
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 1 
 

Design and Development of a Modern Hybrid E-Recruitment System with 

MERN Architecture 

Ashay Tiwari1, Prof. Ashish Tiwari2 

1Ashay Tiwari, Computer Science & Swami Vivekananda College of  Engineering, Indore 
2 Prof. Ashish Tiwari, Computer Science & Swami Vivekananda College of  Engineering, Indore 

 

 
Abstract - In the evolving world of digital hiring, the integration 

of modern technologies with recruitment processes has become 

essential for achieving operational excellence, improved user 

engagement, and creating a robust and scalable system. This 

paper presents the design and development of a hybrid e-

recruitment drive system utilizing the MERN architecture, 

comprising MongoDB, Express JS, React JS, and Node JS. This 

system provides a unified interface for both Candidates (Job 

Seekers) and Recruiters (Employers), offering personalized 

dashboards, profile creation (showcasing portfolios), job posting, 

application tracking, an intelligent auto job matching system, 

ATS-friendly resume builders and many interactive features. 

Emphasis is placed on creating a modular, scalable and secure 

web-based solution for small to medium enterprises (SMEs). 

This paper discusses the underlying system architecture, design 

methodology, feature set and potential impact on recruitment 

workflows. The results highlights improved usability and 

performance in comparison to traditional recruitment portals. 

This implementation-oriented study contributes a practical, tech-

driven perspective to e-recruitment system development.  
 

Keywords— MERN stack, Microservices Architecture, E-

recruitment, RESTful apis, Text-Index Searching. 

 

I. INTRODUCTION 

 
As technology continues to reshape industrial workflows/trends, 

the recruitment process has undergone significant innovations. 

E-recruitment has become a significant factor for modern human 

resource management, allowing faster and more accessible hiring 

processes through digital systems. Modern hiring process 

requires intelligent systems that can bridge the gap between 

candidates (job seekers) and companies (employers) while 

ensuring a seamless user experience. Implementing efficient 

recruitment strategies enables organizations to attract high-

potential candidates and enhances the working way of talent 

management practices [1].  
However, legacy systems often fall short in addressing the 

dynamic needs of both recruiters and job seekers. Existing 

solutions tend to focus on either company-centric or candidate-

centric workflows, rarely offering a balanced, hybrid approach. 

There is a growing need for solutions that support role-based 

experiences while remaining easy to maintain and scale. 
This research presents an innovative hybrid e-recruitment 

application design developed using the MERN stack that tries to 

overcome these limitations. The system integrates advanced 

dynamic frontend components, a non-relational database and 

RESTful apis to offer a responsive, scalable, and maintainable 

recruitment solution. It aims to redefine how e-recruitment 

systems are designed by merging better implementation 

strategies with user-centered design. The paper discusses the 

design rationale, development methodology, architecture, and 

system design. 
 

II. LITERATURE REVIEW 
 

Effective recruitment strategies can provide organizations with 

benefits by recognizing and attracting potential employees, as 

well as positively enhancing the organization's talent 

management efforts overall [1]. E-recruitment sites can 

significantly decrease organizations recruitment costs and 

increase the speed of hiring to make it more efficient by 

streamlining automated resume screening or application tracking 

processes, etc. These e-recruitment sites give organizations a 

central repository for candidate information and a user-centered 

interface to integrate recruitment workflows and make real-time 

decisions collectively. There are some challenges with these 

systems, particularly issues with users inputting incorrect data 

and resumes being duplicated but the technology and system 

design are updating with form validation, AI or algorithm-based 

screening, and some kind of layered verification [2].  
E-recruitment has changed traditional hiring methods by 

enabling a faster, cheaper, and broader search for employees. 

These systems provide better distribution of job postings while 

also assisting with targeted audience selection, identifying 

candidates, and tracking applicants. Using e-recruitment 

platforms along with existing human resources systems enhances 

organizational scalability and efficiency in the operational 

strategies of talent acquisition [3]. Today's e-recruitment 

platforms combine job seekers and employers into ideal 

ecosystems for interaction. By enabling a consistent application 

process through the reuse of stored data, integrated testing, and 

identifying qualified candidates quickly, these systems ease the 

application process for all parties. Consequently, organizations 

experience shorter time-to-hire, cost savings, and a more 

accurate shortlist, ultimately resulting in a more reliable 

recruitment process overall [4].  
The MERN stack, which consists of Mongodb, Express, React 

JS, and Node JS. It has become the most recognized and trendy 

architecture for full-stack development. The Node JS backend 

provides excellent performance for input-output concentrated 

applications, while React's virtual DOM and component-based 

approach help developing highly responsive user interfaces a 

straightforward task. Mongodb's flexibility and schemaless 

format allow for easy management of data. All of these 

components of the MERN stack provided us the high-

performance solution for developing robust, scalable, and 

efficient applications [5]. 

 

 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 2 
 

III. PROPOSED METHODOLOGY 

3.1 Overview of E-Recruitment System 

The e-recruitment systems help organizations to ease and 

digitalize their process of hiring people by providing a common 

interface for candidates (job seekers) and companies (recruiters) 

to interact with each other. This helps the companies to hire the 

appropriate candidates for their vacant positions by excluding 

paperwork, providing faster time in their recruitment process, 

and increasing their threshold efficiency of recruiting by the 

automated process. This recruitment process can be categorized 

into two on the basis of line of enquiry: internal and external 

recruitment. 
Internal recruitment refers to the replacement/promotion of 

existing employees in the organization or so to fill available 

vacancies. One of the most known internal recruitment strategies 

is known as “promoting from within”, for example providing 

advanced opportunities for junior staff to progress into more 

responsible senior roles. This recruitment process seems as a 

time and cost-effective way as you don’t have to recruit and 

assess candidates from scratch, as you already have a person 

with ground knowledge of a field with experience in that 

domain. Even it is considered that internal recruitment improves 

employee satisfaction and develops loyalty in employees.  
On the other hand, external recruiting means the candidate will 

be hired or screened from outside of the organization. This is 

commonly achieved through posting and advertising jobs on job 

portals, social media, etc.  
This method is a little expensive and time-consuming than the 

internal approach, but it provides opportunities to a broader and 

more skilled set of people. Although external hiring method can 

enhance the level of competition in the workplace, which helps 

in inviting new ideas and working methodology [6]. 

3.2 Technology and Tools used 

To build an efficient and scalable e-recruitment platform, a 

modern, robust and scalable tech stack is required. The chosen 

stack for this application is MERN stack, which consists of 

Mongodb, Express, React JS and Node JS as we have already 

discussed. This fullstack javascript solution provides a seamless 

development cycle across the both frontend and backend, 

enabling faster application development and easier maintenance 

cycle. 

 
Mongodb: Mongodb is a popular NoSQL document database 

that stores data in flexible, JSON-like documents called BSONs 

in the document format stored or clubbed in a collection. Unlike 

traditional relational databases, Mongodb doesn't use tables 

instead it stores data in flexible BSON documents that can vary 

from document to document. This makes it highly appropriate 

for storing and querying data with diverse structures. Mongodb 

documents are similar to JSON objects. The values of fields may 

include other documents, arrays, and arrays of documents [7]. 
Express: Express JS is a widely used framework for Node JS, 

serving as the foundation for several other frameworks that ease 

the development lifecycle. It is not needed to write the code from 

scratch or reinvent the wheel. This framework helps developers 

to define api routes by specifying different HTTP methods (get, 

post, put, delete, patch etc.) and customized URL paths, making 

it easy to manage and segregate different request types. One of 

the greatest advantages of this framework is its middleware 

support, which helps us in writing our own custom validation 

logic for each or clubbed api requests without any need to 

without copying/pasting the code [8]. 
React JS: React is a javascript library designed by Meta for 

building user interfaces, which is mainly focused on the 

development of dynamic and interactive UIs by using component 

based approach. Although often referred to as a framework, 

React is technically a library and can be used beyond the web - 

for example, in mobile app development using React Native. 

React’s modular structure helps reduce bugs and allows 

developers to focus more on the user experience while react 

handles much more complex rendering logic via Virtual DOM in 

the background[9]. 
Node: Node JS is an open-source, cross-platform runtime 

environment that enables developers to build server-side 

applications using javascript. Unlike traditional Javascript that 

runs in the browser, Node JS operates directly on the operating 

system, making it best choice for backend development. It 

doesn’t includes browser-specific features and instead provides 

access to operating system-level APIs such as file handling, 

networking, and HTTP, allowing developers to build scalable 

and efficient server applications outside of the browser client-

side environment [8]. 

 

The Google Trend report (figure 1) compares the world side 

interest in various web development stacks - MERN, MEAN, 

MEVN, PERN and LAMP over past 5 years. It clearly shows 

that the MERN stack has gained significant attention and 

popularity, reflecting developers growing preference for modern, 

javascript based technologies [10]. 
 

 
Fig- 1: Google Trends Report comparing different tech stacks.    

 

During the actual development process, there are many tools that 

were utilized to help us make development journey smoother, 

enhance productivity, support for deployment and management 

of the application. These tools played an important role in both 

frontend and backend development, API handling, version 

control and cloud deployment. Below are some of the mentioned 

tools that we needs to use: 

 
Visual Studio Code (VS Code): A Lightweight and powerful 

code editor with powerful support for javascript, typescript 

environments, a vast community for VS extensions, in-app 

debugging tools, source control and many more. 
GitHub: A free platform for hosting and managing code 

repositories, handling version control and team collaborations. 
Redux: One of the significant library to manage client-side 

states efficiently on Javascript apps, commonly used with React 

to manage application state more efficiently. Redux helps us in 

avoid props drilling practices in react. We had utilized Redux-

Toolkit library, which provides a more advanced and simpler 

approach to manage redux workflows e.g., actions, states, 

reducers etc,. through the uses of redux slices. 
Swagger: Swagger is a powerful tools designed to helps us 

document and test the REST APIs efficiently, while it also 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 3 
 

provides a common user-centric interface to provide clarity and 

uniformity throughout the development journey. 
Postman: An API testing tool for making requests to endpoints 

and interpreting responses during the backend process for 

development and debugging.  
AWS S3: A cloud storage solution from Amazon that is used for 

the security and recovery of an application's assets like images, 

documents, videos and other media files.  
AWS EC2: A scalable virtual server service from Amazon that 

can be used to host and run web applications with a reliable and 

flexible deployment option.  
ngrok / Local Tunneling: A tunneling service useful for 

exposing a local development server to the internet, and can be 

used for webhook testing, or sharing a local site while it is under 

development [11].  
Docker: A platform for developing, shipping and running 

applications in an isolated container, while achieving the same 

functionality independently of the environment stack. 
Nginx: A high performance web server and reverse proxy used 

to serve static content, manage load balancing, and overall 

application performance.  
MongoDB Atlas: A fully managed cloud database service for a 

MongoDB Database, that provides scalability, security, and 

global distribution while eliminating the need for infrastructure 

management. 

3.3 User Roles and Features access 

This recruitment system is designed to support and provide 

services to a diverse set of users, each having a specific set of 

access rights and responsibilities. The feature available in the 

platform completely depends on the role of the users. Below is 

an overview of the different user types and their core 

functionalities: 

 

Super Admin (Administrator) 
a. Has full control over the activities of the application. 

b. Can create and manage sub-admins. 

c. Monitors all user activities across the system. 

d. Manages feature configurations, system-level settings, and 

reports. 

e. Interact with Users via admin posts, newsletters, etc. 

 

Sub Admin 

a. Manages users, job listings, and reported content under 

supervision. 

b. Can verify companies and candidates. 

c. Onboard Event World and Benefit World Partners. 

d. Handles moderation tasks and approves posts or events. 

e. Generates and views limited analytics and reports. 

 

Verified Candidate (Stream Member) 

a. Has completed full profile verification. 

b. Can view and apply to job postings. 

c. Can access the application’s ATS-friendly resume builder. 

d. Manage profile portfolio. 

e. Access to participate in different events organized and 

managed by Event World Partners. 

f. Access to different benefits and offers by Benefit World 

Partners. 

Unverified Candidate (Talentpool Member) 
a. Has limited access until verification. 

b. Manage profile portfolio. 

c. Request for profile verification. 

d. Interact with Admin Posts. 

 

Verified Company (Stream Member) 
a. Authorized to post jobs and manage applications. 

b. Can view detailed candidate profiles. 

c. Access to the in-app Applicant Tracking System. 

d. Access to participate in different events organized and 

managed by Event World Partners. 

e. Access to different benefits and offers by Benefit World 

Partners. 

f. Manage the Organization’s portfolio. 

g. Access to the in-app Talent Admin Panel. 

 

Unverified Company (New Company) 
a. Has limited access until verification. 

b. Manage the Organization’s portfolio. 

c. Request for profile verification. 

d. Interact with Admin Posts. 

 

Event World Partner (Event Affiliates) 
a. Can create and manage events, webinars, and workshops. 

b. Access to the in-app promotional tools to reach targeted user 

segments. 

c. Can view attendee data and engagement insights. 

 

Benefit World Partner (Benefit Affiliates) 
a. Can showcase products or services on the platform. 

b. Access to campaign performance metrics. 

c. Engages with users via discount codes, offers, and third-party 

purchase links. 

3.4 System Architecture 

The system architecture (figure 2) of this e-recruitment platform 

is designed using a module and scalable three-tier architecture, 

which provides separation of concerns, it is easy to maintain and 

provide better future scalability. This architecture is broadly 

divided into three layers such as: Presentation tier  (frontend), 

Application tier (backend), and Data Management tier 

(database). The frontend of the application is built using React 

JS which helps us in creating interactive and dynamic user 

interfaces. This layer communicates with the backend through 

API requests as we are using REST apis. This enables a 

decoupled architecture that supports flexibility and 

customizability in development and deployment. 
As the main core or thinking brain of the system, the backend 

tier is mainly developed using Node JS and Express, which act 

as a gateway or bridge between the user interface and databases. 

This layer is responsible for handling routings, business logics, 

authentication, authorization, data processing and many more. It 

follows the MVC (Model View Controller) architecture. 

Integrating the backend system with tools like Swagger and 

Postman ensures efficient API documentation and testing 

throughout the application development lifecycle. 
At the end, we have the  Data Management layer, which consists 

of a document-oriented database, Mongodb, used for storing user 

records, application data, events, benefits, different metadata etc. 

In addition, AWS S3 is utilized for storing assets or media files 

such as resumes, profile images, post images etc., while an AWS 

EC2 instance will be responsible for hosting the deployed 

application over the cloud. Supporting tools such as Docker, 

ngrok, nginx etc will be used in development and deployment 

scalability. This well structured block architecture ensures a 

robust, secure and flexible environment for handling the 

complex and ever changing needs of a modern hybrid e-

recruitment system. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 4 
 

 

 
Fig- 2: Proposed Architecture of E-recruitment system 

 

3.5 System Ontology 

The E-recruitment system ontology serves as a structured 

framework that represents the various concepts, roles and 

relationships involved in an online recruitment system. It helps 

to standardize the terminology and processes used within the 

domain, enabling better data flow bindings, search accuracy and 

intelligent matching between job seekers and employers. Figure 

3 presents a visual representation of the proposed ontology for 

the online recruitment system. The datatype properties are not 

included in the ontology diagram for better readability. 

The ontology is composed mainly of fourteen entities: 

Candidate, Employee, Employer, Company, Job Offer (Job 

Application), Language, Skills, Work Experience, Education, 

Partners, Event World Partner, Benefit World Partner, Events 

and Benefits (Offers). In this ontology, we have the Employee 

entity, which is a subclass of Candidate. This Employee will be 

interacted with and correlated by the Employer which is a 

subclass of Company. Employee profile has different sets of sub-

entities to make a proper profile portfolio as Skills, Language, 

Work Experience, Education and many more. Employer 

(Company) will be responsible for creating job applications (Job 

Offers) on the platform. These Job Offers will be intelligently 

linked with Candidate profiles using an index-based search 

approach. 
To intelligently match the Job Applications with the Candidate 

profile, our system uses  MongoDB's full-text indexing 

capabilities [12]. By creating indexes for key fields of Candidate 

profile, such as job titles, descriptions, required skills, work 

experience, education and many other meta details, we enable 

efficient and context-aware search operations at runtime, The 

used algorithm dynamically calculates the score for each job 

based on how closely it matches with candidate profiles, These 

scores are used to present the most recommended jobs at the top 

of the list. Additionally, the system allows Candidates with 

flexible filtering options, allowing them to customize their job 

preferences based on their needs. 
 

 
 

Fig- 3: Proposed System Ontology for E-recruitment system 

 

IV. IMPLEMENTATION 

 
In this section, we will look at how to use the proposed 

methodology and ontology to create a highly efficient, robust, 

and scalable e-recruitment system. The main thing that we need 

to keep in mind is that we are going to create an application that 

will help humans, not replace them. The application’s goal is to 

provide valuable support in managing the recruitment process 

workflow for both job seekers and recruiters. As discussed, we 

are going to use the MERN stack (full-stack) based web 

application for the implementation of the e-recruitment system. 

We will further divide this section into different domains of the 

MERN stack-based web application to properly understand how 

to design the core of the application. We are using a three-tier 

architecture for our e-recruitment system. A three-tier 

architecture is a modular client-server architecture that provides 

three different layers: Presentation tier, Application tier, and 

Data tier.  
We are going to use React SPA (Single Page Application) as a 

presentation layer, which will be responsible for providing end 

client-side interface. This presentation layer is going to interact 

with the other tiers using Application Programming Interface 

calls. At the Application tier, we have Node JS + Express 

backend system, which will be responsible for handling the core 

business logic. We are using MongoDB Atlas at the Data layer, 

which consists of a database and programs to manage internal 

reads and writes.  

4.1 Frontend Implementation 

The frontend of the e-recruitment system is created in React JS, a 

powerful javascript library for building SPA user interfaces. 

Styling is handled using SCSS modules, which allow for scoped 

and modular styles and avoid global style conflicts in React 

environment. To efficiently manage server-side state and handle 

data fetching operations, React Query has been used. TanStack 

Query (formerly known as React Query) is often described as the 

missing data-fetching library for web applications, but in more 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 5 
 

technical terms, it makes fetching, caching, synchronizing and 

updating server state in your web applications a breeze [13]. 
Redux is our choice for global and shared state (for example, 

profile info, configuration flags for the UI, or user attributes tied 

to roles). React Query manages remote data (like fetching job 

listings or user applications), and Redux manages shared state 

that can be reused in multiple components and is not a direct 

result of server calls. This hybrid approach makes sure 

everything has its own responsibility and works efficiently. 
To save on build size while preventing unwanted dependencies, 

we specifically avoided third-party UI libraries or component 

engines. Instead, we built our own custom UI components using 

advanced React features. We implemented modals using React 

Portals. React Portals allow a component to be rendered outside 

the parent DOM hierarchy while maintaining its state and 

behaviour. React Portals are useful for overlays in your UI, such 

as modals, tooltips, and dropdowns, where the current location of 

the DOM is important to the user experience. 
The system features multiple frontend pages, bound with specific 

user roles. These include user authentication pages like login, 

registration, forgot password, dashboard views for candidates, 

companies, event and benefit partners, and super/sub-admins. 

Each role has access to its specific profile pages with additional 

sections like job listings, resume builders, talent admin panels, 

partner organizer pages etc. This frontend design will help us in 

creating a modular and scalable structure for the e-recruitment 

system (figure 4). 

 

 

Fig- 4: E-recruitment system frontend hierarchy 

4.2 Backend Implementation 

The backend of this system is developed using Node JS and 

Express as discussed above, which ensures high performance 

and scalable server side architecture. To helps us modularize the 

development and scalability, backend system is structured into 

different microservices, each will be responsible for handling a 

specific business domain, logics and requirements. The main 

microservices includes: 

 
Authentication Service: As the name of the service suggests, it 

will be responsible for handling all the authentication-related 

tasks such as user registration, login, forgot password workflow, 

token-based authentication and authorization using JWT (JSON 

Web Token). This ensures all endpoints are securely protected 

and accessible to only authorized users. 
Master Service: Handles centralized data and configurations, 

such as roles, categories, filters, and lookup entities used across 

different modules. 
Main Service: This service acts as the core business logic layer, 

which is responsible for managing job posts, user interactions, 

applications, resumes, dashboards, and other primary 

functionalities. 

Shared Utility Module: This module is developed as a Git 

submodule, this reusable module service provides helper 

functions, constants, and common logic shared across all 

services to reduce duplication and increase maintainability. 

 
While developing any application, it is very important to 

document the code workflows, any specific configurations, third 

party dependencies etc. For documenting the REST apis we are 

using Swagger Autogen which will be responsible for 

automatically generating the documentation with minimal 

amount of code. This helps us maintain up-to-date interactive 

documentation for all endpoints with different endpoints and 

structure, improving development productivity and 

communication between teams. For communication, alerts, 

notifications, the backend system is integrated with Nodemailer 

and Mailtrap for safe and efficient emails deliveries during 

development and testing phase. To implement security and 

access control over the system, we uses a middleware-based 

approach provided by Express. Rolebased restrictions are 

implemented through custom middlewares that validate user 

before granting access to specific resources. This combination of 

modular microservices, robust authentication and authorization 

capabilities, formal and inetractive documentation helps the 

backend to offer flexibility and security which is an essential 

factore for designing multirole e-recruitment system. 

4.3 Database Implementation 

For the database layer, the system utilizes Mongodb, a NoSQL 

document-oriented database that provides high performance, 

scalability and flexibility in handling a large volume of records. 

Given the constantly changing and heterogeneous nature of the 

data in an e-recruitment platform (user profiles, job profiles, job 

applications, event tracking), MongoDB is the best option.  
To communicate with the database efficiently, the application 

uses Mongoose, which is an Object Data Modeling (ODM) 

library for MongoDB and Node JS. Mongoose provides a 

schema-based solution to modeling the application data, as well 

as validation, query building, and business logic at the data level. 

Each entity in the system—such as candidates, employers, jobs, 

and partners—is defined as a separate schema, resulting in neat 

models for our data and their relationships. 

4.4 Deployment Strategy 

To ensure high availability, scalability and cost-effective 

resource management, the e-recruitment system is deployed 

using a cloud-native approach. The frontend application is 

deployed using AWS S3 as a static website. S3 provides a highly 

durable and scalable storage service that supports fast content 

delivery. The application uses a Mongodb Atlas, an awfully 

managed cloud database service to host Mongodb instance. This 

ensures automated backups, monitoring, scaling and security 

controls such as IP whitelisting and TLS encryption. The 

backend architecture follows a microservices pattern, where 

services such as Authentication, Master and Main services are 

containerized using Docker. Each services run independently, 

allowing modular updates and better full isolation. These 

services are deployed on AWS EC2 instances, which provide full 

control over the server environment. Docker helps us in ensuring 

environment consistency, simplified deployment and isolation 

between services. To efficiently manage incoming HTTP 

requests and route them to the correct microservices, we are 

using nginx as a reverse proxy server. Nginx handles load 

balancing and URL-based routing, allowing all backend APIs to 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 6 
 

be served through a unified domain (figure 5). 

 

 
Fig- 5: E-recruitment system deployment strategy 

 

V. RESULT 
 

The proposed e-recruitment system was successfully 

implemented using modern, scalable architecture backed by 

microservices and intelligent matching logic. This system 

demonstrates robust performance in handling various user roles 

and responsibilities while ensuring a seamless user experience 

throughout the application. The frontend is created by React with 

modular SCSS and custom UI components, which provides clean 

and natural navigation for all user types: Super Admin, Sub 

Admin, Candidate, Company, Partners etc. 
One of the key achievements of this system is the real-time job 

recommendation system, which uses Mongodb’s full-text index 

based search to match candidates to jobs based on profile 

content. This allows the platform to dynamically calculate and 

assign a relevancy score based on the candidate’s profile and 

activities.  
The backend is organized into distinct microservices that allow 

independent development, scaling and deployment of core 

modules like authentication, main, master etc. By using docker 

and deploying services like AWS EC2 with nginx as reverse 

proxy server, we ensured high availability, load balancing and 

cleaner routing services. Below are selected screenshots (figures 

6-9) that showcase different features and user interfaces of the 

system. All screenshots display placeholder or dummy data for 

demonstration purposes only. 
 

 
Fig- 6: Company’s Community Page 

 

 
Fig- 7: Company’s Job Editor Page 

 

 
Fig- 8: Company’s Profile Page 

 
Fig- 9: Candidate’s Job Engine Page 

 

VI. CONCLUSION 

 
The development and implementation of the proposed e-

recruitment system represents a significant step towards 

modernizing and gap filler between candidates and recruiters in 

this digital era. By integrating intelligent features like real-time 

job matching, modular microservices and role-based access 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51035                                                      |        Page 7 
 

controls, this proposed system not only enhances the e-

recruitment system but also tries to overcome the gap found in 

traditional systems. This research demonstrates how proper 

architecture combined with the right set of technologies - React, 

Node JS, Express, Mongodb, Mongoose, Docker, AWS, and 

many more can deliver a robust, flexible, scalable and 

maintainable solution for complex use cases. This system is 

designed to scale with growing demand, accommodate diverse 

workflows, and maintain data integrity. As final words, the 

implemented system successfully meets the research and 

development goals and serves as a strong foundation for 

continuous innovation in the e-recruitment domain. 
 

VII. FUTURE SCOPE 
 

In the future, system can be significantly enhanced through the 

development of a cross-platform mobile application, by 

consuming the existing RESTful apis and modular backend 

architecture for seamless integration.  
As we explore the future scope of the proposed system, it’s very 

important to note that its scalability and direction may evolve 

based on market trends, technological shifts etc. Nevertheless 

there are several interactive features that can significantly 

enhance user experience, let’s take a look at some of them. 
Introducing new features like Kudos or Endorsement system will 

enable candidates to receive recognition from peer members and 

recruiters, which adds a layer of social credibility to their 

profiles. A skill assessment module consists of quizzes, 

coding/technical challenges which will further validate user 

competencies directly on their profiles. Implementing a built-in 

calendar and scheduling tools which will streamline interview 

coordination and availability tracking. Additionally, a secure, 

role-based in-app chat system will facilitate direct 

communication between candidates, companies, and partners. To 

optimize development workflows, setting up CI/CD pipelines is 

also a logical step forward. We can use many latest pipeline tools 

like Github actions, Gitlab CI/CD helpers etc. Lastly, integrating 

gamification elements such as progress tracking, badges, and 

leaderboards can help drive user engagement and long-term 

retention. 
 

REFERENCES 

 
1. N. Kumar, P. Garg, and A. C. S. Pvt, “Impact of Online-

Recruitment on Recruitment Performance,” 2010, pp. 327–

336.  

2. Dr. Bhupendra Singh Hada “Opportunities & Challenges of 

E-Recruitment” 2015, pp. 1–4. 

3. Ugo Chuks Okolie and Ikechukwu Emmanuel Irabor “E-

Recruitment: Practices, Opportunities and Challenges” 

2017, pp. 116-122.  

4. Fanny Ramadhani*, Muhammad Zarlis “Analysis of e-

Recruitment System Design” Volume 9, Number 1, March 

2019 pp. 38 - 45.  

5. Mohanish Bawane, Ishali Gawande, Vaishnavi Joshi, Rujuta 

Nikam, Prof. Sudesh A. Bachwani “A Review on 

Technologies used in MERN stack” Volume 10 Issue I Jan 

2022 pp. 479-488.  

6. Abdulrahman Aljuaid and Maysam Abbod “Artificial 

Intelligence-Based E-Recruitments System” 2020, pp. 144-

147 

7. https://www.mongodb.com/docs/manual/introduction/ 

8. https://developer.mozilla.org/en-

US/docs/Learn_web_development/Extensions/Server-

side/Express_Nodejs/Introduction 

9. https://react.dev/learn 

10. https://trends.google.com/trends/explore?date=today%205-

y&q=MERN%20Stack,MEAN%20Stack,PERN%20stack,M

EVN%20stack,LAMP%20stack 

11. https://dev.to/ashay_tiwari_3658168ad5db/tunneling-made-

simple-exposing-local-react-and-node-apps-with-ngrok-and-

localtunnel-5g1g 

12. https://www.mongodb.com/resources/basics/full-text-search  

13. https://tanstack.com/query/latest/docs/framework/react/over

view 

http://www.ijsrem.com/
https://www.mongodb.com/docs/manual/introduction/
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Server-side/Express_Nodejs/Introduction
https://react.dev/learn
https://trends.google.com/trends/explore?date=today%205-y&q=MERN%20Stack,MEAN%20Stack,PERN%20stack,MEVN%20stack,LAMP%20stack
https://trends.google.com/trends/explore?date=today%205-y&q=MERN%20Stack,MEAN%20Stack,PERN%20stack,MEVN%20stack,LAMP%20stack
https://trends.google.com/trends/explore?date=today%205-y&q=MERN%20Stack,MEAN%20Stack,PERN%20stack,MEVN%20stack,LAMP%20stack
https://dev.to/ashay_tiwari_3658168ad5db/tunneling-made-simple-exposing-local-react-and-node-apps-with-ngrok-and-localtunnel-5g1g
https://dev.to/ashay_tiwari_3658168ad5db/tunneling-made-simple-exposing-local-react-and-node-apps-with-ngrok-and-localtunnel-5g1g
https://dev.to/ashay_tiwari_3658168ad5db/tunneling-made-simple-exposing-local-react-and-node-apps-with-ngrok-and-localtunnel-5g1g
https://www.mongodb.com/resources/basics/full-text-search
https://tanstack.com/query/latest/docs/framework/react/overview
https://tanstack.com/query/latest/docs/framework/react/overview

