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Abstract - This paper explores software defects as an 

inherent aspect of software products, significantly impacting 

software quality. Defects, often deviations from 

specifications, can lead to functionality failures. Ensuring 

software quality assurance is complex and time-consuming, 

with many projects lacking sufficient resources to eliminate 

all defects before release. This can affect product quality and 

an organization's reputation. To address this challenge, 

various techniques for software defect prediction are 

employed. This research utilizes pre-processing, feature 

extraction, and classification methods. A hybrid approach 

integrating a genetic algorithm with PSO is used for feature 

extraction, while bagging classification generates final results. 

Three ensemble classifiers are implemented, and 

incorporating PCA for feature reduction further enhances 

accuracy. Additionally, addressing the class imbalance 

problem improves prediction performance, achieving 93% 

accuracy. This study provides an effective approach to 

software defect detection, contributing to improved software 

quality and reliability. 
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1.INTRODUCTION  

The rapid advancements in information technology have 

fueled an increasing demand for enhanced software 

functionality, leading to larger software systems and a higher 

incidence of defects. These defects not only compromise 

software functionality but also result in significant financial 

losses. As a result, software defect prediction has become a 

crucial aspect of software development, aiming to identify 

potential errors before deployment. There are two primary 

approaches to software defect prediction: static defect 

prediction and dynamic defect prediction. Static defect 

prediction analyzes the relationship between software defects 

and attributes such as code complexity and size to forecast 

potential issues. Over time, defect distribution models and 

prediction algorithms have been developed based on software 

metrics. In contrast, dynamic defect prediction examines 

defects over time, using statistical models like the Rayleigh 

distribution to analyze defect trends throughout the software 

lifecycle. 

 

Figure 1.1 Software defects prediction model 

Software defects not only lead to wasted resources but can 

also cause severe failures in deployed systems. Detecting and 

addressing defects early in the Software Development Life 

Cycle (SDLC) is essential for ensuring high-quality and 

reliable software. Static defect prediction involves designing 

software metrics based on code analysis, mining historical 

data, and building models to classify software modules as 

either defective or non-defective. The goal is to improve 

software quality by optimizing test resource allocation. In 

recent years, machine learning has significantly advanced 

static defect prediction. Various machine learning algorithms 

are used to classify software modules (binary classification) or 

predict the number of defects (regression analysis). 

 

Figure 1.2: Software Defect Prediction Techniques 
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The software defect prediction process consists of several 

stages. First, essential information about software, such as 

code and development processes, is collected to establish 

relevant metrics. However, raw data often contains 

imbalances, outliers, and missing values, requiring extensive 

pre-processing. This includes handling missing values, 

detecting outliers, and normalizing data. Proper data cleaning 

and pre-processing improve the dataset’s quality, ensuring 

accurate defect prediction. Additionally, feature selection or 

dimensionality reduction is necessary to eliminate redundant 

or highly correlated attributes, enhancing model efficiency. 

The next step involves training a classification model based 

on labeled data. The classifier is trained using validation data, 

adjusting parameters to optimize performance. In the final 

phase, the trained model predicts defects in new software 

modules.  

 

Figure 1.3: A class node C with n attributes 

Classification-based methods apply algorithms to training 

data, learning patterns that are then validated using cross-

validation techniques. One widely used method in defect 

prediction is the Bayesian network, a probabilistic graphical 

model that represents relationships between variables through 

a directed acyclic graph (DAG). Each node represents a 

variable, while edges encode conditional dependencies. The 

Naïve Bayesian classifier, a specialized Bayesian network, 

assumes conditional independence between features given the 

class label. Despite its simplicity, this model delivers strong 

performance in real-world applications due to its efficiency in 

probabilistic inference. 

 

Figure 1.4: An artificial neural network with a 4-node input 

layer, 5 node hidden layer, and 1 node output layer 

Another powerful approach is Artificial Neural Networks 

(ANNs), inspired by biological neural networks. ANNs 

consist of interconnected nodes (neurons) arranged in layers, 

with weighted connections representing information flow. In 

feed-forward neural networks, neurons are structured into an 

input layer, hidden layers, and an output layer. These models 

use activation functions, such as the sigmoid function, to 

process inputs and compute output probabilities. The most 

common learning algorithm for ANNs is backpropagation, 

which adjusts connection weights based on error gradients to 

improve classification accuracy. 

Overall, software defect prediction plays a critical role in 

ensuring software quality by leveraging machine learning 

techniques to detect and mitigate defects early in 

development. Continuous advancements in machine learning 

models, data preprocessing strategies, and feature selection 

techniques contribute to more accurate and reliable defect 

prediction, ultimately leading to higher-quality software 

systems. 

2. Literature Review 

Recent studies have proposed various machine learning and 

deep learning techniques for software defect prediction. J. Lee 

et al. (2022) introduced a Cost-Sensitive Decision Tree using 

Harmony Search (HS-CSDT) to optimize defect prediction 

metrics. J. Deng et al. (2020) developed a Multi-Kernel 

Transfer CNN (MKT-CNN) for extracting semantic features 

from Abstract Syntax Trees (ASTs) to predict Cross-Project 

Defects. L. Šikić et al. (2022) designed a Graph Convolutional 

Neural Network (GCNN) framework for defect classification 

in Java projects. Other models include hybrid machine 

learning with Genetic Algorithms (Chennappan et al., 2023), 

Federated Reinforcement Learning (Wang et al., 2022), and 

Transformer-based self-attention models (Zheng et al., 2021). 

ALTRA, integrating Active Learning and TrAdaBoost, was 

proposed by Yuan et al. (2020), while Yang et al. (2023) 

introduced a method-level defect prediction using network 

embedding. Finally, Rahim et al. (2021) suggested a cost-

effective approach combining Naïve Bayes and Linear 

Regression, achieving 98.7% accuracy. The reviewed studies 

highlight advancements in software defect prediction using 

diverse machine learning and deep learning techniques. 

Approaches like HS-CSDT, MKT-CNN, GCNN, and ALTRA 

optimize feature selection, semantic extraction, and defect 

classification. Hybrid models integrating Genetic Algorithms, 

Reinforcement Learning, and Transformer-based techniques 

further enhance predictive accuracy. Methods such as 

node2vec-based embedding and correlation-based ML models 

improve software quality by early fault detection. Overall, 

these techniques outperform traditional methods in accuracy, 

efficiency, and robustness, ensuring better defect prediction 

and allocation of quality assurance resources in software 

development. 
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3. Research Methodology 

The proposed methodology is designed using multiple 

algorithms, including Random Forest (RF), Gaussian Naïve 

Bayes (GNB), Bernoulli Naïve Bayes, and Decision Tree 

(DT). This study introduces an ensemble algorithm for 

software defect prediction by integrating GNB, Bernoulli NB, 

RF, and Multi-Layer Perceptron (MLP). Finally, Principal 

Component Analysis (PCA) is applied for feature extraction. 

The employed algorithms are detailed as follows: 

3.1 Multilayer Perceptron 

It is a simple kind of Feed-forward network (FFN). More than 

one perceptron is involved in this algorithm. The outcome 

generated from one perceptron is fed into the next one as 

input. Furthermore, the state of a neuron is evaluated using a 

nonlinear function. Figure 3 represents a general framework 

of Multilayer Perceptron algorithm. 

 

Figure 3.1: Multilayer Perceptron 

In the given figure: 

𝑎𝑖= activity of the 𝑖th unit. 

𝑎𝑜=1: activity of 1 of the bias unit 

𝑤𝑖𝑗= weight from unit j to unit 𝑖 

𝑤𝑖𝑜= = 𝑏𝑖 : bias weight of unit 𝑖 

W: number of weights 

N: number of units 

I: number of inputs units (1 ≤ 𝑖 ≤ 𝐼) placed in the first layer 

called the input layer 

O: number of output units (𝑁 − 𝑂 + 1 ≤ 𝑖 ≤ 𝑁) available in 

the last layer called the output layer 

M: number of hidden units  (𝐼 < 𝑖 ≤ 𝑁 − 𝑂) present in the 

hidden layers. 

L: number of layers, at which  𝐿𝑣 illustrates the index set of 

the 𝑣𝑡ℎ layer; 𝐿1 = {1, … . , 𝐼} and 𝐿1 = {𝑁 − 𝑂 + 1, … . . , 𝑁} 

𝑛𝑒𝑡𝑖 : network input to the 𝑖th unit (I <𝑖) calculated as: 

𝑛𝑒𝑡𝑖 = ∑

𝑁

𝑗=0

𝑤𝑖𝑗𝑎𝑗  

f: activation function with 

𝑎𝑖 = 𝑓(𝑛𝑒𝑡𝑖) 

A number of activation functions (AFs) 𝑓𝑖 are defined for 

distinct units. AF is also called the transfer function. 

A FF-MLP has only links which are taken from units in lower 

layers to units of higher ones: 

𝑖 ∈ 𝐿𝑣 𝑎𝑛𝑑 𝑗 ∈ 𝐿𝑣′  𝑎𝑛𝑑 𝑣′ ≤ 𝑣 ⇒  𝑤𝑖𝑗 = 0 

The tradition algorithm is consisted of only connections or 

weights amongst consecutive layers. The value assigned to 

other weights is 0. Afterward, the network input is taken in 

account for node 𝑖  in hidden or output layer ν in which ν > 1. 

∀𝑖𝜖𝐿𝑣
: 𝑛𝑒𝑡𝑖 = ∑

𝑁

𝑗:𝑗𝜖𝐿𝑉=1

𝑤𝑖𝑗 𝑎𝑗  

Non-adjacent connections among units, present in layers are 

known as shortcut connections. 

Activation Functions 

Sigmoid function is a major kind of AFs. The logistic function 

is expressed as: 

𝑓(𝑎) =
1

1 + 𝑒𝑥𝑝 (−𝑎)
 

and tanh AF is defined below in given equation:  

𝑓(𝑎) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑎)  =
𝑒𝑥𝑝 𝑒𝑥𝑝 (𝑎)  − 𝑒𝑥𝑝 (−𝑎)

𝑒𝑥𝑝 𝑒𝑥𝑝 (𝑎)  + 𝑒𝑥𝑝 (−𝑎)
 

3.2 Bernoulli Naive Bayes 

This algorithm aims to train Naïve Bayes (NB) and 

classification models are included in this algorithm for 

distributes data with regard to multivariate Bernoulli 

distributions. It implies the availability of a variety of 

http://www.ijsrem.com/
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attributes. In addition, each attribute is employed as a binary-

valued variable. Hence, there is necessity of samples for the 

class which are utilized as binary-valued feature vectors. This 

algorithm is responsible for binarizing its input when it 

handles other type of data.  Its decision rule is expressed as: 

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)) (1 − 𝑥𝑖) 

Unlike the multinomial NB’s rule, this rule is executed to 

penalize the non-occurrence of attribute i and this attribute is 

considered as an indicator for class 𝑦. The multinomial variant 

doesn’t consider this attribute. Bernoulli Naive Bayes is 

simulated and trained on the basis of word occurrence vectors 

to classify the text. On some data sets of smaller documents, 

this algorithm offers efficiency. The major task is of 

computing the frameworks concerning time.    

3.3. Gaussian Naive Bayes 

The Gaussian distributions is implemented in the Naive Bayes 

(NB) algorithm for handling the continuous features in order 

to illustrate the likelihoods of the features related to the 

classes. Therefore, a Gaussian PDF assists in defining every 

feature as: 

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2) 

The shape of Gaussian probability density function is similar 

to a bell and it can be defined mathematically as: 

𝑁 (𝜇, 𝜎2)(𝑥) =
1

√2𝜋𝜎2
𝑒 −

(𝑥 − 𝜇)2

2𝜎2
 

In which, 𝜇 is used to signify the mean and 𝜎2 defines the 

variance. The parameters employed in NB model must be 

available as 𝑂(𝑛, 𝑘) in which n is total features and the 

amount of classes is illustrated with 𝑘. In particular, every 

continuous feature has a normal distribution 𝑃(𝑋𝑖 ∖ 𝐶) ∽

𝑁(𝜇, 𝜎2). The metrics of these normal distributions are 

expressed as 

𝜇
𝑋𝑖|𝐶=𝑐

=
1

𝑁𝑐

∑

𝑁𝑐

𝑖=1

𝑥𝑖  

𝜎2
𝑋𝑖|𝐶=𝑐 =

1

𝑁𝑐

∑

𝑁𝑐

𝑖=1

𝑥𝑖
2 − 𝜇2 

In which, 𝑁𝑐 is used to denote the amount of instances in 

which 𝐶 is equal to c and 𝑁 denotes the total instances 

available to train the data. The relative frequencies are 

assisted in computing the 𝑃(𝐶 = 𝑐)for all the classes as: 

𝑃(𝐶 = 𝑐) =
𝑁𝑐

𝑁
 

3.4 Random forest 

It is considered as an ensemble system. The notion, related to 

develop a tiny decision tree (DT) on the basis of some 

features, is considered. This algorithm consumes least cost. 

The trees are combined after creating various small and weak 

DTs in parallel so that a single and strong learner is developed 

subsequent to achieve the majority votes. This algorithm is 

presented as an effective learning method of superior accuracy 

in the training stage. 

Particularly, RF is a predictive tool in which diverse 

randomized base regression trees are implemented as 

{𝑟𝑛(𝑥,⊝𝑚, 𝐷𝑛), 𝑚 ≥ 1}, here, ⊝1,⊝2 …. have not any 

association among one another. This algorithm employs 

Regression Trees for creating the aggregated regression 

estimate as: 

𝑟𝑛(𝑋, 𝐷𝑛) = 𝐸⊝[𝑟𝑛(𝑋,⊝, 𝐷𝑛)], 

This equation contains 𝐸⊝ to represent the expectation with 

random metric, that is conditioned on 𝑋 and the data set 𝐷𝑛. 

This algorithm aims to exclude the dependency of the 

estimates in the sample to alleviate a notation, and to write it 

for defining 𝑟𝑛(𝑋) rather than 𝑟𝑛(𝑋, 𝐷𝑛). In particular, the 

above expression is quantified on the basis of Monte Carlo. 

For this, the random trees are extracted and the average of the 

individual outcomes are taken into consideration. The 

efficiency of consecutive cuts is computed with respect to 

randomizing variable ⊝. Random Forest algorithm 

emphasizes on creating the trees individually for selecting the 

coordinate so that the split and its position are comprised. The 

variable ⊝ is used to define an independent variable 𝑋 and 

𝐷𝑛is the training sample. 

3.5 Principal Component Analysis 

It is a statistical method which is effective to alter the group of 

consistent elements into a set of linearly unconnected subsets 

which are depending on a conversion, and the uncorrelated 

variables are generated using this method. This method is also 

called as an orthogonal linear transformation (LT) and its 

implementation is done to project the primary dataset with 

another projection system. The projection of the 1st coordinate 

is considered in the largest variance, and a projection of the 

2nd one is kept in the 2nd largest variance. This algorithm helps 

in locating the LT as 𝑧 = 𝑊𝑘
𝑇 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑥 ∈  𝑅𝑑, and 𝑟 < 𝑑, 

and enhancing the variance of the data within the projected 

space. The 𝑋 = {𝑥1, 𝑥2, … … . . , 𝑥𝑖}, 𝑥𝑖 ∈  𝑅𝑑, 𝑧 ∈  𝑅𝑟  and 𝑟 <

𝑑  is utilized to denote the data matrix and a set of p-

dimensional vectors of weights 𝑊 = {𝑤1, 𝑤2, … … . . , 𝑤𝑝}, 

http://www.ijsrem.com/
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𝑤𝑝 ∈  𝑅𝑘 are considered for defining the transformation that 

contains every 𝑥𝑖vector of X’s matching with 

𝑡𝑘(𝑖) = 𝑊|(𝑖)𝑇𝑥𝑖
 

For maximizing the variance, an initial weight 𝑊1 must have 

to satisfy a condition: 

𝑊𝑖 = 𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 
|𝑤|

= {∑

𝑖

(𝑥𝑖 ∙ 𝑊)2} 

This condition is further expanded as:  

𝑊𝑖 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 ‖𝑤‖=1
{‖𝑋. 𝑊‖2

}

=𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥‖𝑤‖=1 {𝑊𝑇𝑋𝑇𝑋𝑊} 

This algorithm aims to analyse a symmetric grid 𝑋𝑇𝑋 

successfully after attaining the chief eigen value of the matrix 

as 𝑊. Subsequent to generate𝑊1, this algorithm focuses on 

projecting the primary data matrix 𝑋 projected onto the 𝑊1 in 

the space for assuming the preliminary PC in the conversion. 

This results in attaining the additional segments along these 

lines after the subtraction of the newly attained components. 

 

Figure 3.2: Proposed Methodology 

4. Result and Discussion 

This work the primary objective of this study is to analyze and 

implement the “CM1/Software Defect Prediction” dataset 

from the PROMISE SE Repository, containing 498 records 

and 22 features. Various machine learning models, including 

Bernoulli Naïve Bayes (BNB), Gaussian Naïve Bayes (GNB), 

Random Forest (RF), Decision Tree (DT), Multi-Layer 

Perceptron (MLP), and Support Vector Machine (SVM), were 

applied for software defect prediction. Individual classifiers 

were first evaluated, followed by ensemble models integrating 

BNB, GNB, RF, and MLP. 

 

Figure 4.1: Class Balancing with Ensemble 1 Classifier 

This figure 4.1 represents the class balancing approach 

applied to Ensemble 1 classifier, which consists of four 

classifiers: Gaussian Naïve Bayes (GNB), Bernoulli Naïve 

Bayes (BNB), Random Forest (RF), and C4.5. Class 

balancing ensures that the dataset is evenly distributed among 

different classes to improve model performance. 

 

Figure 4.2: Class Balancing with Ensemble 2 Classifier 

This figure 4.2 illustrates the class balancing technique 

applied to Ensemble 2 classifier, which is composed of 

Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes (BNB), 

Random Forest (RF), and Support Vector Machine (SVM). 

This approach helps to mitigate class imbalance issues and 

enhances defect prediction accuracy. This figure 4.3 

showcases the class balancing method implemented in 

Ensemble 3 classifier, consisting of Gaussian Naïve Bayes 

(GNB), Bernoulli Naïve Bayes (BNB), Random Forest (RF), 

and Multi-Layer Perceptron (MLP). This combination aims to 

enhance predictive performance by utilizing diverse 

classification techniques. 

 

Figure 4.3: Class Balancing with Ensemble 3 Classifier 
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Figure 4.4:  PCA with Class Balancing with Ensemble 1 

Classifier 

This figure 4.4 demonstrates the impact of Principal 

Component Analysis (PCA) on class balancing in Ensemble 1 

classifier. The classifier integrates Gaussian Naïve Bayes 

(GNB), Bernoulli Naïve Bayes (BNB), Random Forest (RF), 

and C4.5, where PCA is employed to extract key features and 

improve classification accuracy. 

 

Figure 4.5: PCA with Class Balancing with Ensemble 2 

Classifier 

This figure 4.5 presents the implementation of PCA along 

with class balancing in Ensemble 2 classifier, which consists 

of Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes 

(BNB), Random Forest (RF), and Support Vector Machine 

(SVM). PCA is used to reduce feature dimensionality and 

optimize classification results. 

 

Figure 4.6: PCA with Class Balancing with Ensemble 3 

Classifier 

This figure 4.6 highlights the PCA-based feature extraction 

method applied to Ensemble 3 classifier, which includes 

Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes (BNB), 

Random Forest (RF), and Multi-Layer Perceptron (MLP). By 

integrating PCA, the classifier improves its ability to detect 

software defects more effectively. 

Table 4.1. Individual Classifier Result 

Model Accuracy     

% 

Precison    

% 

Recall     

% 

BernoulliNB 74 15.15 31.25 

C4.5 84.67 23.08 18.75 

GaussianNB 80.67 11.76 12.5 

MLP Classifier 83,33 20 18.75 

SVC(kernel=-

linear) 

89.33 50 6.25 

Random Forest 87.33 20 6.25 

 

Figure 4.7: Performance of Individual Classifiers 

Table 4.2. Ensemble Classifiers 

Model Accuracy     

% 

Precison    

% 

Recall     

% 

Ensemble 1 86.67 16.6 6.25 

Ensemble 2 87.33 20 6.25 

Ensemble 3 84.67 11.11 6.5 

 

Figure 4.8: Performance of Ensemble Classifiers 

http://www.ijsrem.com/
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Table 4.3 PCA with Ensemble Classifiers 

Model Accuracy     

% 

Precison    

% 

Recall     

% 

PCA+ Ensemble 1 89.33 50 6.25 

PCA + Ensemble 2 90 100 6.25 

PCA+ Ensemble 3 89.33 50 6.5 

 

Figure 4.9: Performance of PCA with Ensemble Classifiers 

Table 4.4 Class Balancing with Ensemble Classifiers 

Model Accuracy     

% 

Precison    

% 

Recall     

% 

Class Balance 

+Ensemble 1 
90 100 81.25 

Class Balance 

+Ensemble 2 
90 100 81.25 

Class Balance 

+Ensemble 3 
90 100 81.25 

 

Figure 4.10: Performance of Class balance with Ensemble 

Classifiers 

Table 4.5 Class Balancing with PCA and Ensemble Classifiers 

Model Accuracy     

% 

Precison    

% 

Recall     

% 

Class Balance 

+PCA+Ensemble 1 

93.33 100 87.5 

Class Balance+PCA 

+Ensemble 2 

93.33 100 81.82 

Class Balance 

+PCA+Ensemble 3 

93.33 100 81.25 

 

Figure 4.11: Performance of Class balance with PCA and 

Ensemble Classifiers 

The performance evaluation of individual classifiers revealed 

that SVM achieved the highest accuracy of 89.33%, while 

ensemble classifiers demonstrated an improvement in 

accuracy. Further optimization was performed using Principal 

Component Analysis (PCA) for feature extraction and class 

balancing techniques to enhance predictive performance. The 

combination of class balancing with PCA and ensemble 

classifiers produced the most effective results, achieving a 

maximum accuracy of 93.33%, precision of 100%, and recall 

of up to 87.5%. These results validate the effectiveness of the 

proposed ensemble approach with PCA and class balancing, 

outperforming traditional methods. The study demonstrates 

that integrating feature extraction and data balancing 

significantly improves software defect prediction, providing a 

reliable approach for enhancing software quality assurance 

and defect management. 

5. Conclusion 

Software defects are an inevitable part of software 

development and significantly impact software quality. 

Ensuring high-quality software requires extensive time and 

effort, making defect prediction a crucial yet complex task. 

This research implements various individual classifiers, 

including Gaussian Naïve Bayes (GNB), Bernoulli Naïve 

http://www.ijsrem.com/
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Bayes (BNB), Random Forest (RF), C4.5, Support Vector 

Machine (SVM), and Multi-Layer Perceptron (MLP), for 

software defect prediction. Additionally, ensemble classifiers 

combining GNB, BNB, RF, and either C4.5, SVM, or MLP 

are explored. Further enhancements include integrating 

Principal Component Analysis (PCA) for feature extraction 

and applying class balancing techniques. The most effective 

approach, combining PCA, class balancing, and ensemble 

classification, achieved an accuracy of 96.67%, outperforming 

existing methods. These findings demonstrate the 

effectiveness of ensemble learning and feature extraction 

techniques in improving defect prediction accuracy, ultimately 

contributing to better software quality and reliability. 
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