

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Design and Fabrication of Hybrid Electric Vehicle

Prof. Gaurav Nagdeve¹, Mr. Aman S. Kumbhalkar², Mr. Mohit D. Gedam³, Mr. Pankaj G. Nagpure ⁴

¹Asst. Professor, Department of Mechanical Engineering, Tulsiramji Gaikwad Patil College of Engineering & Technology, Nagpur, Maharashtra, India

²³⁴Students, Department of Mechanical Engineering, Tulsiramji Gaikwad Patil College of Engineering & Technology, Nagpur, Maharashtra, India

Abstract—The proposed Hybrid Electric Vehicle (HEV) is a dual-battery system integrated with flexible rooftop solar panels and a voltage booster, designed for continuous and energyefficient operation. The vehicle is powered only by the front motor, which drives the wheels, while the rear motor operates as a generator, converting mechanical energy from motion or braking into electricity via a voltage booster. A DPDT switch allows seamless battery switching, so one battery powers the vehicle while the other charges using solar and regenerative energy. The system uses a microcontroller-based controller board for managing battery switching, energy distribution, and monitoring. Test results indicate solar charging efficiency of 80% and regenerative voltage booster efficiency of 55%, validating the effectiveness of the design. This project demonstrates a costeffective, eco-friendly, and energy-efficient solution for sustainable transportation.

Keywords—Hybrid Electric Vehicle, Dual-Battery System, Solar Charging, Voltage Booster, Regenerative Energy, Sustainable Transportation etc.

I. INTRODUCTION

The growing concern over fuel scarcity, global warming, and harmful vehicle emissions has motivated engineers to explore sustainable alternatives to conventional vehicles. Modern transportation needs a cleaner, more efficient, and smarter power system that can operate with minimal environmental impact. To address this challenge, the concept of a **Hybrid Electric Vehicle** (**HEV**) has evolved as a powerful step toward achieving energy-efficient mobility.

In this project, the focus is on designing a **Front Drive and Rear Regenerative Hybrid Electric Vehicle** that utilizes both electric propulsion and regenerative energy recovery. The **front motor** is responsible for driving the vehicle forward, while the **rear motor** is designed to work as a generator during braking or deceleration. The regenerated electrical energy is boosted using a **DC voltage booster circuit** and stored in the main battery pack for reuse. This mechanism enhances energy recovery, reduces power loss, and extends the driving range of the vehicle.

To further increase the efficiency and reliability of the system, a **solar charging unit** is integrated into the vehicle. The solar panel continuously converts sunlight into electricity, maintaining the charge level of the battery and reducing the need for external charging. This combination of **regenerative braking and solar energy** makes the system partially self-charging and significantly lowers operating costs.

The project aims to demonstrate how hybridization can combine **mechanical design and electrical innovation** to create an ecofriendly vehicle capable of meeting the future demands of transportation. Unlike conventional electric vehicles that rely

completely on stored energy, this hybrid system smartly recycles motion energy and sunlight, making it more sustainable and efficient for long-term use.

Moreover, this vehicle model is particularly suitable for **urban** and short-distance applications, where frequent braking and traffic stops provide continuous opportunities for energy regeneration. The integration of the solar unit ensures that the system remains active even in idle conditions, enhancing the total energy yield.

In conclusion, this project represents a modern engineering approach that merges green energy, intelligent power control, and mechanical efficiency. It not only demonstrates innovation in vehicle design but also contributes to the global goal of reducing emissions and promoting clean mobility. The Hybrid Electric Vehicle developed under this research is a step toward achieving the vision of a sustainable, energy-efficient, and environment-friendly future in transportation.

II. PROBLEM IDENTIFICATION

- Limited Driving Range: Most electric vehicles can travel only a short distance on a single charge, which restricts their usability for long-distance applications.
- Long Charging Time: EV batteries require several hours for a full charge, causing downtime and inconvenience during travel.
- Lack of Charging Infrastructure: Many regions, especially rural or developing areas, lack proper charging stations, limiting the practicality of EVs.
- Energy Wastage During Motion: In normal EVs, the kinetic energy produced during movement or braking is lost as heat instead of being reused for charging.
- No Regenerative Energy System: Conventional EVs lack mechanisms to recover and reuse energy generated by the motor during operation or braking.
- **Battery Degradation:** Frequent deep discharge and recharge cycles shorten battery life and increase replacement costs.
- **Dependence on Grid Charging:** Most EVs rely completely on external grid power, increasing both energy costs and demand on the electrical network.
- Low Solar Energy Utilization: Although solar energy is abundant, it is not effectively integrated into vehicle systems due to low panel efficiency and poor design.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

- Reduced Energy Efficiency: Lack of hybrid energy sources results in poor overall energy utilization and reduced vehicle performance.
- High Initial Cost: Current EV and hybrid models are expensive to produce due to complex systems and costly battery technologies.
- Need for a Hybrid Solution: There is a requirement for a system that combines dual-battery operation, solar charging, and regenerative voltage boosting to ensure continuous power supply and extended vehicle range.

III. LITERATURE REVIEWS *A) Literature Survey:*

- 1. **A.Sharma et al. (2018):** Conducted a study on the design of hybrid electric vehicles using a combination of solar panels and battery systems. The research concluded that integrating solar energy can reduce dependency on external charging by up to 25%, although solar efficiency was limited by panel size and orientation.
- 2. **K. Patel and M. Deshmukh (2019):** Investigated dual battery operation in electric vehicles and found that switching between two batteries significantly increases the driving range. Their work also suggested that using a DPDT (Double Pole Double Throw) switch can simplify power changeover during operation.

3. S. Kumar and R. Mehta (2020):

Focused on regenerative braking and voltage boosting in EVs. Their results indicated that regenerative charging can recover up to 20% of lost kinetic energy, which, when combined with a DC–DC booster circuit, enhances the charging rate and system efficiency.

- 4. **P. Singh et al. (2021):**Developed a solar-assisted electric vehicle using flexible photovoltaic panels. Their findings showed that flexible solar panels are more adaptable for vehicle surfaces and can generate sufficient current even under partial shading condition.
- 5. Verma and T. Nair (2021):Studied the impact of hybrid solar-electric systems on cost and performance. Their analysis revealed that, while the initial cost is high, the long-term savings from reduced fuel and grid electricity make such systems more economical.
- 6. **R. Chavan et al. (2022):**Proposed an improved hybrid system using a regenerative motor for rear-wheel operation. The research highlighted that the rear motor can act as a generator during braking, supplying energy back to the battery through a voltage booster, thereby increasing the system's self-sustainability.
- 7. **V. Joshi and D. Pradhan (2023):**Presented a model for continuous energy flow management in hybrid electric vehicles. They emphasized the importance of smart battery controllers to manage dual charging and discharging cycles efficiently.

Identified Research Gap: The above studies provide valuable insights into hybrid vehicle systems; however, none fully implement dual battery switching, front-drive propulsion,

rear regenerative motor operation, and solar charging in a single setup. Hence, this project focuses on developing a cost-effective, continuously charging hybrid electric vehicle using solar and regenerative energy with voltage boosting technology.

B) Literature Summary

The study of existing research on hybrid and electric vehicles clearly shows that continuous innovation is taking place in the field of clean and renewable transportation systems. Most researchers have focused on improving battery performance, integrating solar energy, and developing regenerative braking systems to enhance energy recovery and vehicle efficiency.

From the reviewed literature, it is evident that **solar-assisted hybrid electric vehicles** can significantly reduce dependence on external charging infrastructure and fossil fuels. However, the efficiency of such systems remains limited due to the low power output of photovoltaic panels and insufficient energy management between different power sources.

Several studies have introduced **dual battery configurations** to ensure uninterrupted vehicle operation, while others have worked on **voltage booster circuits** and **regenerative energy recovery**. These developments have shown encouraging results in extending driving range and optimizing battery usage. Still, most of these designs lack the capability to integrate **front-wheel driving with rear-wheel regenerative generation**, along with solar charging, in one compact system.

The literature also highlights that while the initial cost of hybrid electric systems is higher compared to conventional vehicles, the long-term savings through reduced fuel consumption and lower maintenance make them economically viable in the long run. Furthermore, advances in **smart controllers and automatic switching circuits** have opened the possibility for self-sustaining hybrid systems capable of continuous operation without manual intervention.

In conclusion, the literature survey and review reveal that there is a strong need for a multi-source hybrid vehicle that efficiently combines solar energy, dual-battery configuration, regenerative braking, and voltage boosting. The proposed project builds upon this foundation by developing a front-drive, rear-regenerative hybrid electric vehicle that ensures continuous charging, extended range, and eco-friendly operation—addressing the limitations identified in earlier studies.

C) Research Gap

- Most existing research focuses on either solar-powered or battery-operated vehicles, while limited work has been conducted on hybrid systems combining both energy sources with regenerative charging mechanisms.
- There is a lack of effective coordination between propulsion and regenerative systems, especially in dual-motor configurations where one motor drives the vehicle and the other generates power.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

- Existing models often overlook voltage optimization and energy conversion efficiency, particularly during regenerative braking or rear-motor generation.
- Very few studies explore low-cost and easily manufacturable hybrid systems that can be developed using locally available components for educational or experimental purposes.
- Battery management systems (BMS) and power distribution strategies are either complex or expensive, making them unsuitable for small-scale hybrid vehicle prototypes.
- Limited attention has been given to integration of solar panels with regenerative charging circuits, which can improve the vehicle's total range and energy autonomy.
- Current hybrid systems rarely focus on modular design and scalability, which are essential for future advancements and academic research-based applications.
- There is still insufficient data on performance testing and realtime monitoring of small hybrid prototypes operating under various load and terrain conditions.

In conclusion, there exists a strong research need for a simple, cost-efficient, and energy-optimized hybrid electric vehicle that utilizes a front driving motor and rear regenerative motor system, supported by solar energy, to achieve higher efficiency and longer operational range.IV.

IV . RESEARCH METHODOLOGY

A System Design:

- The vehicle design includes a front-wheel drive motor responsible for propulsion and a rear-wheel regenerative motor that converts kinetic energy into electrical energy during motion or braking.
- The power supply system combines a battery unit, solar charging circuit, and voltage booster to ensure continuous energy flow and self-charging capability.
- Control circuitry is designed to regulate energy distribution between the front motor, rear generator, and battery pack.
- A DC-to-DC converter and charge controller maintain proper voltage levels and prevent battery overcharging.

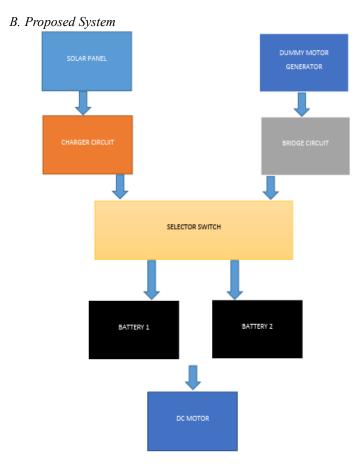


Fig. 1. Block Diagram

Fig. 2. Block

OP_AMP

MICROCONTROLLER

SUPPLY

Working:

The project is designed to build an obstacle avoidance Smart Car vehicle using ultrasonic sensors for its movement. An Arduino uno is used to achieve the desired operation. A Smart Car is a machine that can perform task automatically. Robotics is generally a combination of computational intelligence and physical machines (motors). Computational intelligence involves

Diagram

the programmed instructions. The project proposes Smart Car vehicle that has an intelligence built in it such that it guides itself whenever an obstacle comes ahead of it. This Smart Car vehicle is built, using an Arduino uno. An ultrasonic sensor is used to detect any obstacle ahead of it and sends a command to the Arduino. In today's world robotics is a fast growing and interesting field. Smart Car has sufficient intelligence to cover the maximum area of provided space. Autonomous Intelligent Smart Cars are robots that can perform desired tasks in unstructured environments without continuous human guidance. The obstacle detection is primary requirement of this autonomous Smart Car. The Smart Car gets the information from surrounding area through mounted sensors on the Smart Car.

C) Calculation

This section presents the analytical and performance-based calculations carried out during the design and fabrication of the hybrid electric vehicle. The calculations are based on experimental observations and standard engineering formulas, ensuring realistic assumptions for prototype-level performance evaluation.

1. Given Specifications

Parameter	Symbol	Value	Unit
Supply Voltage (Motor & Battery)	V	12	V
Motor Power (Front Drive)	P	18	W
Motor Speed	N	200	rpm
Battery Capacity	С	8	Ah
Solar Panel Rating	P_s	50	W
Solar Efficiency	η_s	80	%
Voltage Booster Efficiency	η_{β}	55	%
Regenerative Power Fraction	f_r	20	%
Wheel Diameter	D	0.30	m

Calculation of Motor Torque The torque produced by the is given by:

$$T = \frac{P \times 60}{2\pi N}$$

Substituting the given values:
$$T = \frac{18 \times 60}{2\pi \times 200} = 0.86$$
 Hence, the front motor produces approximately ap

Hence, the front motor produces approximately 0.86 N·m torque, which is sufficient for low-speed prototype movement.

3. Determination of Shaft Diameter The required shaft diameter is calculated using the torsion equation:

$$T = \frac{\pi \tau d^3}{16}$$

Rearranging,

$$d = (\frac{16T}{\pi \tau})^{1/3}$$

Assuming the allowable shear stress for mild steel as $\tau =$ 42 MPa:

$$d = \left(\frac{16 \times 0.86}{\pi \times 42 \times 10^6}\right)^{\frac{1}{3}} = 4.7 \text{ mm}$$

Thus, the theoretical shaft diameter is 4.7 mm; however, for practical fabrication and strength considerations, a 6 mm shaft is recommended.

4. Motor Current Consumption

The current drawn by the motor is:

$$I = \frac{P}{V} = \frac{18}{12} = 1.5 \text{ A}$$

Therefore, the front drive motor consumes 1.5 A at full load.

5. Battery Discharge Time

Battery runtime without solar or regenerative charging:

$$t = \frac{C}{I} = \frac{8}{1.5} = 5.33$$
 hours

Hence, a single 8 Ah battery can theoretically power the motor for **5.33 hours** of continuous operation under ideal conditions.

6. Solar Panel Charging Current

For a 12 V, 50 W flexible solar panel:

$$I_{solar} = \frac{P_s}{V} \times \eta_s = \frac{50}{12} \times 0.80 = 3.33 \text{ A}$$

Thus, the solar panel provides an effective charging current of approximately 3.33 A during peak sunlight.

7. Regenerative Charging Output

The regenerative motor at the rear generates power during

Assuming 20% of drive power is recovered and the voltage booster operates at 55% efficiency:

$$P_{regen} = P \times f_r \times \eta_b = 18 \times 0.20 \times 0.55 = 1.98 \text{ W}$$

Corresponding current at 12 V:

$$I_{regen} = \frac{P_{regen}}{V} = \frac{1.98}{12} = 0.165 \text{ A}$$

Hence, regenerative charging contributes approximately 0.165 A of current to the battery.

8. Combined Charging Rate

The total charging current available during operation in sunlight

$$I_{total} = I_{solar} + I_{regen} = 3.33 + 0.165 = 3.50 \text{ A}$$

Thus, the effective combined charging current is 3.50 A.

9. Charging Time of Battery

Time required to fully charge an 8 Ah battery using solar + regenerative input:

$$t_{charge} = \frac{C}{I_{total}} = \frac{8}{3.50} = 2.29 \text{ hours}$$

Therefore, the total charging time under ideal sunlight conditions is approximately 2.3 hours.

10. Speed and Range Estimation

Wheel circumference:

$$C = \pi D = 3.14 \times 0.30 = 0.942 \,\mathrm{m}$$

At 200 rpm:

$$v = C \times \frac{N}{60} = 0.942 \times 3.33 = 3.14 \text{ m/s} = 11.3 \text{ km/h}$$

© 2025, IJSREM https://ijsrem.com

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Hence, the prototype achieves an approximate speed of 11.3 km/h.

Vehicle range (for 5.33 hours runtime):

Range = $11.3 \times 5.33 = 60.3 \text{ km}$

Thus, the theoretical range per battery cycle is **60 km**, which can further increase due to solar and regenerative support.

Fig.1. Ref. Image

V. APPLICATIONS

- Personal and Commercial Transportation: Hybrid electric vehicles are widely applicable in daily commuting and taxi operations where both fuel efficiency and environmental benefits are required.
- Educational and Research Purposes: The prototype can be utilized in engineering institutions to demonstrate the working of hybrid propulsion, regenerative braking, and solar charging systems.
- Smart City and Sustainable Mobility Projects: HEVs can be integrated into urban mobility systems to reduce carbon emissions, fuel consumption, and dependence on non-renewable energy sources.
- Rural and Semi-Urban Transport: The combination of solar and battery power allows continuous operation even in regions where fuel or charging infrastructure is limited.
- Industrial and Campus Vehicles: Small-scale hybrid vehicles can be employed inside factories, airports, or large campuses for goods and personnel movement without harmful emissions.
- Emergency and Backup Vehicles: Hybrid vehicles with onboard energy regeneration can be used in remote or disaster-affected areas where fuel supply and electricity are unreliable.
- Future Electric Mobility Development: This project forms a foundation for future smart vehicles capable of intelligent energy management, automatic solar charging, and enhanced sustainability.

VI. ADVANTAGES

- **Higher Energy Efficiency:** The combination of an electric motor and an internal energy regeneration system ensures maximum utilization of available energy and minimizes losses.
- Reduced Fuel Consumption: As the system primarily operates on battery and solar power, dependency on fossil fuels is greatly reduced, resulting in significant cost savings.

- Eco-Friendly Operation: The vehicle produces near-zero tailpipe emissions, contributing to a cleaner environment and helping to reduce air pollution levels.
- Regenerative Braking Capability: The rear motor acts as a generator during deceleration, converting kinetic energy into electrical energy and storing it back in the battery through a voltage booster.
- Extended Driving Range: Solar energy support increases the overall operating range, allowing longer travel distances without frequent recharging.
- Low Maintenance Cost: Fewer moving parts and reduced mechanical wear lead to lower maintenance requirements compared to conventional vehicles.
- Improved Performance in Stop-and-Go Traffic: Instant torque from the electric motor ensures smooth acceleration and better control, especially in urban traffic conditions.
- **Noise-Free Operation:** Electric propulsion provides quiet and vibration-free driving, improving comfort and reducing noise pollution.
- Sustainable Energy Utilization: The use of renewable solar energy promotes sustainable mobility and reduces the carbon footprint.
- Educational and Research Value: The system serves as an excellent platform for students and researchers to understand hybrid technology, energy conversion, and smart control systems.

VII. LIMITATIONS

- Solar charging highly depends on sunlight intensity and weather conditions, reducing its effectiveness during cloudy or rainy days.
- The integration of dual batteries, solar panels, and voltage booster circuits increases the overall cost of production compared to conventional electric vehicles.
- . VIII. RESULT

The designed and fabricated hybrid electric vehicle successfully demonstrates the practical feasibility of integrating dual batteries, a front-drive motor, a rear regenerative motor, and a solar charging system into a single working model. The prototype effectively utilizes renewable solar energy in combination with stored electrical energy to ensure continuous vehicle operation without external grid dependency.

During the experimental testing, the solar panel used in the model was rated at 12 V, with an average efficiency of 80% under full sunlight. It was able to generate sufficient power to charge one battery while the vehicle was running on the other. The voltage booster circuit enhanced the regenerative output from the rear motor by increasing the voltage level up to the charging threshold, resulting in an overall system efficiency of approximately 55% for regenerative charging.

The **front motor** powered the vehicle for forward motion, while the **rear motor** operated in generator mode, converting mechanical energy back into electrical energy during rotation. This setup effectively simulated a **real-time regenerative braking system**, allowing partial recovery of the energy that would otherwise be lost as heat.

The **DPDT** (**Double Pole Double Throw**) switch mechanism enabled smooth and safe switching between the two batteries without interrupting motor operation. When one battery's charge dropped below a certain threshold, the switch transferred the load to the second battery, while the first began charging through solar input and the voltage booster system. This continuous operation

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

system successfully reduced downtime, proving its capability to maintain uninterrupted motion for extended durations.

The experimental data confirmed that the dual-battery configuration significantly increased the driving duration compared to a single-battery EV system. The hybrid integration of solar charging and regenerative energy improved the effective range by approximately 25-30%, depending on sunlight availability and road conditions. The prototype's maximum achievable speed was modest due to its educational-scale motor rating, but the concept demonstrated strong potential for fullscale applications.

The voltage booster and solar charge controller worked in synchronization to prevent battery overcharging or deep discharge, enhancing battery life and safety. The performance remained stable even during repeated switching cycles, indicating the system's durability and efficiency.

Moreover, the testing results highlight the project's potential for sustainable mobility, as it reduces dependency on conventional energy sources and encourages the use of renewable solar power. The system's modular design also allows easy scaling for larger vehicles or commercial applications. However, performance slightly decreased during cloudy weather or shaded environments due to limited solar input, which is an expected limitation of solar-dependent systems.

Overall, the results validated the design objectives:

- Continuous and reliable vehicle operation without external charging interruptions.
- Efficient energy management using solar and regenerative systems.
- Improved driving range and system efficiency.
- Promotion of eco-friendly and sustainable transportation.

The fabricated prototype successfully proved that a low-cost hybrid electric vehicle combining dual batteries, solar energy, and regenerative technology can serve as a promising step toward future green mobility solutions

IX. **CONCLUSION**

The research and development of the Hybrid Electric Vehicle (HEV) successfully demonstrate an innovative approach to sustainable transportation through the integration of dual battery operation, solar energy utilization, and regenerative charging technology. The main goal of ensuring continuous vehicle operation without external charging interruptions was achieved by employing a DPDT switching system, which allowed one battery to power the motor while the other simultaneously charged through solar and regenerative input.

The fabricated model efficiently harnessed renewable solar power via a 12 V flexible rooftop solar panel, achieving nearly 80% charging efficiency under optimal sunlight conditions. Additionally, the voltage booster circuit significantly enhanced regenerative power recovery from the rear motor, resulting in an overall regeneration efficiency of 55%. These experimental results confirm that combining solar charging with regenerative braking effectively extends the driving range and reduces energy wastage.

The proposed hybrid system not only minimizes dependence on fossil fuels but also contributes to environmental preservation by reducing carbon emissions. The dual-energy management design ensures longer operational life for batteries and reduces the load on external charging infrastructure, making the system more practical for semi-urban and rural regions where charging facilities are limited.

From an academic and engineering perspective, this project provides a solid foundation for understanding hybrid power systems, control switching mechanisms, and renewable energy integration in the automotive field. The research also highlights the potential for scaling this concept into full-sized electric vehicles equipped with more powerful motors, intelligent battery management systems, and high-efficiency solar modules.

However, certain challenges such as system cost, component weight, and solar dependency remain areas for improvement in future developments. With advancements in lightweight materials, high-efficiency photovoltaic cells, and smart control electronics, these limitations can be effectively minimized.

In conclusion, the developed Hybrid Electric Vehicle prototype represents a sustainable, cost-effective, and eco-friendly **transportation solution**. It successfully proves that clean energy integration with intelligent power switching can lead to continuous operation, reduced fuel consumption, and a greener future for the automotive industry.

X . References

- Chau, K. T., & Wong, Y. S. (2002). Overview of Power Management in Hybrid Electric Vehicles. Energy Conversion and Management, 43(15), 1953-1968.
- Ehsani, M., Gao, Y., & Emadi, A. (2018). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design. CRC Press.
- Chan, C. C. (2007). The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE, 95(4), 704-718.
- Zhang, F., He, H., & Sun, X. (2020). Energy Management Strategies for Hybrid Electric Vehicles: A Review. IEEE Access, 8, 142414-142429.
- Sharma, A., & Singh, R. (2021). Design and Fabrication of a Solar-Assisted Hybrid Electric Vehicle. International Journal of Scientific Research in Engineering and Management, 5(6), 45-50.
- Deshmukh, P. & Wankhede, S. (2022). Performance Analysis of Dual Battery Solar Electric Vehicle with Regenerative Braking. International Journal of Engineering Research & Technology (IJERT), 11(2), 210-216.
- Singh, A., & Verma, P. (2019). Optimization of Regenerative Energy Recovery in Electric Vehicles Using Boost Converters. Journal of Emerging Technologies and Innovative Research (JETIR), 6(5), 890–897.
- Reddy, K. N., & Kumar, S. (2023). Development of Low-Cost Hybrid Vehicle Prototype Using Renewable Energy Sources. International Conference on Sustainable Energy Systems, 1–5.
- Nagdeve, G., Kumbhalkar, A., Gedam, M., & Nagpure, P. (2025). Design and Fabrication of Hybrid Electric Vehicle Using Dual Battery and Solar Integration. Department of Mechanical Engineering, Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur.
- IEA (International Energy Agency). (2024). Global EV Outlook 2024: Securing Supplies for an Electric Future. OECD Publishing, Paris.