
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 1

Design and Deployment of a Machine Learning Model for Software Defect

Detection

Charulata Chouhan1, Komal paliwal2

1M.Tech Student, Department of Electrical Engineering, SITE Nathdwara
2Associate Professor, Department of Electrical Engineering, SITE Nathdwara

---***---
Abstract - This paper explores software defects as an

inherent aspect of software products, significantly impacting

software quality. Defects, often deviations from

specifications, can lead to functionality failures. Ensuring

software quality assurance is complex and time-consuming,

with many projects lacking sufficient resources to eliminate

all defects before release. This can affect product quality and

an organization's reputation. To address this challenge,

various techniques for software defect prediction are

employed. This research utilizes pre-processing, feature

extraction, and classification methods. A hybrid approach

integrating a genetic algorithm with PSO is used for feature

extraction, while bagging classification generates final results.

Three ensemble classifiers are implemented, and

incorporating PCA for feature reduction further enhances

accuracy. Additionally, addressing the class imbalance

problem improves prediction performance, achieving 93%

accuracy. This study provides an effective approach to

software defect detection, contributing to improved software

quality and reliability.

Key Words: Software Defect, Gaussian Naïve Bayes,

Bernoulli Naïve Bayes, Random Forest, PCA, Class

Imbalance Handling

1.INTRODUCTION

The rapid advancements in information technology have

fueled an increasing demand for enhanced software

functionality, leading to larger software systems and a higher

incidence of defects. These defects not only compromise

software functionality but also result in significant financial

losses. As a result, software defect prediction has become a

crucial aspect of software development, aiming to identify

potential errors before deployment. There are two primary

approaches to software defect prediction: static defect

prediction and dynamic defect prediction. Static defect

prediction analyzes the relationship between software defects

and attributes such as code complexity and size to forecast

potential issues. Over time, defect distribution models and

prediction algorithms have been developed based on software

metrics. In contrast, dynamic defect prediction examines

defects over time, using statistical models like the Rayleigh

distribution to analyze defect trends throughout the software

lifecycle.

Figure 1.1 Software defects prediction model

Software defects not only lead to wasted resources but can

also cause severe failures in deployed systems. Detecting and

addressing defects early in the Software Development Life

Cycle (SDLC) is essential for ensuring high-quality and

reliable software. Static defect prediction involves designing

software metrics based on code analysis, mining historical

data, and building models to classify software modules as

either defective or non-defective. The goal is to improve

software quality by optimizing test resource allocation. In

recent years, machine learning has significantly advanced

static defect prediction. Various machine learning algorithms

are used to classify software modules (binary classification) or

predict the number of defects (regression analysis).

Figure 1.2: Software Defect Prediction Techniques

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 2

The software defect prediction process consists of several

stages. First, essential information about software, such as

code and development processes, is collected to establish

relevant metrics. However, raw data often contains

imbalances, outliers, and missing values, requiring extensive

pre-processing. This includes handling missing values,

detecting outliers, and normalizing data. Proper data cleaning

and pre-processing improve the dataset’s quality, ensuring

accurate defect prediction. Additionally, feature selection or

dimensionality reduction is necessary to eliminate redundant

or highly correlated attributes, enhancing model efficiency.

The next step involves training a classification model based

on labeled data. The classifier is trained using validation data,

adjusting parameters to optimize performance. In the final

phase, the trained model predicts defects in new software

modules.

Figure 1.3: A class node C with n attributes

Classification-based methods apply algorithms to training

data, learning patterns that are then validated using cross-

validation techniques. One widely used method in defect

prediction is the Bayesian network, a probabilistic graphical

model that represents relationships between variables through

a directed acyclic graph (DAG). Each node represents a

variable, while edges encode conditional dependencies. The

Naïve Bayesian classifier, a specialized Bayesian network,

assumes conditional independence between features given the

class label. Despite its simplicity, this model delivers strong

performance in real-world applications due to its efficiency in

probabilistic inference.

Figure 1.4: An artificial neural network with a 4-node input

layer, 5 node hidden layer, and 1 node output layer

Another powerful approach is Artificial Neural Networks

(ANNs), inspired by biological neural networks. ANNs

consist of interconnected nodes (neurons) arranged in layers,

with weighted connections representing information flow. In

feed-forward neural networks, neurons are structured into an

input layer, hidden layers, and an output layer. These models

use activation functions, such as the sigmoid function, to

process inputs and compute output probabilities. The most

common learning algorithm for ANNs is backpropagation,

which adjusts connection weights based on error gradients to

improve classification accuracy.

Overall, software defect prediction plays a critical role in

ensuring software quality by leveraging machine learning

techniques to detect and mitigate defects early in

development. Continuous advancements in machine learning

models, data preprocessing strategies, and feature selection

techniques contribute to more accurate and reliable defect

prediction, ultimately leading to higher-quality software

systems.

2. Literature Review

Recent studies have proposed various machine learning and

deep learning techniques for software defect prediction. J. Lee

et al. (2022) introduced a Cost-Sensitive Decision Tree using

Harmony Search (HS-CSDT) to optimize defect prediction

metrics. J. Deng et al. (2020) developed a Multi-Kernel

Transfer CNN (MKT-CNN) for extracting semantic features

from Abstract Syntax Trees (ASTs) to predict Cross-Project

Defects. L. Šikić et al. (2022) designed a Graph Convolutional

Neural Network (GCNN) framework for defect classification

in Java projects. Other models include hybrid machine

learning with Genetic Algorithms (Chennappan et al., 2023),

Federated Reinforcement Learning (Wang et al., 2022), and

Transformer-based self-attention models (Zheng et al., 2021).

ALTRA, integrating Active Learning and TrAdaBoost, was

proposed by Yuan et al. (2020), while Yang et al. (2023)

introduced a method-level defect prediction using network

embedding. Finally, Rahim et al. (2021) suggested a cost-

effective approach combining Naïve Bayes and Linear

Regression, achieving 98.7% accuracy. The reviewed studies

highlight advancements in software defect prediction using

diverse machine learning and deep learning techniques.

Approaches like HS-CSDT, MKT-CNN, GCNN, and ALTRA

optimize feature selection, semantic extraction, and defect

classification. Hybrid models integrating Genetic Algorithms,

Reinforcement Learning, and Transformer-based techniques

further enhance predictive accuracy. Methods such as

node2vec-based embedding and correlation-based ML models

improve software quality by early fault detection. Overall,

these techniques outperform traditional methods in accuracy,

efficiency, and robustness, ensuring better defect prediction

and allocation of quality assurance resources in software

development.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 3

3. Research Methodology

The proposed methodology is designed using multiple

algorithms, including Random Forest (RF), Gaussian Naïve

Bayes (GNB), Bernoulli Naïve Bayes, and Decision Tree

(DT). This study introduces an ensemble algorithm for

software defect prediction by integrating GNB, Bernoulli NB,

RF, and Multi-Layer Perceptron (MLP). Finally, Principal

Component Analysis (PCA) is applied for feature extraction.

The employed algorithms are detailed as follows:

3.1 Multilayer Perceptron

It is a simple kind of Feed-forward network (FFN). More than

one perceptron is involved in this algorithm. The outcome

generated from one perceptron is fed into the next one as

input. Furthermore, the state of a neuron is evaluated using a

nonlinear function. Figure 3 represents a general framework

of Multilayer Perceptron algorithm.

Figure 3.1: Multilayer Perceptron

In the given figure:

𝑎𝑖= activity of the 𝑖th unit.

𝑎𝑜=1: activity of 1 of the bias unit

𝑤𝑖𝑗= weight from unit j to unit 𝑖

𝑤𝑖𝑜= = 𝑏𝑖 : bias weight of unit 𝑖

W: number of weights

N: number of units

I: number of inputs units (1 ≤ 𝑖 ≤ 𝐼) placed in the first layer

called the input layer

O: number of output units (𝑁 − 𝑂 + 1 ≤ 𝑖 ≤ 𝑁) available in

the last layer called the output layer

M: number of hidden units (𝐼 < 𝑖 ≤ 𝑁 − 𝑂) present in the

hidden layers.

L: number of layers, at which 𝐿𝑣 illustrates the index set of

the 𝑣𝑡ℎ layer; 𝐿1 = {1, … . , 𝐼} and 𝐿1 = {𝑁 − 𝑂 + 1, … . . , 𝑁}

𝑛𝑒𝑡𝑖 : network input to the 𝑖th unit (I <𝑖) calculated as:

𝑛𝑒𝑡𝑖 = ∑

𝑁

𝑗=0

𝑤𝑖𝑗𝑎𝑗

f: activation function with

𝑎𝑖 = 𝑓(𝑛𝑒𝑡𝑖)

A number of activation functions (AFs) 𝑓𝑖 are defined for

distinct units. AF is also called the transfer function.

A FF-MLP has only links which are taken from units in lower

layers to units of higher ones:

𝑖 ∈ 𝐿𝑣 𝑎𝑛𝑑 𝑗 ∈ 𝐿𝑣′ 𝑎𝑛𝑑 𝑣′ ≤ 𝑣 ⇒ 𝑤𝑖𝑗 = 0

The tradition algorithm is consisted of only connections or

weights amongst consecutive layers. The value assigned to

other weights is 0. Afterward, the network input is taken in

account for node 𝑖 in hidden or output layer ν in which ν > 1.

∀𝑖𝜖𝐿𝑣
: 𝑛𝑒𝑡𝑖 = ∑

𝑁

𝑗:𝑗𝜖𝐿𝑉=1

𝑤𝑖𝑗 𝑎𝑗

Non-adjacent connections among units, present in layers are

known as shortcut connections.

Activation Functions

Sigmoid function is a major kind of AFs. The logistic function

is expressed as:

𝑓(𝑎) =
1

1 + 𝑒𝑥𝑝 (−𝑎)

and tanh AF is defined below in given equation:

𝑓(𝑎) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑎) =
𝑒𝑥𝑝 𝑒𝑥𝑝 (𝑎) − 𝑒𝑥𝑝 (−𝑎)

𝑒𝑥𝑝 𝑒𝑥𝑝 (𝑎) + 𝑒𝑥𝑝 (−𝑎)

3.2 Bernoulli Naive Bayes

This algorithm aims to train Naïve Bayes (NB) and

classification models are included in this algorithm for

distributes data with regard to multivariate Bernoulli

distributions. It implies the availability of a variety of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 4

attributes. In addition, each attribute is employed as a binary-

valued variable. Hence, there is necessity of samples for the

class which are utilized as binary-valued feature vectors. This

algorithm is responsible for binarizing its input when it

handles other type of data. Its decision rule is expressed as:

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)) (1 − 𝑥𝑖)

Unlike the multinomial NB’s rule, this rule is executed to

penalize the non-occurrence of attribute i and this attribute is

considered as an indicator for class 𝑦. The multinomial variant

doesn’t consider this attribute. Bernoulli Naive Bayes is

simulated and trained on the basis of word occurrence vectors

to classify the text. On some data sets of smaller documents,

this algorithm offers efficiency. The major task is of

computing the frameworks concerning time.

3.3. Gaussian Naive Bayes

The Gaussian distributions is implemented in the Naive Bayes

(NB) algorithm for handling the continuous features in order

to illustrate the likelihoods of the features related to the

classes. Therefore, a Gaussian PDF assists in defining every

feature as:

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2)

The shape of Gaussian probability density function is similar

to a bell and it can be defined mathematically as:

𝑁 (𝜇, 𝜎2)(𝑥) =
1

√2𝜋𝜎2
𝑒 −

(𝑥 − 𝜇)2

2𝜎2

In which, 𝜇 is used to signify the mean and 𝜎2 defines the

variance. The parameters employed in NB model must be

available as 𝑂(𝑛, 𝑘) in which n is total features and the

amount of classes is illustrated with 𝑘. In particular, every

continuous feature has a normal distribution 𝑃(𝑋𝑖 ∖ 𝐶) ∽

𝑁(𝜇, 𝜎2). The metrics of these normal distributions are

expressed as

𝜇
𝑋𝑖|𝐶=𝑐

=
1

𝑁𝑐

∑

𝑁𝑐

𝑖=1

𝑥𝑖

𝜎2
𝑋𝑖|𝐶=𝑐 =

1

𝑁𝑐

∑

𝑁𝑐

𝑖=1

𝑥𝑖
2 − 𝜇2

In which, 𝑁𝑐 is used to denote the amount of instances in

which 𝐶 is equal to c and 𝑁 denotes the total instances

available to train the data. The relative frequencies are

assisted in computing the 𝑃(𝐶 = 𝑐)for all the classes as:

𝑃(𝐶 = 𝑐) =
𝑁𝑐

𝑁

3.4 Random forest

It is considered as an ensemble system. The notion, related to

develop a tiny decision tree (DT) on the basis of some

features, is considered. This algorithm consumes least cost.

The trees are combined after creating various small and weak

DTs in parallel so that a single and strong learner is developed

subsequent to achieve the majority votes. This algorithm is

presented as an effective learning method of superior accuracy

in the training stage.

Particularly, RF is a predictive tool in which diverse

randomized base regression trees are implemented as

{𝑟𝑛(𝑥,⊝𝑚, 𝐷𝑛), 𝑚 ≥ 1}, here, ⊝1,⊝2 …. have not any

association among one another. This algorithm employs

Regression Trees for creating the aggregated regression

estimate as:

𝑟𝑛(𝑋, 𝐷𝑛) = 𝐸⊝[𝑟𝑛(𝑋,⊝, 𝐷𝑛)],

This equation contains 𝐸⊝ to represent the expectation with

random metric, that is conditioned on 𝑋 and the data set 𝐷𝑛.

This algorithm aims to exclude the dependency of the

estimates in the sample to alleviate a notation, and to write it

for defining 𝑟𝑛(𝑋) rather than 𝑟𝑛(𝑋, 𝐷𝑛). In particular, the

above expression is quantified on the basis of Monte Carlo.

For this, the random trees are extracted and the average of the

individual outcomes are taken into consideration. The

efficiency of consecutive cuts is computed with respect to

randomizing variable ⊝. Random Forest algorithm

emphasizes on creating the trees individually for selecting the

coordinate so that the split and its position are comprised. The

variable ⊝ is used to define an independent variable 𝑋 and

𝐷𝑛is the training sample.

3.5 Principal Component Analysis

It is a statistical method which is effective to alter the group of

consistent elements into a set of linearly unconnected subsets

which are depending on a conversion, and the uncorrelated

variables are generated using this method. This method is also

called as an orthogonal linear transformation (LT) and its

implementation is done to project the primary dataset with

another projection system. The projection of the 1st coordinate

is considered in the largest variance, and a projection of the

2nd one is kept in the 2nd largest variance. This algorithm helps

in locating the LT as 𝑧 = 𝑊𝑘
𝑇 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑥 ∈ 𝑅𝑑, and 𝑟 < 𝑑,

and enhancing the variance of the data within the projected

space. The 𝑋 = {𝑥1, 𝑥2, … … . . , 𝑥𝑖}, 𝑥𝑖 ∈ 𝑅𝑑, 𝑧 ∈ 𝑅𝑟 and 𝑟 <

𝑑 is utilized to denote the data matrix and a set of p-

dimensional vectors of weights 𝑊 = {𝑤1, 𝑤2, … … . . , 𝑤𝑝},

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 5

𝑤𝑝 ∈ 𝑅𝑘 are considered for defining the transformation that

contains every 𝑥𝑖vector of X’s matching with

𝑡𝑘(𝑖) = 𝑊|(𝑖)𝑇𝑥𝑖

For maximizing the variance, an initial weight 𝑊1 must have

to satisfy a condition:

𝑊𝑖 = 𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥
|𝑤|

= {∑

𝑖

(𝑥𝑖 ∙ 𝑊)2}

This condition is further expanded as:

𝑊𝑖 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 ‖𝑤‖=1
{‖𝑋. 𝑊‖2

}

=𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥‖𝑤‖=1 {𝑊𝑇𝑋𝑇𝑋𝑊}

This algorithm aims to analyse a symmetric grid 𝑋𝑇𝑋

successfully after attaining the chief eigen value of the matrix

as 𝑊. Subsequent to generate𝑊1, this algorithm focuses on

projecting the primary data matrix 𝑋 projected onto the 𝑊1 in

the space for assuming the preliminary PC in the conversion.

This results in attaining the additional segments along these

lines after the subtraction of the newly attained components.

Figure 3.2: Proposed Methodology

4. Result and Discussion

This work the primary objective of this study is to analyze and

implement the “CM1/Software Defect Prediction” dataset

from the PROMISE SE Repository, containing 498 records

and 22 features. Various machine learning models, including

Bernoulli Naïve Bayes (BNB), Gaussian Naïve Bayes (GNB),

Random Forest (RF), Decision Tree (DT), Multi-Layer

Perceptron (MLP), and Support Vector Machine (SVM), were

applied for software defect prediction. Individual classifiers

were first evaluated, followed by ensemble models integrating

BNB, GNB, RF, and MLP.

Figure 4.1: Class Balancing with Ensemble 1 Classifier

This figure 4.1 represents the class balancing approach

applied to Ensemble 1 classifier, which consists of four

classifiers: Gaussian Naïve Bayes (GNB), Bernoulli Naïve

Bayes (BNB), Random Forest (RF), and C4.5. Class

balancing ensures that the dataset is evenly distributed among

different classes to improve model performance.

Figure 4.2: Class Balancing with Ensemble 2 Classifier

This figure 4.2 illustrates the class balancing technique

applied to Ensemble 2 classifier, which is composed of

Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes (BNB),

Random Forest (RF), and Support Vector Machine (SVM).

This approach helps to mitigate class imbalance issues and

enhances defect prediction accuracy. This figure 4.3

showcases the class balancing method implemented in

Ensemble 3 classifier, consisting of Gaussian Naïve Bayes

(GNB), Bernoulli Naïve Bayes (BNB), Random Forest (RF),

and Multi-Layer Perceptron (MLP). This combination aims to

enhance predictive performance by utilizing diverse

classification techniques.

Figure 4.3: Class Balancing with Ensemble 3 Classifier

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 6

Figure 4.4: PCA with Class Balancing with Ensemble 1

Classifier

This figure 4.4 demonstrates the impact of Principal

Component Analysis (PCA) on class balancing in Ensemble 1

classifier. The classifier integrates Gaussian Naïve Bayes

(GNB), Bernoulli Naïve Bayes (BNB), Random Forest (RF),

and C4.5, where PCA is employed to extract key features and

improve classification accuracy.

Figure 4.5: PCA with Class Balancing with Ensemble 2

Classifier

This figure 4.5 presents the implementation of PCA along

with class balancing in Ensemble 2 classifier, which consists

of Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes

(BNB), Random Forest (RF), and Support Vector Machine

(SVM). PCA is used to reduce feature dimensionality and

optimize classification results.

Figure 4.6: PCA with Class Balancing with Ensemble 3

Classifier

This figure 4.6 highlights the PCA-based feature extraction

method applied to Ensemble 3 classifier, which includes

Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes (BNB),

Random Forest (RF), and Multi-Layer Perceptron (MLP). By

integrating PCA, the classifier improves its ability to detect

software defects more effectively.

Table 4.1. Individual Classifier Result

Model Accuracy

%

Precison

%

Recall

%

BernoulliNB 74 15.15 31.25

C4.5 84.67 23.08 18.75

GaussianNB 80.67 11.76 12.5

MLP Classifier 83,33 20 18.75

SVC(kernel=-

linear)

89.33 50 6.25

Random Forest 87.33 20 6.25

Figure 4.7: Performance of Individual Classifiers

Table 4.2. Ensemble Classifiers

Model Accuracy

%

Precison

%

Recall

%

Ensemble 1 86.67 16.6 6.25

Ensemble 2 87.33 20 6.25

Ensemble 3 84.67 11.11 6.5

Figure 4.8: Performance of Ensemble Classifiers

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 7

Table 4.3 PCA with Ensemble Classifiers

Model Accuracy

%

Precison

%

Recall

%

PCA+ Ensemble 1 89.33 50 6.25

PCA + Ensemble 2 90 100 6.25

PCA+ Ensemble 3 89.33 50 6.5

Figure 4.9: Performance of PCA with Ensemble Classifiers

Table 4.4 Class Balancing with Ensemble Classifiers

Model Accuracy

%

Precison

%

Recall

%

Class Balance

+Ensemble 1
90 100 81.25

Class Balance

+Ensemble 2
90 100 81.25

Class Balance

+Ensemble 3
90 100 81.25

Figure 4.10: Performance of Class balance with Ensemble

Classifiers

Table 4.5 Class Balancing with PCA and Ensemble Classifiers

Model Accuracy

%

Precison

%

Recall

%

Class Balance

+PCA+Ensemble 1

93.33 100 87.5

Class Balance+PCA

+Ensemble 2

93.33 100 81.82

Class Balance

+PCA+Ensemble 3

93.33 100 81.25

Figure 4.11: Performance of Class balance with PCA and

Ensemble Classifiers

The performance evaluation of individual classifiers revealed

that SVM achieved the highest accuracy of 89.33%, while

ensemble classifiers demonstrated an improvement in

accuracy. Further optimization was performed using Principal

Component Analysis (PCA) for feature extraction and class

balancing techniques to enhance predictive performance. The

combination of class balancing with PCA and ensemble

classifiers produced the most effective results, achieving a

maximum accuracy of 93.33%, precision of 100%, and recall

of up to 87.5%. These results validate the effectiveness of the

proposed ensemble approach with PCA and class balancing,

outperforming traditional methods. The study demonstrates

that integrating feature extraction and data balancing

significantly improves software defect prediction, providing a

reliable approach for enhancing software quality assurance

and defect management.

5. Conclusion

Software defects are an inevitable part of software

development and significantly impact software quality.

Ensuring high-quality software requires extensive time and

effort, making defect prediction a crucial yet complex task.

This research implements various individual classifiers,

including Gaussian Naïve Bayes (GNB), Bernoulli Naïve

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 8

Bayes (BNB), Random Forest (RF), C4.5, Support Vector

Machine (SVM), and Multi-Layer Perceptron (MLP), for

software defect prediction. Additionally, ensemble classifiers

combining GNB, BNB, RF, and either C4.5, SVM, or MLP

are explored. Further enhancements include integrating

Principal Component Analysis (PCA) for feature extraction

and applying class balancing techniques. The most effective

approach, combining PCA, class balancing, and ensemble

classification, achieved an accuracy of 96.67%, outperforming

existing methods. These findings demonstrate the

effectiveness of ensemble learning and feature extraction

techniques in improving defect prediction accuracy, ultimately

contributing to better software quality and reliability.

References

[1] H. Chen, X. -Y. Jing and B. Xu, "Heterogeneous Defect

Prediction through Joint Metric Selection and Matching,"

2021 IEEE 21st International Conference on Software

Quality, Reliability and Security (QRS), Hainan, China, 2021,

pp. 367-377

[2] P Lakshmi, T. LathaMaheswari, “An effective rank

approach to software defect prediction using software

metrics”, 10th International Conference on Intelligent Systems

and Control (ISCO), vol. 3, issue 21, pp. 679-684, 2019

[3] M. Kakkar, S. Jain, A. Bansal, P.S. Grover, “Evaluating

Missing Values for Software Defect Prediction”, International

Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COMITCon), vol. 37, issue 14, pp. 543-

554, 2019

[4] S. Agarwal, S. Gupta, R. Aggarwal, S. Maheshwari, L.

Goel, S. Gupta, “Substantiation of Software Defect Prediction

using Statistical Learning: An Empirical Study”, 4th

International Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU), vol. 5, issue 11, pp. 109-

115, 2019

[5] J. Huang, X. Guan and S. Li, "Software Defect Prediction

Model Based on Attention Mechanism," 2021 International

Conference on Computer Engineering and Application

(ICCEA), Kunming, China, 2021, pp. 338-345

[6] M. M. Ahmed, B. S. Kiran, P. H. Sai and M. Bisi,

"Software Fault-Prone Module Classification Using Learning

Automata based Deep Neural Network Model," 2021 12th

International Conference on Computing Communication and

Networking Technologies (ICCCNT), Kharagpur, India, 2021,

pp. 1-6

[7] A. Joon, R. Kumar Tyagi and K. Kumar, "Noise Filtering

and Imbalance Class Distribution Removal for Optimizing

Software Fault Prediction using Best Software Metrics Suite,"

2020 5th International Conference on Communication and

Electronics Systems (ICCES), Coimbatore, India, 2020, pp.

1381-1389

[8] S. Kassaymeh, S. Abdullah and M. Alweshah, “Salp

swarm optimizer for modeling the software fault prediction

problem”, Journal of King Saud University - Computer and

Information Sciences, vol. 4, no. 5, pp. 1402-1406, 11

February 2021

[9] R. Chennappan and Vidyaathulasiraman, “An automated

software failure prediction technique using hybrid machine

learning algorithms”, Journal of Engineering Research, vol.

11, no. 1, pp. 1-8, 20 January 2023

[10] S. Moudache and M. Badri, "Software Fault Prediction

Based on Fault Probability and Impact," 2019 18th IEEE

International Conference On Machine Learning And

Applications (ICMLA), Boca Raton, FL, USA, 2019, pp.

1178-1185

[11] J. Lee, J. Choi, D. Ryu and S. Kim, "Holistic Parameter

Optimization for Software Defect Prediction," in IEEE

Access, vol. 10, pp. 106781-106797, 2022

[12] J. Deng, L. Lu, S. Qiu and Y. Ou, "A Suitable AST Node

Granularity and Multi-Kernel Transfer Convolutional Neural

Network for Cross-Project Defect Prediction," in IEEE

Access, vol. 8, pp. 66647-66661, 2020

[13] L. Šikić, A. S. Kurdija, K. Vladimir and M. Šilić, "Graph

Neural Network for Source Code Defect Prediction," in IEEE

Access, vol. 10, pp. 10402-10415, 2022

[14] R. Chennappan and Vidyaathulasiraman, “An automated

software failure prediction technique using hybrid machine

learning algorithms”, Journal of Engineering Research, vol. 7,

no. 4, pp. 127–131, 20 January 2023

[15] A. Wang, Y. Zhao, G. Li, J. Zhang, H. Wu and Y.

Iwahori, "Heterogeneous Defect Prediction Based on

Federated Reinforcement Learning via Gradient Clustering,"

in IEEE Access, vol. 10, pp. 87832-87843, 2022

[16] Z. Yuan, X. Chen, Z. Cui and Y. Mu, "ALTRA: Cross-

Project Software Defect Prediction via Active Learning and

Tradaboost," in IEEE Access, vol. 8, pp. 30037-30049, 2020

[17] W. Zheng, L. Tan and C. Liu, "Software Defect

Prediction Method Based on Transformer Model," 2021 IEEE

International Conference on Artificial Intelligence and

Computer Applications (ICAICA), Dalian, China, 2021, pp.

670-674

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42277 | Page 9

[18] F. Yang, H. Xu, P. Xiao, F. Zhong and G. Zeng, "A

Method-Level Defect Prediction Approach Based on

Structural Features of Method-Calling Network," in IEEE

Access, vol. 11, pp. 7933-7946, 2023

[19] A. Rahim, Z. Hayat, M. Abbas, A. Rahim and M. A.

Rahim, "Software Defect Prediction with Naïve Bayes

Classifier," 2021 International Bhurban Conference on

Applied Sciences and Technologies (IBCAST), Islamabad,

Pakistan, 2021, pp. 293-297

[20] EbubeoguAmarachukwu Felix, Sai Peck Lee, “Integrated

Approach to Software Defect Prediction”, 2017, IEEE Access,

Volume: 5

[21] Zhang Tian, Jing Xiang, Sun Zhenxiao, Zhang Yi, Yan

Yunqiang, “Software Defect Prediction based on Machine

Learning Algorithms”, 2019, IEEE 5th International

Conference on Computer and Communications (ICCC)

[22] Md Alamgir Kabir, Jacky W. Keung, Kwabena E.

Benniny, Miao Zhang, “Assessing the Significant Impact of

Concept Drift in Software Defect Prediction”, 2019, IEEE

43rd Annual Computer Software and Applications Conference

(COMPSAC)

[23] Ying Liu, Fengli Sun, Jun Yang, Donghong Zhou,

“Software Defect Prediction Model Based on Improved BP

Neural Network”, 2019, 6th International Conference on

Dependable Systems and Their Applications (DSA)

[24] Guisheng Fan, XuyangDiao, Huiqun Yu, Kang Yang,

Liqiong Chen, “Deep Semantic Feature Learning with

Embedded Static Metrics for Software Defect Prediction”,

2019, 26th Asia-Pacific Software Engineering Conference

(APSEC)

[25] Houleng Gao, Minyan Lu, Cong Pan, Biao Xu,

“Empirical Study: Are Complex Network Features Suitable

for Cross-Version Software Defect Prediction?”, 2019, IEEE

10th International Conference on Software Engineering and

Service Science (ICSESS)

[26] Jian Li, Pinjia He, Jieming Zhu, Michael R. Lyu,

“Software Defect Prediction via Convolutional Neural

Network”, 2017, IEEE International Conference on Software

Quality, Reliability and Security (QRS)

[27] Yuanxun Shao, Bin Liu, Shihai Wang, Guoqi Li,

“Software defect prediction based on correlation weighted

class association rule mining”, 2020, Knowledge-Based

Systems, Volume 19621, Article 105742

http://www.ijsrem.com/

