¢27 “2x,
A : e : : .
@5‘" International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Design and Development of Novel Error Detection and Correction in
Communication Systems

Kavita Kanathe Prof Megha Gupta Dr. Shivangini Morya
PG Scholar Assistant Professor Associate Professor and Head
Department of Electronics and Department of Electronics and Department of Electronics and
Communication Engineering Communication Engineering Communication Engineering
SAGE University Indore SAGE University Indore SAGE University Indore

Abstract. This research presents the development and performance evaluation of a Hybrid Convolutional
Neural Network-Assisted Decoder (HCNAD) for error detection and correction in digital communication
systems. The proposed method combines the classical Golay coding scheme with neural network-based
decoders, specifically Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN)
architectures. Comparative analysis was performed with the traditional Golay baseline using performance
metrics such as Bit Error Rate (BER) and Frame Error Rate (FER) under varying signal-to-noise ratios
(Eb/Ns). Experimental results demonstrate that the CNN-assisted decoder consistently outperforms both the
baseline and ML P-assisted models, especially in low signal-to-noise conditions. The findings highlight the
potential of integrating deep learning with conventional coding schemes to enhance communication
reliability and reduce decoding errors in noisy environments.
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1 Introduction

Reliable data transmission is a fundamental requirement of digital communication systems. Noise in the
transmission medium introduces errors that can corrupt the received data. Error detection and correction
(EDAC) techniques such as Hamming, Golay, and cyclic redundancy checks have been traditionally employed
to combat this issue.

While these classical approaches perform well under moderate noise, their error correction capabilities are
limited by fixed code structures and decoding algorithms. In contrast, machine learning, and particularly neural
networks, offer adaptive and data-driven learning capabilities, making them suitable for modeling non-linear
relationships in noisy communication channels.

Recently, researchers have started exploring deep learning-assisted error correction techniques, where neural
networks act as either standalone decoders or assist conventional schemes. However, most existing works utilize
simple feedforward networks or recurrent architectures that are computationally expensive.

This work proposes a Hybrid Convolutional Neural Assisted Decoder (HCNAD) that combines the robust
structure of Golay codes with the pattern recognition strength of CNNs. The CNN learns to refine the decoding
decisions based on soft information derived from noisy channel outputs, thereby improving decoding accuracy.
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2 Literature Review

. Golay Codes: The Golay (23,12) code is a well-known perfect code capable of correcting up to
three-bit errors in a 23-bit block [1]. Despite its strong correction capability, its hard-decision decoding
can still produce residual errors under high-noise conditions.

. Hamming Codes: Hamming codes (15,11) and (7,4) are simple and efficient but are limited to
single-bit error correction [2].
. Neural Decoders: Nachmani ef al. [3] introduced a neural belief propagation approach to train

neural decoders capable of improving over traditional belief propagation in low SNRs. Gruber et al. [4]
extended this with deep neural networks for linear block codes.

. Hybrid Models: Recent studies [5—6] explore combining classical ECC structures with neural
models, leading to hybrid systems that balance interpretability and learning flexibility.

However, few studies have applied convolutional neural architectures to classical ECC frameworks. CNNs

can learn local parity relations efficiently, reducing the decoding error probability. This research focuses on this
gap and introduces a CNN-assisted Golay decoder for improved noise resilience.

3 Methodology
3.1 System Overview

The proposed hybrid decoding framework consists of two primary modules:

1. Conventional Golay Encoder-Decoder
2. CNN-based Neural Decoder Enhancement

The transmitter encodes 12-bit input data into 23-bit Golay codewords. The encoded symbols pass through an
Additive White Gaussian Noise (AWGN) channel. The receiver first performs traditional Golay decoding,
followed by CNN-based refinement. The block diagram of methodology is shown below

)
Encoder Golay
Transmitter (Golay 23.12) BPSK Decoder Receiver
CNN
—_—

y

[ HCNAD ]

Figure 1 Block diagram of Methodology used

The proposed methodology for the Hybrid Convolutional Neural Aided Decoder (HCNAD) is designed to
enhance the decoding performance of traditional Golay-coded communication systems. The process begins at
the transmitter section, where an input bit stream representing digital information is first encoded using a
convolutional encoder. This encoding introduces redundancy into the data stream, which helps improve error
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correction capability. The convolutionally encoded bits are then further encoded using a Golay (23,12) block
code, providing an additional layer of protection against transmission errors. Once the encoding process is
complete, the coded bits are modulated using Binary Phase Shift Keying (BPSK), which converts the binary
symbols into analog waveforms suitable for transmission over a communication channel.

The modulated signal is then transmitted through an Additive White Gaussian Noise (AWGN) channel, which
simulates the real-world effect of noise on the signal. The level of noise is determined by the signal-to-noise
ratio per bit (Eb/No), allowing controlled testing under different channel conditions. At the receiver end, the
signal undergoes BPSK demodulation to retrieve soft decision values known as Log-Likelihood Ratios (LLRs).
These soft values contain probabilistic information about each transmitted bit, which helps improve decoding
accuracy.

The demodulated LLRs are first processed through a Golay decoder that corrects single and double-bit errors
while detecting triple-bit errors. The output of the Golay decoder is then passed to a Viterbi decoder, which
performs maximum likelihood sequence estimation based on the convolutional code structure. However,
traditional decoding methods often leave some residual errors uncorrected, especially under low signal-to-noise
conditions. To address this limitation, the Hybrid Convolutional Neural Aided Decoder (HCNAD) introduces a
neural network-based decoding layer after conventional decoding.

In the HCNAD stage, the LLR information is reshaped and fed into a neural network model that refines the
decoding process. Two neural architectures are considered: a Multilayer Perceptron (MLP) and a Convolutional
Neural Network (CNN). The MLP-based HCNAD learns nonlinear relationships between noisy input features
and original bit sequences, while the CNN-based HCNAD leverages local spatial patterns among LLRs to
enhance decoding accuracy. The CNN’s convolutional layers extract meaningful features from the input data,
making it particularly effective in recognizing complex noise patterns and residual error correlations. The output
of the neural decoder represents the final corrected bit stream, which closely approximates the originally
transmitted data.

Finally, the performance of the system is evaluated using two key metrics: Bit Error Rate (BER) and Frame
Error Rate (FER). BER is calculated as the ratio of incorrectly decoded bits to the total number of transmitted
bits, while FER represents the ratio of erroneous frames to total transmitted frames. Comparative analysis is
conducted between the baseline system (convolutional and Golay codes without neural enhancement), the MLP-
based HCNAD, and the CNN-based HCNAD. The results show that the CNN-aided decoder outperforms both
the traditional and MLP-based approaches by achieving lower BER and FER values. This demonstrates that the
integration of deep learning into traditional channel decoding frameworks can significantly improve
communication reliability, especially in noisy environments.

3.2 Golay Encoder and Channel Model

Each 12-bit message mmm is encoded using the Golay (23,12) generator matrix G:
c=m-G

where c represents the 23-bit codeword. The AWGN channel introduces Gaussian noise n to the transmitted
signal:

r=c+nn~N(0,02)
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The signal-to-noise ratio (SNR) is defined by Eb/NO in decibels.

3.3  Neural Network Architectures

Two neural architectures were designed and compared:

. HCNAD-MLP (Baseline Neural Model)

A two-layer feedforward network with ReLU activation trained on soft input samples (23 features).
Limitation: Does not learn inter-bit correlations effectively.

. HCNAD-CNN (Proposed Model)

A 1D convolutional neural network with two Conv1D layers and sigmoid output activation to predict
the corrected 12-bit message.

This architecture learns spatial dependencies among the received bits, enabling superior decoding
performance.

3.4 Evaluation Metrics

The following metrics were used for performance evaluation:
l. Bit Error Rate (BER):

Number of Bit errors
Total Transmitted Bits

BER =

2. Frame Error Rate (FER):

Number of Frames with Errrors

FER =
Total Frames

Simulations were performed for Eb/N0=1,2,3,4 dB with 1500 test blocks per SNR point.

4 Results and Discussion

The performance evaluation of the proposed Hybrid Convolutional Neural Aided Decoder (HCNAD) model
was carried out by comparing it with the traditional Golay baseline decoding method. The analysis focused on
two key performance parameters: Bit Error Rate (BER) and Frame Error Rate (FER) across varying signal-to-
noise ratios (Eb/No) ranging from 1 dB to 4 dB.

At Eb/No =1 dB, the Golay baseline achieved a BER of 0.1250 and FER of 0.8123. The HCNAD-MLP model
performed slightly worse with BER 0.1298 and FER 0.8137, whereas the HCNAD-CNN achieved a better BER
of 0.11 and a significantly improved FER of 0.746. This indicates that even at low SNR conditions, the CNN-
based hybrid model begins to generalize noise patterns more effectively than the traditional method.

At Eb/No =2 dB, the Golay baseline improved to a BER 0f 0.0975 and FER of 0.714. The HCNAD-MLP model
showed comparable results with BER 0.1027 and FER 0.7303, while the HCNAD-CNN model further reduced
errors to BER 0.0813 and FER 0.6083, highlighting its growing robustness with increasing signal strength.
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At Eb/No = 3 dB, the Golay baseline achieved a BER of 0.0761 and FER of 0.5993. The HCNAD-MLP model
yielded BER 0.0823 and FER 0.6263, while the HCNAD-CNN model achieved a BER of 0.0595 and FER
0.4957, showing a notable performance enhancement over both baseline and MLP-based hybrid approaches.

Finally, at Eb/No = 4 dB, the Golay baseline reached its best performance with a BER of 0.0559 and FER of
0.495. The HCNAD-MLP model maintained close performance with BER 0.0605 and FER 0.5213, while the
HCNAD-CNN achieved the lowest error rates among all, with BER 0.0397 and FER 0.3657.

Overall, the HCNAD-CNN model consistently outperformed the Golay baseline and HCNAD-MLP in both
BER and FER, particularly at higher SNR levels. This demonstrates that the convolutional neural network is
more efficient in capturing and mitigating structured noise patterns compared to the traditional or MLP-based
decoders. The results validate that integrating CNN architectures into hybrid decoding systems can lead to
significant improvements in error correction performance, making the proposed HCNAD-CNN model a
promising solution for adaptive and high-reliability communication systems.

BER Comparison at Eb/NO = 3 dB

0.08

0.06

B 0.04

0.02

0.00

Figure 2 BER Comparison at Eb/No =3dB

The BER bar chart at Eb/No = 3 dB provides a clear visual comparison of the bit error performance across the
three decoding schemes: Golay baseline, HCNAD-MLP, and HCNAD-CNN. As observed, the proposed
HCNAD-CNN model achieves the lowest BER (0.0595), outperforming both the traditional Golay-based
decoder (0.0761) and the hybrid MLP-based decoder (0.0823). This indicates that the convolutional neural
network is able to better capture spatial dependencies and correlation patterns within the encoded bits, allowing
it to correct residual errors that conventional decoding and fully connected neural architectures fail to handle.
The MLP model, although slightly underperforming compared to the baseline, still shows comparable results,
suggesting its potential with improved training data or architecture optimization. Overall, the BER bar chart
highlights that the CNN-based hybrid error correction method enhances reliability at moderate SNR levels,
making it more effective for communication systems that operate under noisy channel conditions
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BER vs Eb/No for Conventional and HCNAD Systems
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Figure 3 BER vs Eb/No HCNAD

The BER versus Eb/No graph for the Golay baseline, HCNAD-MLP, and HCNAD-CNN schemes illustrates the
relationship between signal-to-noise ratio and bit error rate across different decoding strategies. As Eb/No
increases from 1 dB to 4 dB, all three approaches exhibit a clear downward trend in BER, reflecting the expected
improvement in error performance with stronger signal conditions. However, the HCNAD-CNN consistently
maintains the lowest BER at every Eb/No level, indicating its superior ability to correct residual errors even in
low signal-to-noise environments. The Golay baseline follows closely, while the HCNAD-MLP shows a slightly
higher BER throughout, suggesting that its learning capacity is limited compared to the CNN. The steeper
decline in BER for the CNN-based decoder highlights its robustness and adaptability in extracting deeper noise-
related patterns, demonstrating that convolutional feature learning can significantly enhance the accuracy and
reliability of traditional coding techniques in communication systems
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FER vs Eb/No for Conventional and HCNAD Systems
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Figure 4 FER vs. Eb/No HCNAD

The FER versus Eb/No graph for the Golay baseline, HCNAD-MLP, and HCNAD-CNN schemes provides a
detailed comparison of frame-level reliability as the signal-to-noise ratio improves. As Eb/No increases from 1
dB to 4 dB, all three methods show a consistent decrease in frame error rate, confirming that higher signal
quality results in fewer frame losses during transmission. Among the three, the HCNAD-CNN demonstrates the
most significant reduction in FER, achieving the lowest error values at all Eb/No points. This indicates its
superior capability to reconstruct entire data frames accurately even under noisy channel conditions. The Golay
baseline performs moderately well, while the HCNAD-MLP shows slightly higher FER values, suggesting that
while the MLP improves over the conventional approach, it lacks the spatial feature extraction advantage of
CNNs. The smooth and steep decline in the CNN-based FER curve reflects its enhanced generalization and
robustness, validating the integration of convolutional learning with traditional error correction codes as an
effective hybrid approach for improving communication reliability.

5 Conclusion

The proposed HCNAD framework demonstrates significant potential for improving error detection and
correction performance in digital communication systems. Comparative results show that while the Golay code
provides reliable baseline performance, the integration of neural networks—particularly CNN architectures—
leads to a notable reduction in both BER and FER across various Eb/No levels. The CNN-based decoder exhibits
superior noise resilience and better generalization compared to the MLP-based model, owing to its ability to
extract spatial patterns from corrupted codewords. This hybrid learning-based decoding approach validates that
deep learning can effectively complement traditional coding theory, offering a robust mechanism for achieving
higher accuracy and reliability in data transmission systems
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6 Future Scope

Future work can extend this study by exploring advanced deep learning architectures such as Recurrent Neural
Networks (RNNs), Transformers, or hybrid CNN-RNN models to capture temporal dependencies in code
sequences. Additionally, the model can be trained on real-world channel conditions, including fading and
multipath effects, to assess its performance in practical scenarios. Optimizing model complexity and
implementing the decoder on hardware platforms such as FPGAs or DSPs can further enable real-time
applications. Expanding the study to other coding schemes like LDPC, Turbo, or Polar codes may also reveal
broader applicability of neural network-assisted decoding in modern communication systems.
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