

Design and Development of Regenerative Breaking System

A. RAMESH¹, P. RAVICHANDRAN², C. VIMALKRISHNAN³, M. KATHIRESH⁴, K. SABAREES⁵,
P. SANJAIKUMAR⁶, P. SANTHOSH⁷

¹LECTURER / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.

²HOD / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.

³GUIDE & LECTURER / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.

^{4,5,6,7}STUDENT / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.

Abstract - Regenerative braking systems play a vital role in improving the energy efficiency of modern electric and hybrid vehicles by recovering kinetic energy during deceleration. This project focuses on the design and development of a regenerative braking system that converts the kinetic energy of a moving vehicle into electrical energy, which is otherwise dissipated as heat in conventional braking systems. An electric motor is utilized to operate in dual modes, functioning as a drive motor during propulsion and as a generator during braking. When braking is applied, the motor generates electrical energy from wheel rotation and transfers it to an energy storage unit such as a battery or capacitor through power electronic converters. An electronic control unit ensures smooth transition between driving and braking modes while maintaining effective deceleration and system safety. The integration of regenerative braking with conventional friction brakes provides reliable stopping performance under all operating conditions. The developed system enhances overall energy utilization, reduces mechanical brake wear, and extends the operational range of electric vehicles. This study demonstrates the potential of regenerative braking technology to contribute significantly to sustainable transportation and efficient energy management in automotive and electromechanical applications.

Key Words: Regenerative Braking System, Energy Recovery, Electric Motor Generator, Energy Storage System, Power Electronics, Electric Vehicles, Sustainable Transportation

1. INTRODUCTION

Energy efficiency has become a critical focus in modern transportation and electromechanical systems due to increasing fuel consumption, rising energy costs, and growing environmental concerns. Conventional braking systems rely on friction to slow down a vehicle, converting kinetic energy into heat that is dissipated into the surroundings. This process results in significant energy loss and reduced overall system efficiency. To overcome this limitation, regenerative braking systems have been developed as an effective solution for recovering and reusing energy during vehicle deceleration.

A regenerative braking system operates by utilizing the electric motor in generator mode during braking conditions. When the vehicle slows down, the kinetic energy from the rotating wheels

is converted into electrical energy instead of being wasted as heat. This recovered energy is stored in an energy storage device such as a battery or supercapacitor and can later be used to assist vehicle propulsion. By integrating power electronics and an electronic control unit, the system ensures smooth energy conversion, controlled braking force, and safe operation under varying driving conditions.

Regenerative braking has gained widespread adoption in electric vehicles, hybrid vehicles, and electric rail systems due to its ability to extend driving range, reduce fuel consumption, and minimize mechanical brake wear. In addition to improving vehicle performance, this technology contributes to reduced carbon emissions and supports sustainable transportation practices. The design and development of efficient regenerative braking systems continue to be an important area of research as the demand for energy-efficient and environmentally friendly mobility solutions increases.

2. PROBLEM STATEMENT

Conventional braking systems used in vehicles and machinery dissipate a large amount of kinetic energy as heat during deceleration, resulting in significant energy loss and reduced overall efficiency. This wasted energy contributes to increased fuel consumption, limited driving range in electric vehicles, and higher operational costs. Additionally, continuous reliance on friction-based braking leads to excessive wear of brake components, increasing maintenance requirements and reducing system lifespan.

With the growing demand for energy-efficient and sustainable transportation systems, there is a need for an effective braking mechanism that can recover and reuse kinetic energy while maintaining reliable braking performance. However, challenges remain in designing a regenerative braking system that ensures smooth energy conversion, efficient storage, and proper coordination with conventional braking systems. Therefore, the problem addressed in this project is the development of a regenerative braking system that minimizes energy loss during braking, improves overall vehicle efficiency, and provides safe, controlled deceleration under varying operating conditions.

3.NEED FOR THE STUDY

The increasing demand for energy-efficient transportation systems and the rapid growth of electric and hybrid vehicles have highlighted the limitations of conventional braking systems. Traditional braking methods waste a significant amount of kinetic energy as heat during deceleration, leading to reduced energy efficiency and higher fuel or battery consumption. This energy loss directly affects vehicle range, operating cost, and environmental sustainability.

There is a growing need to recover and utilize this wasted energy to improve overall system performance. Regenerative braking systems offer an effective solution by converting kinetic energy into electrical energy and storing it for future use. However, the efficiency of energy recovery depends on proper system design, control strategies, and integration with conventional braking mechanisms. Studying regenerative braking systems is essential to understand their construction, working principles, and performance benefits.

This study is required to analyze the feasibility of implementing regenerative braking in practical applications, reduce mechanical brake wear, and enhance vehicle reliability. Furthermore, the research contributes to sustainable energy management by promoting reduced energy loss, lower emissions, and improved utilization of renewable electrical power in transportation and electromechanical systems.

4.LITERATURE REVIEW

Several studies have been conducted on regenerative braking systems to improve energy efficiency and reduce energy losses in transportation systems. Early research focused on the application of regenerative braking in electric trains and trams, where recovered energy was either fed back into the power grid or stored in onboard energy storage systems. These studies demonstrated significant reductions in overall energy consumption and brake wear.

Recent research has emphasized the integration of regenerative braking systems in electric and hybrid vehicles. Researchers have analyzed the use of electric motors operating in generator mode during braking to recover kinetic energy and store it in batteries or supercapacitors. Studies show that supercapacitors are effective for rapid charge-discharge cycles, while lithium-ion batteries provide higher energy density for extended energy storage. Power electronic converters and inverters play a crucial role in managing energy flow and maintaining system efficiency.

Control strategies have also been widely studied to ensure smooth coordination between regenerative braking and conventional friction braking. Advanced electronic control units are used to optimize braking force, maximize energy recovery, and maintain vehicle stability and safety. Several authors have reported that proper blending of regenerative and mechanical braking improves braking performance under varying speed and load conditions.

Recent developments focus on improving system efficiency, reducing losses in power electronics, and enhancing energy storage performance. Simulation-based and experimental studies confirm that regenerative braking significantly extends driving range, reduces maintenance costs, and supports sustainable transportation. These findings highlight the importance of continued research and development to improve regenerative braking systems for future electric mobility applications.

5.METHODOLOGY

The methodology of this project involves the systematic design, development, and analysis of a regenerative braking system to recover kinetic energy during vehicle deceleration. The approach begins with a detailed study of conventional braking systems and regenerative braking concepts to identify energy loss mechanisms and performance requirements. Based on this analysis, a suitable system architecture is selected, including the electric motor, energy storage unit, power electronic components, and control system.

In the next stage, the regenerative braking mechanism is designed by integrating an electric motor capable of operating in both motoring and generating modes. Power electronics such as inverters and converters are employed to manage the bidirectional flow of electrical energy between the motor and the energy storage system. An electronic control unit is developed to monitor braking input, vehicle speed, and battery state, enabling smooth switching between regenerative and friction braking modes.

The system is then implemented on a prototype setup to evaluate its practical performance. Testing is carried out under different operating conditions to analyze energy recovery efficiency, braking response, and system reliability. Performance parameters such as recovered energy, braking effectiveness, and reduction in mechanical brake usage are measured and analyzed. Finally, the results are evaluated to assess the effectiveness of the regenerative braking system in improving energy efficiency and supporting sustainable transportation.

6.MATERIALS

The regenerative braking system is constructed using carefully selected mechanical, electrical, and electronic components to ensure efficient energy recovery and reliable operation. An electric motor is used as the primary component, functioning as a drive motor during propulsion and as a generator during braking. A rechargeable battery serves as the energy storage unit, storing the electrical energy generated during regenerative braking for later use.

Power electronic components such as inverters and DC-DC converters are employed to control the flow of electrical energy between the motor and the battery. These components ensure proper voltage regulation and efficient energy conversion. An electronic control unit (ECU) is used to monitor system parameters and control the switching between motoring and generating modes based on braking input.

Mechanical components include pulleys, shafts, and couplings that transmit rotational motion from the wheels to the motor. A brake pedal and linkage mechanism are used to activate regenerative braking during deceleration. Conventional friction brake components such as brake discs and pads are included to provide additional stopping power when required. The entire system is supported by a rigid frame that ensures structural stability and proper alignment of components.

7.BLOCK DIAGRAM



Fig 1: Block Diagram

8.DESIGN AND MODEL IDEA

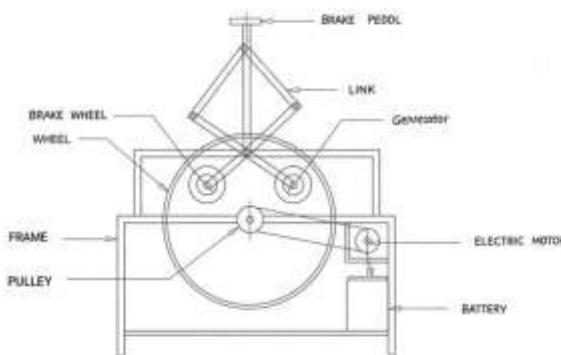


Fig 2: Design and Model Idea

9.CONSTRUCTION

The regenerative braking system is constructed by integrating mechanical, electrical, and electronic components to enable efficient energy recovery during vehicle deceleration. The core component of the system is an electric motor that operates in dual modes. During normal driving conditions, the motor functions as a drive unit, while during braking it acts as a generator to convert kinetic energy into electrical energy.

The motor is mechanically coupled to the vehicle wheels through shafts and pulleys, allowing rotational energy to be transferred effectively during both propulsion and braking. An energy storage unit, typically a rechargeable battery, is connected to the motor through power electronic devices such as inverters and DC-DC converters. These components regulate voltage and current levels to ensure safe and efficient energy transfer.

A brake pedal and linkage mechanism are incorporated to activate regenerative braking when deceleration is required. The electronic control unit (ECU) continuously monitors braking input, vehicle speed, and battery state of charge, and accordingly controls the transition between regenerative braking and conventional friction braking. Standard brake components such as brake discs and pads are integrated to provide additional stopping force when regenerative braking alone is insufficient.

All components are mounted on a rigid frame to ensure structural stability, proper alignment, and safe operation of the system. This construction enables smooth coordination between mechanical braking and energy recovery, resulting in improved efficiency and reliable braking performance.

10.WORKING PRINCIPLE

The regenerative braking system operates on the principle of energy conversion, where the kinetic energy of a moving vehicle is recovered during deceleration and converted into electrical energy. During normal driving conditions, electrical energy from the battery is supplied to the electric motor, which operates in motoring mode to produce torque and drive the wheels through the mechanical transmission system.

When the brake pedal is applied, the control unit detects the braking signal and switches the electric motor from motoring mode to generator mode. As the vehicle slows down, the rotating wheels drive the motor shaft, causing the motor to act as a generator. In this mode, the kinetic energy of the vehicle is converted into electrical energy, creating an opposing torque that assists in slowing down the vehicle.

The generated electrical energy is regulated by power electronic converters and directed to the energy storage system, where it is stored for future use. This process reduces the load on conventional friction brakes and improves overall energy efficiency. For rapid deceleration or complete stopping, the friction braking system operates in coordination with regenerative braking to ensure safe and effective vehicle control. Thus, the system efficiently recovers energy while maintaining reliable braking performance under all operating conditions.

11.APPLICATIONS

- Electric Vehicles (EVs):** Regenerative braking is widely used in electric vehicles to recover kinetic energy during deceleration and store it in the battery, thereby increasing driving range and improving overall energy efficiency.
- Hybrid Electric Vehicles (HEVs):** In hybrid vehicles, regenerative braking reduces fuel consumption by supplying

recovered energy to the electric motor, decreasing dependence on the internal combustion engine.

3. Electric Trains and Trams: Regenerative braking systems are extensively applied in rail transportation to return energy to onboard storage systems or the power grid during braking.

4. Industrial Machinery: Cranes, elevators, and conveyor systems use regenerative braking to improve efficiency and reduce power consumption during frequent stopping and starting operations.

5. Electric Bicycles and Scooters: Light electric mobility systems employ regenerative braking to extend battery life and enhance user efficiency.

12. ADVANTAGES

1. Energy Recovery: Converts kinetic energy that is normally lost as heat into usable electrical energy.

2. Improved Efficiency: Enhances overall system efficiency and extends the operating range of electric and hybrid vehicles.

3. Reduced Brake Wear: Minimizes the use of friction brakes, leading to longer brake life and lower maintenance costs.

4. Lower Energy Consumption: Reduces fuel or battery energy demand by reusing recovered energy.

5. Environmental Benefits: Helps reduce carbon emissions and supports sustainable transportation.

6. Smooth Braking Performance: Provides controlled and gradual deceleration, improving driving comfort and safety.

13. FUTURE SCOPE

The regenerative braking system has significant potential for further development as advancements in electric vehicle technology and energy storage systems continue to evolve. Future improvements may focus on enhancing energy recovery efficiency through advanced control algorithms that dynamically optimize braking force based on driving conditions, vehicle speed, and battery state of charge. The integration of artificial intelligence and machine learning techniques can enable predictive braking strategies, leading to improved energy utilization and vehicle stability.

Developments in energy storage technologies, such as high-performance supercapacitors and solid-state batteries, can further improve the rate and efficiency of energy capture during braking. Additionally, improvements in power electronic components can reduce conversion losses and increase system reliability. The adoption of regenerative braking in a wider range of applications, including heavy-duty vehicles, autonomous vehicles, and industrial machinery, presents new opportunities for energy savings and emission reduction. Continued research and innovation in this field will contribute to more efficient, intelligent, and sustainable transportation systems.

14. CONCLUSION

The design and development of the regenerative braking system demonstrate an effective approach to improving energy efficiency in modern transportation systems. By converting kinetic energy during deceleration into electrical energy and storing it for future use, the system significantly reduces energy losses associated with conventional braking methods. The

integration of an electric motor operating in dual modes, along with power electronic converters and an electronic control unit, ensures smooth energy recovery and reliable braking performance.

The coordinated operation of regenerative and friction braking systems enhances vehicle safety while reducing mechanical brake wear and maintenance requirements. The study confirms that regenerative braking technology plays a crucial role in extending vehicle range, lowering operating costs, and supporting sustainable energy management. Overall, the developed system represents a practical and efficient solution for energy conservation and serves as a foundation for future advancements in electric and hybrid vehicle technologies.

ACKNOWLEDGEMENT

With profound respect, I remember our beloved **Founder Chairman, (Late) Thavathiru Dr. J.K.K. Munirajahh, M.Tech., D.Litt.**, whose visionary leadership and unwavering dedication laid the foundation of **Annai J.K.K. Sampaorani Ammal Charitable Trust and our institution**. His remarkable legacy continues to inspire and guide us in all our endeavors.

I am sincerely grateful to our Honorable Chairperson and Correspondent, **Mrs. Vasanthakumari Munirajahh, of Annai J.K.K. Sampaorani Ammal Charitable Trust and Annai J.K.K. Sampaorani Ammal Polytechnic College**, for her constant encouragement, invaluable guidance, and for providing excellent facilities that made the successful completion of my project possible.

I would like to express my heartfelt thanks to our respected Secretary, **Mrs. Kasthuripriya Kirubakar Murali, of Annai J.K.K. Sampaorani Ammal Polytechnic College**, for her continuous motivation and for extending the necessary facilities that supported me throughout my project.

I am profoundly grateful to our esteemed Principal, **Prof. Dr. P. Ramesh, M.Tech., Ph.D.**, for his guidance, moral support, and encouragement, which greatly helped me during the course of my project.

I extend my sincere thanks to **Mr. C. VIMALKRISHNAN, M.E.**, for his valuable guidance, constant support, and timely suggestions throughout the project period.

I also express my deep sense of gratitude to the Head of the Department, **Mr. P. Ravichandran, B.E.**, for his encouragement and support.

I am thankful to **Mr.C.Vadivel, S. SandeepGandhi, S.KarthickRaja, A. Vignesh, A. Ramesh, D. Arputharaj**, and all the faculty members and staff of the department for their cooperation, guidance, and support during the project.

Finally, I would like to thank **my parents and friends** for their encouragement and support, which motivated me to complete my project successfully.

REFERENCES

1. C. C. Chan, "The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles," *Proceedings of the IEEE*, vol. 95, no. 4, pp. 704–718, 2007.
2. M. Ehsani, Y. Gao, and A. Emadi, *Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design*, 2nd ed., CRC Press, 2010.
3. S. Onoda and A. Emadi, "PSIM-Based Modeling of Automotive Power Systems: Conventional, Electric, and Hybrid Electric Vehicles," *IEEE Transactions on Vehicular Technology*, vol. 53, no. 2, pp. 390–400, 2004.
4. J. Larminie and J. Lowry, *Electric Vehicle Technology Explained*, 2nd ed., John Wiley & Sons, 2012.
5. A. Sciarretta and L. Guzzella, "Control of Hybrid Electric Vehicles," *IEEE Control Systems Magazine*, vol. 27, no. 2, pp. 60–70, 2007.
6. T. Markel and A. Simpson, "Energy Storage Systems for Hybrid Electric Vehicles," *Journal of Power Sources*, vol. 137, no. 1, pp. 76–83, 2004.
7. R. Rajamani, *Vehicle Dynamics and Control*, 2nd ed., Springer, 2011.
8. I. Husain, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2011.