message broker runs with minimal privileges, uses non-root containers, and

does not inadvertently mount host paths [16].

12.2 Managing Secrets

Database credentials or encryption keys must be stored as Kubernetes Secrets or integrated with external solutions

(Vault). Ensure that each stateful pod references only the secrets relevant to it. Over-exposing secrets to all pods can

create security holes. Tying secrets to role-based restrictions ensures only pods in that app’s namespace can read them.

13. Backup and Restore Strategies

13.1 Snapshots of Persistent Volumes

If the cluster uses a storage backend supporting snapshots (like AWS EBS or GCE PD), each PVC can be snapshotted

for backups. Tools might orchestrate daily snapshots of volumes used by the stateful DB. Restoration typically requires

creating a new PVC from the snapshot [17].

13.2 Application-Level Backup

Many DBs prefer internal backup methods (mysqldump, Cassandra nodetool snapshots). Even if pods store data in

volumes, a consistent backup might require quiescing writes or using database-level commands. A pipeline can run these

backups on a schedule, storing artifacts in object storage. The main point: do not rely on ephemeral container restarts

for data safety.

14. Advanced Updates and Rolling Strategies

14.1 Canary Patterns

Some advanced orgs attempt canary updates for stateful systems (like a single node adopting a new DB version),

ensuring backward compatibility. This technique demands thorough cross-version testing particularly if the DB has new

schema or storage formats. If the canary node remains stable for a certain time, proceed to update the next node [18].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 11

14.2 Downtime Minimization

OrderedReady updates ensure the cluster is never more than one node down. If a single node fails to become ready, the

update halts, letting operators fix the problem or roll back. This approach is essential for mission-critical data, preventing

cascading failures if multiple pods break simultaneously.

15. Real-World Case Study #1: Cassandra Cluster

15.1 Scenario

An analytics firm needed a distributed NoSQL store. They used Cassandra with a 6-node setup. Each node was deployed

as a separate pod in a single StatefulSet with replicas=6. For multi-zone resilience, pods used node affinity to distribute

them across zones. Each node had a 500 GB persistent volume from a fast SSD class.

15.2 Observed Gains

● Automatic stable DNS naming (cassandra-0, cassandra-1...).

● Controlled rolling updates (one node at a time), giving Cassandra a chance to rebuild the ring.

● Data persisted if a node was moved or replaced.

● Thorough readiness checks ensured the ring was stable before continuing the next node’s update.

However, the team discovered that overly strict zone affinity plus resource constraints could hamper scheduling if one

zone was at capacity. They refined their approach, using “preferredDuringScheduling” to avoid scheduling deadlocks.

16. Real-World Case Study #2: Kafka as a StatefulSet

16.1 Scenario

An adtech DSP deployed Apache Kafka as a high-throughput message bus. They utilized a StatefulSet with 5 brokers,

each having a dedicated 100 GB volume. The headless service gave each broker a stable DNS, e.g., kafka-0.kafka-

svc.namespace.svc.cluster.local. An external load balancer or host-based approach directed producers/consumers to

these known addresses, or they used the typical Kafka auto-discovery approach referencing these stable addresses.

16.2 Observed Gains

● Combined stateless microservices with an in-cluster Kafka, simplifying net config.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 12

● Rolling updates allowed each broker to drain partitions, update, and reassign data.

● Operators overcame initial challenges with volumes across multiple availability zones to ensure partial

data replication if a zone was down.

They learned that setting an adequate podAntiAffinity policy prevented all Kafka pods from landing on the same node,

improving reliability in case of node failures.

17. Observability and DevOps Culture

For large clusters or multiple stateful sets, a DevOps culture fosters:

● Common Pipelines: All changes to YAML go through code review.

● Logging: Each stateful service logs to the same aggregator, enabling correlation if an update triggers

partial downtime.

● Monitoring: SRE sets up relevant dashboards (CPU, memory, I/O usage, number of restarts, etc.).

Alerts notify if a stateful pod restarts too frequently or fails readiness for too long [19].

18. Anti-Pattern Consolidation

1. Deployment for Complex Databases: Lacks stable identity, risking data integrity.

2. Single Volume for all replicas: Potential concurrency meltdown.

3. Parallel Pod Management with a non-HA DB: Multiple pods offline, data unavailability or

corruption.

4. Ignoring Node Affinity for I/O-bound apps: Overcrowding leads to high-latency or node resource

meltdown.

5. Inadequate Probes: No readiness or liveness checks, leading to partial or broken clusters.

19. Best Practices Summary

1. Stateful Set for stable identity, unique volumes, and ordered deployment.

2. volumeClaimTemplates plus a suitable storageClass: Ensure each replica has persistent data.

3. Node Affinity: For performance or zone-based distribution, used carefully to avoid scheduling

deadlocks.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 13

4. Readiness and Liveness Probes: Validate that the application has joined or rejoined the cluster

properly before proceeding with updates.

5. Rolling Updates: Usually adopt OrderedReady unless proven the system can handle parallel restarts.

6. Documentation: Precisely detail rolling strategy, required environment variables, and data migration

steps for each stateful set.

7. Continuous Observability: Use logs, metrics, alerts, and auditing to track each node’s health, capacity

usage, and restarts.

20. Conclusion

Deploying stateful applications in Kubernetes necessitates specialized orchestration beyond what simple stateless

patterns provide. StatefulSets fill this gap, offering stable network identities, persistent volumes, and carefully

orchestrated rollouts. By adopting the best practices outlined; ranging from ephemeral dev/test environments with

readiness probes to carefully orchestrated multi-zone production clusters; teams can confidently manage data-centric

services in the same platform as their stateless microservices.

In a maturing DevOps ecosystem, these best practices ensure that, even for complex, stateful services, the robust

scheduling, self-healing, and scaling capacities of Kubernetes can be leveraged effectively. The synergy between

ephemeral container lifecycles and persistent data management is at the heart of bridging microservices with modern

storage solutions, enabling more integrated, agile, and scalable architectures. Over time, as the community develops

advanced operators, more sophisticated volume management, and integrated chaos engineering for stateful sets, the path

to fully cloud-native data services continues to evolve yet the foundational steps laid out here remain critical building

blocks for stable and secure stateful deployments.

References

1. Fowler, M. and Lewis, J., “Microservices Resource Guide,” martinfowler.com, 2016.

2. Newman, S., Building Microservices, O’Reilly Media, 2015.

3. Gilt Tech Blog, “Running Databases in Containers: A Cautionary Tale,” 2017.

4. Kelsey Hightower, Kubernetes: Up and Running, O’Reilly, 2017.

5. Red Hat Blog, “StatefulSets vs. Deployments: Understanding the Differences,” 2018.

6. Molesky, J. and Sato, T., “DevOps in Distributed Systems,” IEEE Software, vol. 30, no. 3, 2013.

7. CNCF Whitepaper, “Persistent Volume Patterns in Container Orchestration,” 2018.

8. Netflix Tech Blog, “Zonal Distribution for Resilient Stateful Apps,” 2016.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 02 | Feb - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM41457 | Page 14

9. Brandolini, A., Introducing EventStorming, Leanpub, 2013.

10. G. Cockcroft, “DNS Patterns for Pod Identity in Kubernetes,” ACM DevOps Conf, 2018.

11. Argo CD Documentation, https://argo-cd.readthedocs.io/, Accessed 2018.

12. M. Turnbull, The Kubernetes Book, Independently Published, 2018.

13. “Pod Security Policies in Kubernetes,” kubernetes.io/docs, 2018.

14. Gilt Tech Blog, “Case Study: MySQL on Kubernetes with StatefulSets,” 2018.

15. Blum, A. et al., “Parallel Updates in Distributed Systems,” ACM SoCC Workshops, 2017.

16. Krishnan, S., “Stateful Microservices in K8s: Rolling Upgrades,” ACMQueue, vol. 14, no. 2, 2018.

17. G. Cockcroft, “Backup Solutions for Persistent Volumes,” ACM DevOps Conf, 2017.

18. Datadog Blog, “Observability for Kubernetes Stateful Workloads,” 2018.

http://www.ijsrem.com/
https://argo-cd.readthedocs.io/
https://argo-cd.readthedocs.io/

