DESIGN AND ANALYSIS OF THE PISTON USING COMPOSITE MATERIALS LIKE AA7275 STRUCTURAL AND THERMAL ANALYSIS DONE IN ANSYS SOFTWARE

S. Karthik¹, V. Dinesh², V. Yaswanth³ K.Sivanarayana⁴, K. Ravindra⁵

1,2,3,4,B. Tech Final Year Students, Dept of Mechanical Engineering, Visakha Institute of Engineering and Technology. ⁵ Asst.professor, Dept of Mechanical Engineering, Visakha Institute of Engineering and Technology. ***

INTRODUCTION

Abstract – This project focuses on the design and analysis of a piston utilizing composite materials, particularly AA7275, to enhance structural integrity and thermal efficiency. The study employs ANSYS software to conduct comprehensive structural and thermal analyses. The structural analysis evaluates the mechanical behavior, stress distribution, and deformation characteristics of the piston under varying operating conditions. Meanwhile, the thermal analysis investigates the heat transfer mechanisms, temperature distribution, and thermal stress accumulation within the piston. By integrating composite materials and utilizing advanced simulation techniques, this project aims to optimize the performance and reliability of the piston, contributing to advancements in engine technology.

ANSYS software facilitates Multiphysics simulations, allowing engineers to study the interactions between different physical phenomena such as structural mechanics, fluid dynamics, electromagnetics, and thermal effects. Its robust solvers and algorithms enable accurate prediction of system behavior under various operating conditions, helping engineers optimize performance, reliability, and efficiency. Moreover, ANSYS provides a range of specialized modules tailored to specific industries and applications, including automotive, aerospace, electronics, healthcare, and renewable energy. These modules incorporate domainspecific features and workflows, empowering engineers to address industry- specific challenges and design requirements effectively. Recent advancements in ANSYS software include enhanced computational capabilities, improved user interfaces, and integration with emerging technologies such as artificial intelligence and additive manufacturing. These developments enable engineers to accelerate the design iteration process, reduce time-tomarket, and achieve superior product performance. Furthermore, ANSYS supports collaborative engineering workflows through its integration with product lifecycle management (PLM) and computer-aided design (CAD) software. This integration facilitates seamless data exchange between design, simulation, and manufacturing teams, ensuring consistency and accuracy throughout the product development lifecycle.

KEY WORDS : AA7275; Piston; Structural integrity and Thermal Efficiency; Structural analysis; ANSYS; CAD.

In every engine, piston plays an important role in working and producing results.Piston forms a guide and bearing for the small end of connecting rod and also transmits the force of explosion in the cylinder, to the crank shaft through connecting rod. The piston is the single, most active and very critical component of the automotive engine. The Piston is one of the most crucial, but very much behindthe-stage parts of the engine which does the critical work of passing on the energy derived from the combustion within the combustion chamber to the crankshaft. Simply said, it carries the force of explosion of the combustion process to the crankshaft. Apart from the critical job that it does above, there are certain other functions that a piston invariably does -- It forms a sort of a seal between the combustion chambers formed within the cylinders and the crankcase. The pistons do not let the high pressure mixture from the combustion chambers over to the crankcase

FIG 1.1 PISTON

MATERIALS FOR THE PISTON

Cast Iron, Aluminum Alloy and Cast Steel etc. are the common materials used for piston of Internal Combustion Engine.Cast Iron pistons are not suitable for high speed engines due its more weight. These pistons have greater strength and resistance wear. The Aluminum Alloy Piston is lighter in weight and to enables much lower running temperatures due to its higher thermal conductivity. The coefficient of expansion of this type of piston is about20% less than that of pure aluminum piston but higher than that of cast iron piston and cylinder wall. To avoid seizure because of higher expansion than cylinder wall, more piston clearance required to be provided. It results in piston slap after the engine is started but still warming up andtends to separate the crown from the skirt of the piston. Cutting a vertical slot will avoid this disadvantage. This slot helps in taking up thermal expansion and so the overall diameter of the piston is not required to be so reduced as to obstruct the safe operation the pistons. To between the cylinder walls and increase the life of grooves and to reduce the

wear, a ferrous metal rings are inserted in the grooves of high speed engines.

DESIGN OF PISTON

For items in a variety of applications, including aerospace equipment, medical devices, semiconductors, vehicles, tools, and dies, among others, a highquality surface with a low value of surface roughness and high dimensional accuracy is needed. The production of components with complicated shapes for various applications requires the use of sophisticated materials, such as alloys of hard materials, glass, ceramics, and composite materials. These materials are challenging to finish because of their extreme hardness and toughness, as well as the goods' intricate shapes. The finishing process is the last step in the manufacture of components, and it accounts for around 15% of the overall production expense. Abrasive finishing is a method for precision surface finishing that shows promise. In order to complete the intricate shapes shows promise.

MATERIALS FOR MANUFACTURING PISTONS

A workpiece holder, an abrasive suspension tank, and Aluminium alloys give light pistons and for better heat dissipation, aluminium alloys are the ideal materials due to their very high thermal conductivity. Aliminium is 3 times lighter than cast iron. Its strength is good at low temperatures but is looses about 50% of its strength at temperatures above about 320 c .Its expansion is about 2 1/2 times that of cast iron and the resistance to abrasion is low at hight temperatures. However these disadvantageous properties of aluminium have now been ever come by alloying it with other materials and by developing advanced designs of pistons. The split skirt, T-sotted as well as cam ground, oval sectioned pistons made from aluminium alloys are mostly used which can be tightly fitted into the cylinder born to eliminate -piston slap||. A coating of aluminium oxide or tin on aluminium alloys pistons has been found to be protective against -scuffing|| or -partial seizure|| during running in after overhaul.

For a cast iron piston the temperature at the centre of the piston head (Tc) is about 425c to 450c under full load conditions and the temperatures at the edges of the piston head (Tb) is about 200c to 225c.

For aluminium alloy piston, Tc is about 260c to 290c and Te is about 185c to 215 $\,$

Since the aluminium alloys are about*** three times lighter than cast iron, Therefore its mechanical strength is good at low temperatures, but they lose their strength(about 50%) at temperatures above 325c.

2.1 DESIGN CALCULATIONS OF PISTON Pressure Calculation Suzuki GS 150 R specifications Engine type_: air cooled 4-stroke SOHC Bore \times stroke(mm) = 57 \times 58.6 Displacement =149.5CC Maximum power = 13.8bhp @8500rpm Maximum torque = 13.4Nm @ 6000 rpm Compression ratio =9.35/1 Density of petrol C₈H₁₈ = 737.22 kg/mt 60F = 0.00073722 kg/mt³= T = 60F =288.855K =15.55%C Mass = density \times volume

 $m = 0.00000073722 \times 149500$ m = 0.11 kgmolecularcut, for petrol 144.2285 g/mole PV = mRT $P = \frac{mRT}{v} = \frac{0.11+3.143 \times 234.555}{0.11422 \times 0.0001495} = \frac{263.9}{0.00001707}$ $P = 15454538.533 \text{ j/m}^3 = n/m^2$ $P = 15.454 \text{ N/mm}^2$ Mean effective pressure $P_m = \frac{Tat}{v_d} \times 2\pi$ $= \frac{13.422\times 2.3.14}{149.5}$ Indicated power $IP = \frac{P_m \times |x| \times A \times n}{60} = \frac{P_m \times |x| \times N^2 \times 2\pi}{60} = \frac{1.12 \times 58.6 \times 3.14 \times 57^3 \times 4}{4 \cdot 60} = 11217.05 \text{ kw}$ Brake power $BP = \frac{2mNT}{60} = \frac{2\pi \cdot 4000 \times 13.4}{60} = 8415.2$ Mechanical efficiency $\eta_{merc} \equiv \frac{BP}{6} = \frac{9415.2}{6} = 0.75 = 75\%$

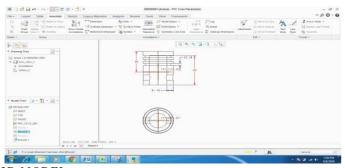
IP 11217.05

2.1 DESIGN CALCULATIONS OF PISTON

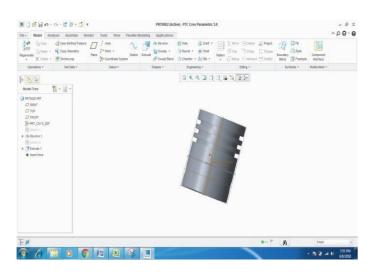
Pressure Calculation Suzuki GS 150 R specifications Engine type : air cooled 4-stroke SOHC Bore \times stroke(mm) = 57 \times 58.6 Displacement =149.5CC Maximum power = 13.8bhp @8500rpm Maximum torque = 13.4Nm @ 6000 rpm Compression ratio =9.35/1 Density of petrol $C_8H_{18} = 737.22 \frac{k_2}{m^3} at 60F$ = 0.00073722 kg/cm3 = 0.00000073722 kg/mm³ⁿⁱ T = 60F =288.855K =15.55°C Mass = density × volume m = 0.00000073722× 149500 m = 0.11kg molecularcut for petrol 144.2285 g/mole PV = mRT $\mathbf{P} = \frac{mRT}{V} = \frac{0.11 \times 8.3143 \times 288.555}{0.11422 \times 0.0001495} = \frac{263.9}{0.00001707}$ P = 15454538.533 j/m³ = n/m² P =15.454 N/mm2 Mean effective pressure $P_m = \frac{Tmr}{T} \times 2\pi$ $=\frac{13.4\times2\times2\times3.14}{2}$ 149.5 = 1.12Indicated power IP = $\frac{P_n \times l \times A \times n}{60}$ = $\frac{P_n \times l \times n \times D^2 \times n}{60}$ = $\frac{1.12 \times 58.6 \times 3.14 \times 57^2 \times 4}{4 \times 60}$ = 11217.05 kw 60 Brake power BP = $\frac{2\pi NT}{60} = \frac{2\pi \times 6000 \times 13.4}{60} = 8415.2$ Mechanical efficiency $\eta_{mec} = \frac{BP}{2} = \frac{.8415.2}{.2} = 0.75 = 75\%$ IP 11217.05

Material – Aluminum Alloy A360

Volume: 08 Issue: 04 | April - 2024

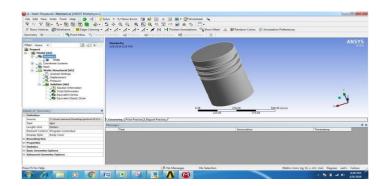

SJIF Rating: 8.448 ISSN: 2582-3930

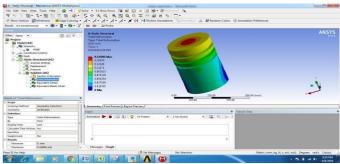
Temperature at the center of piston head $T_{\rm c}$ = 260 $^{\rm o}c$ to 290 $^{\rm o}c$ Temperature at the edge of piston head \mathbb{J}_{e} = 185°c to 215°c Maximum gas pressure p = 6N/mm² Bore or outside diameter of piston = 57mm 1. Thickness of piston head $t_{\rm h}=\sqrt{\frac{3p~D^2}{16\,\sigma_t}}$ a_t = 317Mpa 3×15.454 ×57² 16×317 $t_b = c$ $t_{\rm h}=\sqrt{29.6983}$ = 5.45mm Considering heat transfer $t_h = (\begin{array}{c} \Box \\ 12.56k (t_r - \underline{t}) \end{array})$ at conductivity force = 174.75w/m/⁰c $T_{c} - T_{c} = 75^{\circ}c$ $\mathbf{H}=\mathbf{C}{\times}\mathbf{H}\mathbf{C}\mathbf{V} \times \mathbf{m} \times \mathbf{B}.\mathbf{P}(\mathbf{in} \ \mathbf{K}\mathbf{W})$ C = constant = 0.05 $HCV = 47 \times 10^{3} KJ/kg$ for petrol m = mass of fuel for brake power per second BP = brake power $H = C_{>}HCV \times \bigoplus_{BP} BP$


$\begin{array}{c} & & \\ H = 0.05 \times 47 \times 10^3 \times 0.11 \\ H = 258.5 \\ t_h = (\underbrace{-}_{12.54k} \underbrace{-}_{12.54k} \underbrace{-}_{12.5$

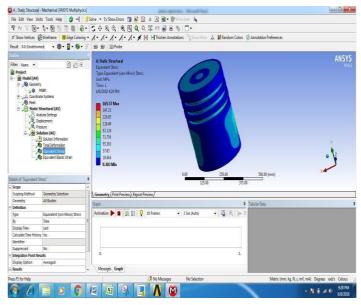
 $t_h = 258.5 \underline{/(12.56 \times 174.75 \times 75)}$

COMPUTER-AIDED DESIGN (CAD) USING 2D MODEL

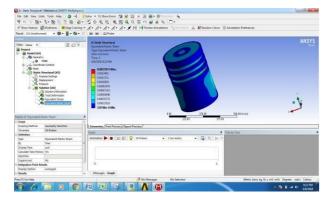

3D MODEL

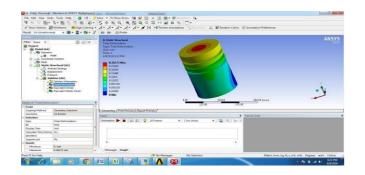

STATIC ANALYSIS OF DIESEL ENGINE

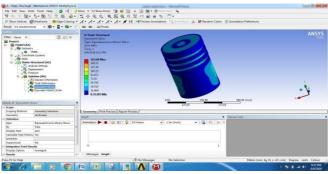
PISTON ALUMINUM ALLOY 7475


Young's modulus	=	68.940 GPa
Poisson's ratio	=	0.329
Density	=	2751kg/ mm ³
Thermal conductivity	=	225.3w/m -k

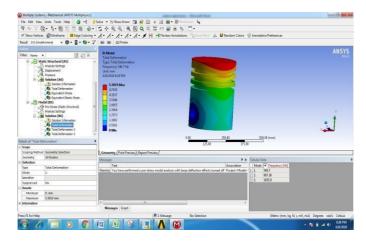
CREO Model of Aluminum Alloy 7275


CREO Model of Material – Cast Iron Total Deformation

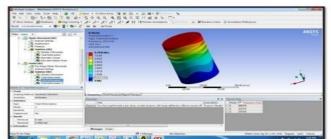

CREO Model of Material – Cast Iron Von-Mises Stress


ISSN: 2582-3930

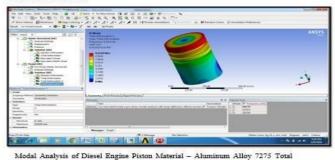
CREO Model of Material - Cast Iron Von-Mises Strain



CREO Model of Material - Aluminum Alloy 7275 Total Deformation

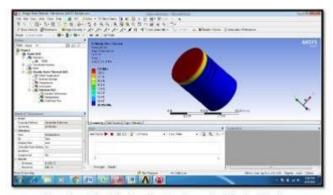


CREO Model of Material - Aluminum Alloy 7275 Von-Mises Stress

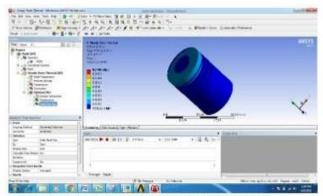

MODAL ANALYSIS OF DIESEL ENGINE PISTON MATERIAL -CAST IRON

Total Deformation

Modal Analysis of Diesel Engine Piston Material – Alumi m Allov 7275 TotalDeform ion 2 2 Total Deformation 3


Deformation 3.

Modal Analysis of Diesel Engine Piston Material - Cast Iron Total Deformation 1


47

MATERIAL – ALUMINUM ALLOY 7275

THERMAL ANALYSIS OF DIESEL ENGINE PISTON

Thermal analysis of diesel engine piston temperature behavior of cast iron

Thermal analysis of diesel engine piston heat flux behaviour of cast iron

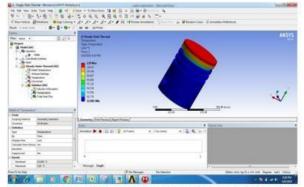


Fig. 6.3 Thermal analysis of diesel engine piston temperature behaviour of aluminum alloy 7275 HEAT FLUX

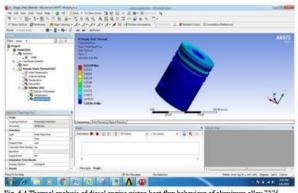


Fig. 6.4 Thermal analysis of diesel engine piston heat flux behaviour of aluminum alloy 7275

44

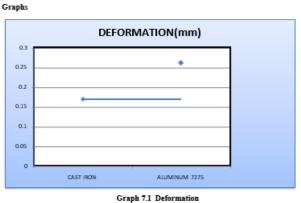
RESULT

RESULT TABLES

Table -7.1 STATIC ANALYSIS MATERIAL DEFORMATION(m STRESS(N/mm2) Strain m) CAST IRON 0.16906 165.57 0.0015047 ALUMINUM 0.26172 163 68 0.0023182 ALLOY 7275

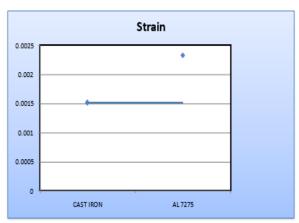
-	1
-T-	L
T	L
<u> </u>	

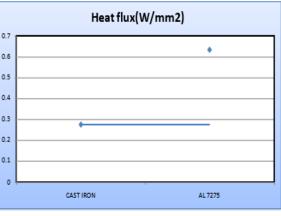
Table -7.2 MODAL ANALYSIS


MATERIAL	frequency	deformation1	frequency	deformation2(mm	frequency	deformatio
	(hz)		(hz))	(bz)	n
		(mm)				3(mm)
CAST IRON	546.7	5.3919	989.36	5.4786	1655.9	5.946
ALUMINU	696.54	8.6726	1272.4	8.7958	2113.8	9.6318
MALLOY						
7275						


7.3 THERMAL ANALYSIS

MATERIAL	AL Temperature (0C)		Heat flux(W/mm ²)	
	MIN	MAX		
CAST IRON	31.859	129	0.27468	
ALUMINUM ALLOY 7275	32.001	129	0.6339	


45



Strain

c.

CONCULSION

A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gastight by piston rings. The piston transforms the energy of the expanding gasses into mechanical energy. The piston rides in the cylinder liner or sleeve. Pistons are commonly made of aluminum or cast iron alloys. The main aim of the project is to design a piston for two composite materials cast iron&aluminum 7275. The design of the piston is modeled using CREO parametric software.By observing the static analysis the deformation increase and stress will decrease for aluminum alloy 7275 material. By observing the modal analysis the deformation increases for magnesium aluminum alloy 7275 material and by observing the thermal analysis the heat flux value more for aluminum alloy 7275. So it can be concluded the aluminum alloy 7275 material is the better h. material for pistion.

REFERENCES

- a. Microsoft Encarta Premium, Piston, WA: Microsoft Corporation, 2009.
- b. T.McNish, Piston Manufacturing Process, http://www.ehow.com/pistonproduction.html, February 20, 2007.
- d. T. Garrett, K. Newton, and W. Steeds, The Motor Vehicle, Reed Educational and Professional Publishing Ltd., Jordan Hill, Oxford, 2001.
- T. Jaana and S. Carl-Erik, -Piston Ring Tribology: A e. literature survey, Espoo 2002. VTT Tiedotteita-Research Notes. December, 2002, Pp. 105.
- P. C. Sharma, A Textbook of Production Technology, S. Chand f. & CompanyLTD. New Delhi 110055, 2007.
- K. Steve and G. Arthur. Computer Numerical Control Basics. g. Industrial Press Inc., 200 Madison Avenue, New York, 2009.
- E. P. Degarmo, J. K. Black and R. A.Kohser, Materials and Process in Manufacturing, Wiley; ISBN 0-471-65653-4, 2003.
- i. K. Chris and J. S. Baek, -Modern Machine Shop, International journal of refrigeration, Vol. 28, pp. 141- 151, May, 2012.

K. Derek, -Reverse Engineering in Fabrication of Piston Crown, Eurojournals publishing Inc, Vol. 15, pp29-32, January 2009