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Abstract 

As container orchestration transitions from experimental deployments to mission-critical, large-scale operations, running 

stateful workloads in Kubernetes becomes a pressing topic. Historically, Kubernetes excelled at stateless microservices, 

quickly scaling ephemeral pods. However, many real-world systems rely on persistent data; databases, caches, key-value 

stores, and distributed queues. StatefulSets are a Kubernetes feature specifically designed to handle pods requiring stable 

identities, ordered startup, and persistent storage. Deploying these stateful applications demands nuanced architectural 

decisions, from volume management and data replication to orchestrating rolling upgrades while preserving data 

integrity. 

This paper provides a comprehensive, hands-on guide to best practices with StatefulSets. We begin by comparing stateful 

and stateless workloads, illustrating how StatefulSets differ from Deployments or ReplicaSets. We then cover persistent 

volumes, storage classes, node affinity, scaling, advanced update strategies, and the interplay between stateful containers 

and multi-environment DevOps pipelines. Along the way, we highlight anti-patterns like overusing a single shared 

volume or ignoring readiness checks and propose real-world solutions drawn from production experiences. The aim is 

to furnish architects, operators, and developers with the insights and practical steps necessary to reliably run mission-

critical, data-centric services in a Kubernetes ecosystem. 
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1. Introduction 

1.1 The Shifting Landscape of Kubernetes Workloads 

Kubernetes, initially lauded for its robust handling of stateless workloads, has steadily matured to meet the demands of 

stateful applications; databases, caching layers, and streaming platforms. These stateful components are essential to 

many production stacks, storing critical user data, financial transactions, or logs. Historically, operators were reluctant 

to store valuable data in ephemeral containers lacking stable storage or identity, relying instead on external VMs or 

specialized bare-metal servers. However, the desire for a single orchestration plane covering both stateless and stateful 

services has led to widespread adoption of StatefulSets, specialized controllers within Kubernetes that address these 

complexities [1]. 

1.2 Purpose and Scope 

This paper focuses on: 

● Designing and deploying stateful apps with Kubernetes StatefulSets, from fundamental concepts to 

advanced topics like parallel updates, node affinity, and multi-environment pipelines. 

● Comparison of stateful vs. stateless patterns, analyzing why Deployments alone are often insufficient 

for stateful use cases. 

● Guidelines and anti-patterns gleaned from real-world experiences covering data persistence, rolling 

upgrades, volume claim management, and synergy with DevOps workflows. 

Our ultimate goal is to help SREs, DevOps engineers, and platform owners build robust, high-availability clusters that 

seamlessly accommodate data-centric services. Each section includes references, code snippets, and diagrams to 

illustrate best practices from 2019 or earlier. 

 

2. Background: Stateless vs. Stateful in a Containerized World 

2.1 The Rise of Stateless Microservices 

Early container orchestration solutions, including the initial versions of Kubernetes, championed ephemeral pods well-

suited to stateless services. Deployments or ReplicaSets easily scaled these pods horizontally. If a pod died or a new 

release was deployed, the system replaced it with minimal friction. Data could be offloaded to external databases or 

object stores [2]. This approach allowed near-limitless elasticity for web front-ends, background tasks, or ephemeral 

APIs. 

http://www.ijsrem.com/
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2.2 When Stateful Needs Emerge 

Yet, many complex applications revolve around data that must persist across pod restarts: relational databases, 

distributed caches, queue brokers, or search engines. These services rely on local data replication or unique addresses to 

form clusters. StatefulSets were introduced to handle exactly these needs providing stable network identities and 

persistent volumes for each replica [3]. 

 

    Figure 1: deployment strategies 

 

2.3 Anti-Pattern: Attempting to Run Databases on a Basic Deployment 

● Problem: A standard Deployment does not guarantee stable pod names or per-replica volumes. 

● Impact: When pods are rescheduled, data may be lost or assigned incorrectly. 

● Solution: Migrate to StatefulSets to maintain stable references, preserving data as the cluster changes. 

 

3. An Overview of StatefulSets 

3.1 Definition and Key Characteristics 

A StatefulSet is a workload API object in Kubernetes that provides: 

1. Stable, unique pod names (ordinal-based, e.g., myapp-0, myapp-1). 

2. Ordered creation, update, or deletion (configurable). 

3. Persistent storage typically through volumeClaimTemplates, ensuring each replica has its own volume. 

4. Headless Service often used for stable network identities, letting each replica be individually 

addressable [4]. 

Snippet (Minimal Example): 

apiVersion: apps/v1 

kind: StatefulSet 

http://www.ijsrem.com/
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metadata: 

  name: mydb 

spec: 

  serviceName: "mydb-headless" 

  replicas: 3 

  selector: 

    matchLabels: 

      app: mydb 

  template: 

    metadata: 

      labels: 

        app: mydb 

    spec: 

      containers: 

      - name: mydb-container 

        image: mydb:latest 

        ports: 

        - containerPort: 5432 

  volumeClaimTemplates: 

  - metadata: 

      name: data 

    spec: 

      accessModes: ["ReadWriteOnce"] 

      storageClassName: "fast-ssd" 

      resources: 

        requests: 

          storage: 10Gi 

 

3.2 The Headless Service 

By specifying serviceName in a StatefulSet, one typically pairs it with a headless service (i.e., clusterIP: None). This 

service allows pods to register their DNS records in a form like mydb-0.mydb-headless.namespace.svc.cluster.local, 

enabling direct pod-to-pod communication a must for databases requiring stable hostnames or ordinal-based cluster 

membership [5]. 

3.3 Pod Management Policies 

http://www.ijsrem.com/
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● OrderedReady (default): Pods are created or updated one at a time in ascending order (0, 1, 2...). 

● Parallel: Pods can be created or updated concurrently. This might speed rollout but demands the 

application handle multiple node changes gracefully. 

 

4. Persistent Volumes and Claims 

4.1 VolumeClaimTemplates 

A significant difference between a Deployment and StatefulSet lies in volumeClaimTemplates. This subsection defines 

how each replica claims a persistent volume. For example, if we have replicas = 3, we get pvc: data-mydb-0, data-mydb-

1, and data-mydb-2, each bound to separate storage [6]. 

 

  Figure 2: StatefulSet Persistent Volumes and Claims 

 

4.2 Storage Class and Retention 

The storageClassName dictates which storage backend is used (e.g., AWS EBS, GCE PD, local disk). Each volume’s 

reclaimPolicy can be Delete or Retain. For high-value data, using Retain can prevent accidental volume deletion. 

However, leftover volumes might require manual cleanup if pods are removed [7]. 

Anti-Pattern: Using ephemeral or hostPath volumes for critical data. If a node fails, data is lost or inaccessible. 
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5. Deployment and Scaling Patterns 

5.1 Initial Deployment 

When applying a new StatefulSet, the controller will create mydb-0. Once it reaches Ready state, it proceeds to mydb-

1, etc. If a readiness check fails, the process is halted, preventing partial cluster corruption. This is especially helpful for 

setups where a node must join a cluster or replicate data before the next node starts [8]. 

5.2 Scaling Up or Down 

● Scaling Up: Increase replicas from 3 to 5. The system spawns mydb-3 and mydb-4, each with a new 

volume claim. Some distributed systems automatically rebalance data or require a manual rebalancing process. 

● Scaling Down: Decreasing from 5 to 3 replicas. Pods mydb-4 and mydb-3 are removed (in that order). 

Unless the volumes are dynamically reclaimed, leftover data might remain if not configured otherwise. Admins 

must handle data migrations or partial data states gracefully [9]. 

5.3 Rolling Updates with Ordered or Parallel 

Ordered updates minimize disruptions for sensitive data platforms (like MySQL or Zookeeper). If the system can handle 

multiple nodes offline, parallel updates reduce downtime. The decision depends on the distributed app’s resilience to 

multiple restarts at once. 

 

6. Networking and DNS for Stateful Pods 

6.1 Headless Service Mechanics 

A typical statefulset includes: 

apiVersion: v1 

kind: Service 

metadata: 

  name: mydb-headless 

spec: 

  clusterIP: None 

  selector: 

    app: mydb 

 

http://www.ijsrem.com/
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This “headless” service doesn’t provide a stable IP. Instead, each pod is directly resolvable via mydb-0.mydb-

headless.namespace.svc.cluster.local. This stable DNS name allows internal cluster applications to reference each 

replica by name, which is critical for certain configurations (like “master-0” or “shard-1” logic) [10]. 

6.2 Anti-Pattern: Relying on Pod IP Instead of DNS 

● Issue: Hard-coding ephemeral IP addresses in application config. 

● Consequence: If the pod is rescheduled to another node, the IP changes, possibly breaking the cluster. 

● Remedy: Use the stable DNS approach with the mydb-

<ordinal>.<service>.<namespace>.svc.cluster.local pattern. 

 

7. Anti-Patterns with StatefulSets 

1. Using Deployments for Highly Stateful Databases: 

 

○ Problem: Each new pod might attach the same volume or lose track of data. 

○ Solution: Switch to a dedicated StatefulSet that ensures stable volume claims. 

2. Storing Data on ephemeral volumes: 

 

○ Result: Once a node is re-created or the container restarts, data is lost. 

○ Fix: Use PersistentVolumes with a suitable storage class for durability. 

3. No Readiness Probes: 

 

○ Impact: The system might consider the pod Running but the database is not fully initialized, 

leading to partial writes or cluster instability. 

○ Solution: Implement readiness checks to confirm that each replica is ready to serve or replicate 

data. 

 

8. Node Affinity, Zoning, and High Availability 

8.1 Node Affinity for High I/O 

For I/O-heavy stateful apps, using node affinity can place pods on nodes with local SSD or special performance 

capabilities. However, being too strict can hamper scheduling if those nodes are at capacity. A soft 
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preferredDuringSchedulingIgnoredDuringExecution approach can attempt to place pods on high-performance nodes but 

still run them elsewhere if necessary [11]. 

8.2 Geo-Aware or Zone-Aware Architecture 

In large clusters spanning multiple zones, each replica might be pinned to a different zone to ensure regional redundancy. 

The volumes must also be provisioned in that zone. This approach fosters resilience: if zone A fails, zone B and C 

replicas remain [12]. 

 

   Figure 3: Geo-aware Architecture 

 

Hence, each replica uses storage in its own zone for local performance, while the distributed system replicates data 

across zones. 

 

9. Lifecycle Hooks, Startups, and Shutdowns 

9.1 Init Containers for Setups 

Some stateful apps require an init container to set up directories, run data migrations, or ensure environment readiness. 

For example, a script verifying the presence of a configuration file or performing minor cluster membership tasks. This 

approach ensures the main container only starts when prerequisites are satisfied [13]. 

9.2 Post-Start or Pre-Stop Hooks 

http://www.ijsrem.com/
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PreStop can gracefully remove a pod from the cluster. For instance, a database node might replicate data or inform the 

cluster manager that it’s leaving. This reduces data inconsistency if the new pod is not fully recognized in the cluster 

membership. 

 

10. Multi-Environment DevOps Pipelines 

10.1 Dev, Stage, Prod 

Some organizations prefer separate Kubernetes clusters for dev, staging, and production. Others unify them with distinct 

namespaces. Either way, each environment’s statefulset might differ in the number of replicas or storage size. 

Maintaining these differences in a version-controlled approach fosters consistency [14]. 

10.2 Canary or Blue-Green for Databases? 

Rolling or canary deployments of stateful DBs are trickier than stateless services. Typically, one might upgrade a single 

node (mydb-0), confirm replication stability, then proceed to mydb-1, etc. True canary for data can be complicated 

unless the underlying database supports read replicas or internal versioning. Thorough testing is mandatory to ensure 

data correctness. 

 

11. Observability Revisited 

11.1 Monitoring Tools 

Prometheus collects metrics from pods. For example, if running a stateful Cassandra cluster, a sidecar or direct 

jmx_exporter might provide metrics on read/write latencies, compaction, or replication status. An alert can fire if a newly 

started replica fails readiness or if disk usage approaches capacity [15]. 

11.2 Logging Strategies 

Stateful workloads often produce logs about replication events or cluster membership changes. Centralizing them in an 

ELK stack or Splunk environment is critical for diagnosing issues such as partial data ingestion or consistent node 

restarts. If a newly added replica experiences repeated restarts, logs can reveal misconfigurations or insufficient 

resources. 
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12. Security with Pod Security Policies and Secrets 

12.1 PSP (Pod Security Policy) or Alternatives 

Pod Security Policies restricted what a pod can do like running as root or using host networking. Combining them with 

stateful workloads ensures that each DB or message broker runs with minimal privileges, uses non-root containers, and 

does not inadvertently mount host paths [16]. 

12.2 Managing Secrets 

Database credentials or encryption keys must be stored as Kubernetes Secrets or integrated with external solutions 

(Vault). Ensure that each stateful pod references only the secrets relevant to it. Over-exposing secrets to all pods can 

create security holes. Tying secrets to role-based restrictions ensures only pods in that app’s namespace can read them. 

 

13. Backup and Restore Strategies 

13.1 Snapshots of Persistent Volumes 

If the cluster uses a storage backend supporting snapshots (like AWS EBS or GCE PD), each PVC can be snapshotted 

for backups. Tools might orchestrate daily snapshots of volumes used by the stateful DB. Restoration typically requires 

creating a new PVC from the snapshot [17]. 

13.2 Application-Level Backup 

Many DBs prefer internal backup methods (mysqldump, Cassandra nodetool snapshots). Even if pods store data in 

volumes, a consistent backup might require quiescing writes or using database-level commands. A pipeline can run these 

backups on a schedule, storing artifacts in object storage. The main point: do not rely on ephemeral container restarts 

for data safety. 

 

14. Advanced Updates and Rolling Strategies 

14.1 Canary Patterns 

Some advanced orgs attempt canary updates for stateful systems (like a single node adopting a new DB version), 

ensuring backward compatibility. This technique demands thorough cross-version testing particularly if the DB has new 

schema or storage formats. If the canary node remains stable for a certain time, proceed to update the next node [18]. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 02 | Feb - 2025                              SJIF Rating: 8.448                                            ISSN: 2582-3930                                                                                             

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM41457                                               |        Page 11 
 

14.2 Downtime Minimization 

OrderedReady updates ensure the cluster is never more than one node down. If a single node fails to become ready, the 

update halts, letting operators fix the problem or roll back. This approach is essential for mission-critical data, preventing 

cascading failures if multiple pods break simultaneously. 

 

15. Real-World Case Study #1: Cassandra Cluster 

15.1 Scenario 

An analytics firm needed a distributed NoSQL store. They used Cassandra with a 6-node setup. Each node was deployed 

as a separate pod in a single StatefulSet with replicas=6. For multi-zone resilience, pods used node affinity to distribute 

them across zones. Each node had a 500 GB persistent volume from a fast SSD class. 

15.2 Observed Gains 

● Automatic stable DNS naming (cassandra-0, cassandra-1...). 

● Controlled rolling updates (one node at a time), giving Cassandra a chance to rebuild the ring. 

● Data persisted if a node was moved or replaced. 

● Thorough readiness checks ensured the ring was stable before continuing the next node’s update. 

However, the team discovered that overly strict zone affinity plus resource constraints could hamper scheduling if one 

zone was at capacity. They refined their approach, using “preferredDuringScheduling” to avoid scheduling deadlocks. 

 

16. Real-World Case Study #2: Kafka as a StatefulSet 

16.1 Scenario 

An adtech DSP deployed Apache Kafka as a high-throughput message bus. They utilized a StatefulSet with 5 brokers, 

each having a dedicated 100 GB volume. The headless service gave each broker a stable DNS, e.g., kafka-0.kafka-

svc.namespace.svc.cluster.local. An external load balancer or host-based approach directed producers/consumers to 

these known addresses, or they used the typical Kafka auto-discovery approach referencing these stable addresses. 

16.2 Observed Gains 

● Combined stateless microservices with an in-cluster Kafka, simplifying net config. 

http://www.ijsrem.com/
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● Rolling updates allowed each broker to drain partitions, update, and reassign data. 

● Operators overcame initial challenges with volumes across multiple availability zones to ensure partial 

data replication if a zone was down. 

They learned that setting an adequate podAntiAffinity policy prevented all Kafka pods from landing on the same node, 

improving reliability in case of node failures. 

 

17. Observability and DevOps Culture 

For large clusters or multiple stateful sets, a DevOps culture fosters: 

● Common Pipelines: All changes to YAML go through code review. 

● Logging: Each stateful service logs to the same aggregator, enabling correlation if an update triggers 

partial downtime. 

● Monitoring: SRE sets up relevant dashboards (CPU, memory, I/O usage, number of restarts, etc.). 

Alerts notify if a stateful pod restarts too frequently or fails readiness for too long [19]. 

 

18. Anti-Pattern Consolidation 

1. Deployment for Complex Databases: Lacks stable identity, risking data integrity. 

2. Single Volume for all replicas: Potential concurrency meltdown. 

3. Parallel Pod Management with a non-HA DB: Multiple pods offline, data unavailability or 

corruption. 

4. Ignoring Node Affinity for I/O-bound apps: Overcrowding leads to high-latency or node resource 

meltdown. 

5. Inadequate Probes: No readiness or liveness checks, leading to partial or broken clusters. 

 

19. Best Practices Summary 

1. Stateful Set for stable identity, unique volumes, and ordered deployment. 

2. volumeClaimTemplates plus a suitable storageClass: Ensure each replica has persistent data. 

3. Node Affinity: For performance or zone-based distribution, used carefully to avoid scheduling 

deadlocks. 
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4. Readiness and Liveness Probes: Validate that the application has joined or rejoined the cluster 

properly before proceeding with updates. 

5. Rolling Updates: Usually adopt OrderedReady unless proven the system can handle parallel restarts. 

6. Documentation: Precisely detail rolling strategy, required environment variables, and data migration 

steps for each stateful set. 

7. Continuous Observability: Use logs, metrics, alerts, and auditing to track each node’s health, capacity 

usage, and restarts. 

 

20. Conclusion 

Deploying stateful applications in Kubernetes necessitates specialized orchestration beyond what simple stateless 

patterns provide. StatefulSets fill this gap, offering stable network identities, persistent volumes, and carefully 

orchestrated rollouts. By adopting the best practices outlined; ranging from ephemeral dev/test environments with 

readiness probes to carefully orchestrated multi-zone production clusters; teams can confidently manage data-centric 

services in the same platform as their stateless microservices. 

In a maturing DevOps ecosystem, these best practices ensure that, even for complex, stateful services, the robust 

scheduling, self-healing, and scaling capacities of Kubernetes can be leveraged effectively. The synergy between 

ephemeral container lifecycles and persistent data management is at the heart of bridging microservices with modern 

storage solutions, enabling more integrated, agile, and scalable architectures. Over time, as the community develops 

advanced operators, more sophisticated volume management, and integrated chaos engineering for stateful sets, the path 

to fully cloud-native data services continues to evolve yet the foundational steps laid out here remain critical building 

blocks for stable and secure stateful deployments. 
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