

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Deployment of Multi Tier Application using EKS

Prof.Shikha Dwivedi Pranit Pramod Kolamkar Deepam Himachal Patle

Department of Computer Engineering Department of Computer Engineering Department of Computer Engineering

JSPM’s JSCOE JSPM’s JSCOE JSPM’s JSCOE

Shreyash Shivanand Nakhate

 Department of Computer Engineering

 JSPM’s JSCOE

Abstract - The project report titled "3-Tier Application

Deployment on AWS using Amazon EKS" focuses on the

design, development, and deployment of a highly scalable

and secure 3-tier web application architecture using

Amazon Elastic Kubernetes Service (EKS). The 3-tier

architecture consists of a presentation layer (frontend), an

application layer (backend), and a database layer, each

deployed in isolated environments for enhanced security and

performance. The project demonstrates the use of

Kubernetes for container orchestration, enabling efficient

management of microservices and load balancing.

Additionally, it leverages AWS services like Elastic Load

Balancer (ELB), Amazon RDS, and CloudWatch[2] for

monitoring and scaling. This deployment model ensures

high availability, fault tolerance, and streamlined

application management, providing a robust solution for

modern cloud- native applications. In this deployment

model, the frontend consists of a user interface, typically

running as a web application. The backend processes the

business logic and APIs, while the database layer stores and

manages application data. Each tier is containerized using

Docker and deployed on Kubernetes clusters within

Amazon EKS[1], which automates scaling, load balancing,

and monitoring of containers.

Keywords – 3-tier architecture, AWS (Amazon Web

Services), Amazon EKS (Elastic Kubernetes Service),

Frontend, Backend, Database, Elastic Load Balancing

(ELB), Amazon RDS (Relational Database Service), AWS

Cloud Formation, VPC (Virtual Private Cloud), Role-Based

Access Control (RBAC).

I. INTRODUCTION

This report outlines the deployment of a 3-tier

application architecture on Amazon Web Services (AWS)

using Amazon Elastic Kubernetes Service (EKS)[1]. A 3-

tier application architecture traditionally consists of three

layers: the presentation tier (UI), the application tier

(business logic), and the database tier (data storage). Each

of these tiers can be independently managed, scaled, and

optimized, which provides a modular approach for

developing, deploying, and maintaining modern

applications[12].

Kubernetes automates the deployment, scaling, and

management of containerized applications, providing a

strong foundation for the continuous integration and

continuous delivery(CI/CD)pipeline. This report details the

steps and methodologies used in deploying the application

components across the three tiers on AWS, leveraging

various services such as Elastic Load Balancing,[15]

Amazon RDS, and AWS Identity and Access Management

(IAM) for security and scalability.Additionally, we discuss

the benefits of this architecture, such as high

availability, fault tolerance, and cost efficiency, along

with potential challenges encountered during the

deployment process. In this project, the deployment was

carried out using Amazon EKS, a managed Kubernetes

service that automates the provisioning, scaling, and

management of containerized applications in AWS[2].

Kubernetes, being the industry- standard orchestration

platform, allows us to efficiently manage containers and

provides features such as load balancing, scaling, self-

healing, and automated rollouts.

II. LITERATURE SURVEY

Cloud-native architectures[19], driven by Kubernetes,

have transformed the deployment and management of multi-

tier applications. Amazon Elastic Kubernetes Service (EKS)

simplifies Kubernetes cluster management while offering

scalability and integration with AWS services. Research

emphasizes how multi-tier applications (comprising frontend,

backend, and database tiers) benefit from Kubernetes' container

orchestration, including fault tolerance, auto-scaling, and

CI/CD pipelines. Several studies highlight the reduction in

deployment complexity and improved system reliability

achieved using Kubernetes-based workflows.

EKS builds upon Kubernetes' capabilities, leveraging AWS's

managed infrastructure[13] to enhance performance. Studies

show that EKS significantly reduces operational overhead for

managing Kubernetes clusters by automating node

provisioning, load balancing, and monitoring[17]. Research

also illustrates EKS's seamless integration with AWS services

like RDS, S3[5], and IAM, which supports robust backend and

database functionalities. These integrations simplify secure

application development and deployment for multi-tier

applications.

While Kubernetes and EKS offer numerous advantages,

deploying multi-tier applications comes with challenges, as

detailed in existing research. Common issues include network

complexity, inter-tier communication latency[13], and the need

for advanced monitoring tools. Studies focus on using tools

like AWS CloudWatch, Prometheus[18], and Grafana to ensure

observability and maintain application performance. Further,

authors have discussed strategies to manage service discovery

and traffic routing effectively, including the use of AWS

Application Load Balancers (ALBs) and Ingress

controllers[14].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

The deployment of multi-tier applications using Amazon

Elastic Kubernetes Service (EKS) has been extensively

explored in contemporary research due to its ability to

provide scalable, secure, and highly available solutions for

cloud-native applications[20]. Studies emphasize leveraging

Kubernetes' orchestration capabilities to manage the lifecycle

of multi-tier architectures, including the frontend, backend,

and database layers, while integrating[2] AWS-native

services like Elastic Load Balancing, IAM for security, and

CloudWatch for monitoring. Research highlights the benefits

of deploying applications in EKS clusters, such as

containerized scalability, fault tolerance, and streamlined

CI/CD workflows using tools like Jenkins or GitOps

practices[21].

Security remains a critical focus in multi-tier application

deployment. Research emphasizes securing application

workloads through Kubernetes network policies, AWS

security groups, and role-based access control (RBAC)[15].

Studies also highlight implementing secure data storage with

encrypted AWS services (e.g., EBS and S3) and ensuring

identity management using AWS IAM and Secrets Manager.

Findings suggest that these practices enhance the integrity

and confidentiality of multi-tier systems in production[13].

Literature on resource optimization for EKS discusses

autoscaling and workload optimization techniques, such as

using Horizontal Pod Autoscalers (HPA)[20] and Spot

Instances. Researchers have analyzed how EKS supports

cost-effective scaling for varying workloads in multi-tier

applications. Studies on serverless databases and container

optimization reveal how combining Kubernetes with AWS

Fargate[14] can minimize idle resource costs.

Best practices highlighted in research include adopting

Infrastructure as Code (IaC)[13] with tools like Terraform or

AWS CloudFormation to manage cluster configurations.

There is also significant emphasis on CI/CD pipelines using

AWS CodePipeline and GitOps frameworks for continuous

deployment. Research underscores leveraging Helm charts[7]

for application configuration and reducing downtime through

blue/green deployments or canary releases.

The deployment of multi-tier applications using EKS

addresses scalability, security, and operational efficiency.

Research indicates that adopting cloud-native principles and

leveraging AWS ecosystem tools can streamline development

workflows and improve overall application resilience. Future

studies could focus on evolving EKS features[15], such as

AI- driven workload optimization and hybrid cloud scenarios,

to further enhance the deployment of multi-tier applications.

The deployment of multi-tier applications using Amazon

Elastic Kubernetes Service (EKS) has become a critical area

of research and practice in cloud computing. This survey

provides a comprehensive overview of existing research and

practical insights into deploying multi-tier applications using

Amazon EKS. It highlights the integration of Kubernetes'

orchestration capabilities with AWS-managed services to

create scalable, secure, and maintainable cloud-native

applications.

III METHODOLOGY

Problem Definition: Deploying scalable and secure 3 tier

application remains challenging in dynamic environments.

This project aims to streamline this process by utilizing AWS

and Amazon EKS[1] to enhance scalability, security, and

efficiency in application deployment.

Existing System Architecture : In a typical three-tier

application architecture deployed on AWS using Amazon

Elastic Kubernetes Service (EKS), the system is divided into

three main layers: the presentation layer, the application (or

business logic) layer, and the data layer. Each tier serves a

distinct purpose and is hosted on separate, dedicated

infrastructure, ensuring modularity[21], scalability, and

security.

Fig.01 Existing System Architecture

1. Presentation Layer: This tier, responsible for user

interaction, is often hosted as a set of containerized services on

EKS[1]. It handles requests from end users and typically

includes web servers, such as NGINX or Apache, that serve

front-end components of the application. In this layer, users'

requests are routed through an Application Load Balancer

(ALB)[20], which distributes incoming traffic to the containers

in the EKS cluster. The ALB provides HTTP/HTTPS access

and can perform SSL termination, protecting traffic to and

from the presentation layer[5].

2. Application Layer: The business logic of the

application resides in this layer, also deployed on EKS as a set

of microservices or containerized applications. Kubernetes

manages these services for high availability and auto-scaling,

distributing them across multiple worker nodes within the EKS

cluster[22]. This layer communicates with both the

presentation and data layers, processing user requests,

executing business logic, and retrieving or storing data as

needed. Managed by Kubernetes, this layer benefits from

advanced container orchestration features like rolling updates,

load balancing, and self-healing, which help ensure continuous

availability and resilience[10].

3. Data Layer: The data tier holds the application’s

persistent data, which is typically stored in a managed database

service like Amazon RDS or DynamoDB. This tier is isolated

within its own VPC subnet[15], with restricted access

controlled by network policies and IAM roles to ensure

security. Data backup, maintenance, and scalability are

managed by AWS, which offloads these operational burdens

from the application team, allowing them to focus on

development. The application layer can securely connect to

this database via Kubernetes secrets and VPC endpoints,

safeguarding data in transit[21].

By deploying this architecture on AWS EKS,

organizations gain the benefits of Kubernetes' robust

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

orchestration and AWS- managed services, offering a scalable,

resilient, and secure foundation for running e-commerce or

other web applications. The current architecture enables the 3-

tier application to achieve scalability, security, and availability

by using Amazon EKS along with other AWS services[4].

A. MATHEMATICAL MODEL
The mathematical model for a 3-Tier Application

deployment on AWS using Amazon EKS involves defining

the system in terms of its states, inputs, outputs, and

relationships between these elements. The model

incorporates factors such as request handling, resource

allocation, and response times, which are influenced by

traffic, load balancing, and scaling algorithms[20].

Mathematical Model Components

1. System Definition :

Let the system be represented as S, where :

S={U,R,F,D,Q,O}

U: Set of users interacting with the system.

R: Set of resources allocated to each layer (frontend,

backend, database).

F: Set of functions executed by the application, which

include processing user requests, executing business logic,

and managing data.

D: Set of data stores, which includes databases and caches.

Q: Quality metrics for performance and reliability (e.g.,

latency, throughput, availability).

O: Set of outputs, including processed data and responses

sent to users.

2. User Requests and Load Distribution :

• Let λ represent the rate of incoming requests from users

(Poisson distribution for request arrivals), where:

|U|

λ = ∑ λi i=1

• Let μ_F be the service rate of the frontend, μ_A be the

service rate of the application layer (backend), and μ_D be the

service rate of the data layer (database).

3. Load Balancing Function :

Requests are distributed across frontend instances by the

Application Load Balancer (ALB) :

Load Distribution (LD) = λ/ ∣RF∣
where RFR_FRF is the set of frontend resources (pods), so each

frontend pod receives approximately LD requests.

4. Auto Scaling Function:

• The system uses horizontal scaling based on resource usage. If

the usage of a resource exceeds a threshold T, new instances are

added.

• Let C_R represent the capacity of a resource RRR.

• If λ/ μR > T⋅CR, then scale-out by adding new instances.

• If λ/ μR < (1−T) ⋅CR, then scale-in by reducing instances.

• Scaling formula:

Rnew=Rcurrent+round (λ−T⋅CR)/ μR

5. Latency and Response Time

• Total response time T_R is the sum of times taken at each

layer: TR=TF+TA+TD

• TF: Time taken at the frontend layer.

• TA: Time taken at the application (backend) layer.

• TD: Time taken at the data layer (database).

6. Caching Efficiency

• Let C_hit represent the cache hit rate, where: Chit = Cache

Hits/ Total Cache Accesses

• Data retrieval time T_D can be optimized as:

TD=Chit × Tcache + (1−Chit) × Tdatabase

where T_cache is the retrieval time from cache, and T_database

is the retrieval time from the database.

Algorithm

1) Presentation Layer:

• Step 1: User Request: A user initiates a request by

interacting with the frontend application (web or

mobile). This could be an HTTP request to access a

specific resource or perform an action (e.g., login, view

data).

• Step 2: Traffic Routing[15] via Load Balancer: The

request is received by the Application Load Balancer

(ALB), which is responsible for distributing the request

to the appropriate frontend pod running in Amazon EKS.

The ALB ensures that traffic is evenly distributed to

prevent overload on any single pod.

• Step 3: Secure Communication: The communication

between the client and the frontend layer is secured using

TLS/SSL to encrypt data in transit, ensuring privacy and

data integrity[21].

• Step 4: Frontend Processing: The frontend pod

processes the request, preparing data for presentation or

user interaction, such as calling backend services for

more complex operations or fetching data[16].

2) Application Layer:

• Step 1: API Call from Frontend: If the request requires

data processing or business logic, the frontend

communicates with the backend by calling an API

endpoint exposed by the backend services running in

the application layer[13]. These backend services are

encapsulated in Kubernetes pods.
• Step 2: Request Routing to Backend: The request is

routed to the correct backend pod using Kubernetes

services or an Ingress Controller, ensuring the proper

service endpoint is accessed.

• Step 3: Authentication & Authorization: The backend

services authenticate and authorize[18] the request using

credentials, tokens, or session data (e.g., JWT tokens),

ensuring the user has permission to access or modify the

requested data.

• Step 4: Business Logic Execution: The backend

service processes the request by executing business

logic, such as querying the database, performing

calculations, or triggering other processes[9].

• Step 5: Cache Lookup (Optional): Before making a

database call, the backend service checks the Amazon

ElastiCache (e.g., Redis or Memcached) for frequently

accessed data to reduce latency and avoid unnecessary

database queries.[8] If data is not found in the cache, the

backend proceeds to query the database layer.

• Step 6: Return Response to Frontend: Once the

backend service has completed its task (whether it's

retrieving data, performing calculations, or modifying

resources), it sends the response back to the frontend via

the API.

3) Data Layer:

• Step 1: Database Query: When the backend service

requires data, it makes a request to the database in the

data layer (e.g., Amazon RDS for SQL databases[23] or

Amazon DynamoDB for NoSQL databases).

• Step 2: Data Retrieval: The database layer processes the

query and retrieves the requested data, applying any

necessary security checks (e.g., IAM roles, VPC

peering, and security groups) to ensure secure access.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

• Step 3: Data Processing (Optional): If data

modification is required (e.g., inserting, updating, or

deleting records), the backend service sends the

modification request to the database. The database

handles transactions, ensuring data integrity,

consistency, and rollback capabilities if needed.

• Step 4: Data Caching (Optional): Frequently accessed

or critical data may be cached in Amazon ElastiCache[2]

to reduce load on the database and improve response

times.

• Step 5: Return Data to Backend: Once the data is

retrieved or modified, it is sent back to the application

layer (backend

services) for further processing or direct response to the frontend.

4) Overall Workflow:

• Step 1: User Interaction: The user interacts with the

frontend application, triggering a request.

• Step 2: Request Handling: The ALB[22] forwards the

request to the appropriate frontend pod.

• Step 3: Backend Processing: The frontend communicates

with backend services through APIs, which may involve

accessing the data layer for storage or retrieval of data.

• Step 4: Data Layer Interaction: The backend interacts with

the database to fetch, modify, or delete data.

• Step 5: Response Return: Once the backend processing is

complete, the data is sent back to the frontend, which then

presents it to the user.

IV. Result

Cloud computing not only creates issues but also advances

security. The improvement is demonstrated in three areas:

economic advancements, technological developments, and

security regulation strategies. Customers, service vendors, and

even government authorities should all have legitimate security

needs, according to the development of technical concepts. Both

cloud service providers and users have varied security

requirements. The deployment of the 3-tier application on AWS

using Amazon EKS successfully demonstrated the advantages of

cloud-native technologies and container orchestration for

modern application architecture. By leveraging Amazon EKS,

Docker, and Kubernetes, we achieved a scalable, fault-tolerant,

and automated system that efficiently manages containerized

services in a dynamic cloud environment.

Snapshots of Output

1. Successful Deployment of all 3 Tiers on AWS Server:

Fig.2 Successful Deployment of all tiers on AWS

2. Checking the status of running all the 3:

Fig.3 Checking the status of running of all three tiers

 GUI of the application after the deployment and

search on port 8080:

Fig.4 GUI of the running application after Deployment

3. After all the process successfully done the last step is of

garbage collection:

Fig.5 Garbage Collection after successful deployment

V. Conclusion

In conclusion, deploying a three-tier application architecture

on AWS using Amazon EKS provides a highly resilient,

scalable, and secure framework for supporting complex, user-

driven applications. This architecture divides the application

into three distinct layers—Web, Application, and Database

Tiers—each serving specific roles in user interaction,

business logic, and data storage. By running this structure on

Amazon EKS[1], we leverage Kubernetes' powerful

orchestration capabilities, enabling automatic scaling, load

balancing, and self-healing features that ensure continuous

availability and robust performance, even under high demand

or in cases of hardware failure. AWS’s extensive

infrastructure and services complement this by offering high

availability and multi-region redundancy, further minimizing

downtime and enhancing user experience. Automation and

efficiency are core benefits of this setup, with Infrastructure

as Code (IaC) facilitating easy, repeatable deployments and

environment provisioning. CI/CD pipelines streamline the

application lifecycle, from code integration to deployment,

allowing the team to deliver new features, updates, and fixes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

rapidly and consistently. Managed services like Amazon RDS

for the Database Tier offload significant operational tasks

such as backups, patching, and scaling, reducing manual

management requirements and freeing up resources to focus

on development[26]. AWS's comprehensive security

measures, combined with Kubernetes' network policies and

IAM roles, provide a multi-layered security approach that

protects the application, data, and infrastructure from

unauthorized access and potential vulnerabilities.

VI. Acknowledgement

We would like to express our special thanks of gratitude to

our guide Prof. Shikha Dwivedi for their able guidance and

support. We would also like to extend our gratitude to the

Principal Mr .R.D. Kanphade for providing us with all the

facilities that was required. We would also like to acknowledge

with much appreciation the role of our staff. We sincerely thank

our parents and our friends who have been always Helping and

encouraging us in every situation.

 file:///C:/Users/chakrmx2/Downloads/BTS%20Mobile%20

App% 20Security%20 Guidelines.pdf.

[12] https://www.stratoscale.com/blog/cloud/9-ways-cloud-

improves-productivity.

[13] Fig1: https://aws.amazon.com/blogs/apn/cloud-

deduplication- on-demand- storreduce-anapn-technology-

partner.

[14]

VII. References

[1] G. Aldering, G. Adam, P. Antilogus, P. Astier, R.

Bacon,S. Bongard, C. Bonnaud,

Y. Copin,D. Hardin, F. Henault, D.A. Howell, J. Lemonnier,

J. Levy, S.C. Loken, P.E. Nugent,R. Pain, A.Pecontal, E.

Pecontal, S. Perlmutter,R.M. Quimby, K.

 Schahmaneche, G. Smadja

andW.M.Wood-Vasey, Overview of the Nearby Supernova

Factory, in: TheSociety of Photo-Optical Instrumentation

Engineers (SPIE) Conference, J.A. Tyson and S. Wolff, eds,

Society of Photo-Optical Instrumentation Engineers(SPIE)

Conference Series, Vol. 4836, SPIE, Bellingham, WA, 2002,

pp. 61– 72.

[2] Amazon Web Services, http://aws.amazon.com.

[3] Amazon EBS, http://aws.amazon.com/ebs.

[4] Amazon EC2, http://aws.amazon.com/ec2.

[5] Amazon S3, http://aws.amazon.com/ebs/s3.

[6] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A.

McKenney,

J. Du Croz, S. Hammarling,J. Demmel, C. Bischof and D.

Sorensen, LAPACK: a portable linear algebra library for

highperformance computers, in: Proceedings of

Supercomputing’ 90, IEEE, New York, NY, 2002,pp. 2–11.

[7] C. Aragon, S. Poon, G. Aldering, R. Thomas and R.

Quimby, using visual analytics to develop situation awareness in

astrophysics, Information Visualization 8(1) (2009), 30–41.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski,G. Lee, D. Patterson, A.Rabkin, I. Stoica et al.,

Above the clouds: a Berkeley view of cloud computing,

Technical Report UCB/EECS-2009-28, EECS Department,

University of California, Berkeley, CA, 2009.

[9] CFIT

SIO,

http://heasarc.nasa.gov/docs/software/fitsio/fitsio.html.

[10] http://www.klientsolutech.com/importance-of-

cloud- computing-worldwide.

[11] https://www.itproportal.com/2013/05/02/top-10-tips-why-

you- should-use-the- cloud-andhow-to-do-it-securely.

Fig2:https://docs.aws.amazon.com/storagegateway/latest/us

ergu ide/StorageGatew ayConcepts.html

[12] https://aws.amazon.com/choosing-a-cloud-

platform/#content_distribution

[13] Fig3: https://aws.amazon.com/backup.

[14] Fig4: https://aws.amazon.com/blogs/big-data/automating-

analytic-workflows-on- aws.

[15] Fig5: https://aws.amazon.com/blogs/architecture/optimizing-

a- lift-and-shift-for- cost.

[16] Fig7: https://aws.amazon.com/autoscaling.

[17] Fig 8 & 9:

https://media.amazonwebservices.com/AWS_Disaster_Recov

ery. pdf

[18] Mukherjee, S. (2019). How IT allows E-Participation in

Policy- Making Process. arXiv preprint arXiv:1903.00831.

[19] Mukherjee, S. (2019). Popular SQL Server Database

EncryptionChoices:preprint

[20]

http://www.ijsrem.com/
http://www.stratoscale.com/blog/cloud/9-ways-cloud-
http://aws.amazon.com/
http://aws.amazon.com/ebs
http://aws.amazon.com/ec2
http://aws.amazon.com/ebs/s3
http://heasarc.nasa.gov/docs/software/fitsio/fitsio.html
http://www.klientsolutech.com/importance-of-cloud-
http://www.klientsolutech.com/importance-of-cloud-
https://www.itproportal.com/2013/05/02/top-10-tips-why-you-should-use-the-
https://www.itproportal.com/2013/05/02/top-10-tips-why-you-should-use-the-
https://www.itproportal.com/2013/05/02/top-10-tips-why-you-should-use-the-

