

Design and Fabrication of Organic Waste Crushing Machine

A. RAMESH¹, P. RAVICHANDRAN², M. NAVANEETHAN³, C. JAYARAM⁴, S. PERINBAN⁵

¹*GUIDE & LECTURER / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.*

²*HOD / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.*

^{3,4,5}*STUDENT / DEPARTMENT OF MECHANICAL ENGINEERIG & ANNAI JKK SAMPOORANI AMMAL POLYTECHNIC COLLEGE, T.N. PALAYAM, INDIA.*

Abstract - The rapid increase in organic waste generation has created significant challenges in waste management, particularly in areas with limited access to electrical power. Effective reduction of organic waste volume is essential to support sustainable disposal methods such as composting and biogas production. This work presents the design and fabrication of a foot-step operated organic waste crushing machine that converts human effort into mechanical energy for waste size reduction. The machine employs a rack and pinion mechanism to transform linear motion into rotary motion, which is further transmitted through a chain-sprocket and gear system to drive a cutter shaft equipped with high-carbon steel blades. The proposed design is simple, economical, and environmentally friendly, eliminating the need for electrical energy. Experimental operation demonstrates that the machine efficiently crushes common biodegradable waste such as vegetable peels and food residues into smaller particles suitable for faster decomposition. Due to its compact structure, low maintenance requirement, and manual operation, the machine is well suited for household use, rural areas, and small institutions. The study highlights the potential of human-powered mechanical systems as sustainable alternatives for decentralized organic waste management.

Key Words: Organic waste management, Foot-step mechanism, Rack and pinion system, Waste crushing machine, Manual power, Sustainable design, Compost preparation.

1. INTRODUCTION

The increasing generation of organic waste due to population growth, urbanization, and changing consumption patterns has become a major environmental concern worldwide. A significant portion of municipal solid waste consists of biodegradable materials such as food scraps, vegetable residues, and agricultural by-products. Improper disposal of this organic waste leads to environmental pollution, unpleasant odors, and the release of greenhouse gases, thereby affecting public health and ecological balance. Effective management of organic waste is therefore essential to promote sustainable development and environmental protection.

Waste size reduction is a crucial step in improving the efficiency of composting and biogas production processes. Smaller particle sizes increase the surface area available for microbial activity, resulting in faster decomposition and higher energy recovery. Conventional organic waste processing systems often rely on electrically powered shredders and crushers, which may not be suitable for rural regions, small households, or areas with unreliable electricity supply. Additionally, high initial costs and maintenance requirements limit their widespread adoption.

In recent years, human-powered mechanical systems have gained attention as sustainable alternatives to electrically driven machines. These systems utilize manual effort to perform useful mechanical work, reducing dependence on non-renewable energy sources. Foot-operated mechanisms are particularly effective as they allow users to apply greater force with less fatigue compared to hand-operated systems. By integrating simple mechanical components such as rack and pinion arrangements, chain-sprocket drives, and gear mechanisms, human energy can be efficiently converted into rotary motion for crushing applications.

This study focuses on the design and fabrication of a foot-step operated organic waste crushing machine intended for small-scale applications. The proposed system is designed to be cost-effective, easy to operate, and environmentally friendly. By eliminating the need for electrical power and using readily available materials, the machine offers a practical solution for decentralized organic waste management. The development of such a system contributes to waste volume reduction, supports composting and biogas generation, and encourages sustainable waste handling practices at the household and community level.

2. PROBLEM STATEMENT

The continuous increase in organic waste generation from households, farms, and small institutions has become a significant environmental and management challenge. A large proportion of this waste consists of biodegradable materials such as kitchen scraps and agricultural residues, which are often disposed of without proper processing. Inadequate treatment of organic waste leads to sanitation issues, unpleasant odors, attraction of pests, and the emission of harmful gases, thereby posing risks to public health and the environment.

Existing organic waste crushing and shredding machines predominantly rely on electrical power and complex mechanical systems. These machines are often expensive, energy-intensive, and require regular maintenance, making them unsuitable for small-scale users and rural areas with limited or unreliable electricity supply. As a result, many communities lack access to affordable and efficient waste size-reduction technologies.

Manual waste handling methods, on the other hand, are time-consuming and physically demanding, offering limited efficiency in reducing waste volume. There is a clear need for a simple, low-cost, and energy-independent system that can effectively reduce organic waste size using minimal human effort. Such a system should be easy to operate, safe, and capable of supporting sustainable waste management practices.

Therefore, the problem addressed in this study is the lack of an affordable, eco-friendly, and manually operated organic waste crushing solution suitable for decentralized applications. The

development of a foot-step operated organic waste crushing machine aims to overcome these limitations by providing an efficient means of waste reduction without dependence on electrical power, thereby promoting environmentally responsible and sustainable waste management.

3.NEED FOR STUDY

The rapid increase in organic waste generation has created serious challenges in waste collection, transportation, and disposal, particularly in developing regions. A large portion of household and institutional waste consists of biodegradable materials that are often disposed of without proper treatment. This results in environmental pollution, foul odor, and increased greenhouse gas emissions. There is a growing need for simple and effective solutions that enable waste reduction at the source rather than relying solely on centralized waste management systems.

Although electrically powered waste shredders and crushers are widely used, their application is limited in rural areas, small households, and low-income communities due to high initial costs, power consumption, and maintenance requirements. In many regions, irregular electricity supply further restricts the use of such machines. As a result, organic waste is often dumped or burned, leading to negative environmental and health impacts. These limitations highlight the need for alternative waste processing systems that are independent of electrical energy.

Manual waste processing methods, while environmentally friendly, are often inefficient and labor-intensive. Therefore, there is a need to develop a mechanical system that can effectively utilize human effort to perform waste size reduction with minimal physical strain. A foot-step operated mechanism offers an efficient solution by harnessing human power in a controlled and productive manner. By integrating simple mechanical elements such as rack and pinion, chain-sprocket, and gear arrangements, sufficient torque can be generated to crush organic waste effectively.

The present study addresses these challenges by designing and fabricating a compact, low-cost, and manually operated organic waste crushing machine. The proposed system aims to promote decentralized waste management, reduce dependency on electricity, and support sustainable practices such as composting and biogas production. This study is essential to demonstrate the feasibility of human-powered waste processing systems and their potential contribution to environmentally responsible waste management at the grassroots level.

4.LITERATURE REVIEW

Organic waste management has received considerable attention due to its growing environmental impact and the need for sustainable disposal methods. Several studies have emphasized that reducing the size of biodegradable waste significantly enhances the efficiency of composting and anaerobic digestion by increasing the surface area available for microbial activity. Researchers have reported that mechanical size reduction is a critical pre-treatment step in organic waste processing systems.

Electrically powered shredders and crushers are commonly used for organic waste processing in urban environments. These machines are capable of handling large volumes of waste with high efficiency. However, previous studies indicate that such systems involve high capital costs, consume significant electrical energy, and require skilled maintenance. As a result, their adoption in rural areas and small-scale applications remains

limited. Researchers have also highlighted that dependency on electricity restricts their use in regions with unstable power supply.

Manual and human-powered machines have been explored as alternatives to electrically driven systems, particularly for small-scale and decentralized waste management. Studies on hand-operated and pedal-operated machines demonstrate that human power can be effectively utilized for mechanical operations when combined with suitable transmission mechanisms. Foot-operated systems have been found to be more efficient than hand-operated devices, as they allow greater force application with reduced operator fatigue.

Several researchers have investigated the use of rack and pinion mechanisms for converting linear motion into rotary motion in human-powered machines. Such mechanisms are valued for their simplicity, reliability, and ease of fabrication. Chain and sprocket drives have also been widely used in mechanical systems due to their high efficiency, flexibility in speed variation, and ability to transmit power over moderate distances. Gear mechanisms are often incorporated to increase torque, making them suitable for cutting and crushing applications.

Cutting blade design and material selection play a crucial role in the performance of organic waste crushers. Literature suggests that high-carbon steel blades provide better wear resistance and cutting efficiency when processing biodegradable materials. Proper alignment of the cutter shaft and the use of bearings have been shown to reduce friction losses and improve operational life.

Despite the availability of various organic waste processing machines, limited literature focuses on simple, foot-step operated crushing systems that are affordable, energy-independent, and suitable for household and rural use. This research addresses this gap by designing and fabricating a manually operated organic waste crushing machine that integrates a foot-step mechanism with rack and pinion, chain-sprocket, and gear arrangements to achieve effective waste size reduction.

5.METHODOLOGY

The methodology adopted for the design and fabrication of the foot-step operated organic waste crushing machine involves systematic planning, mechanical design, material selection, fabrication, and performance evaluation. The overall approach focuses on simplicity, cost-effectiveness, and efficient utilization of human power for organic waste size reduction.

Initially, the problem requirements were identified based on the need for an energy-independent and low-cost organic waste processing solution suitable for small-scale applications. Design objectives such as compact structure, ease of operation, safety, and minimal maintenance were established. Based on these requirements, a conceptual design was developed incorporating a foot-step mechanism, rack and pinion system, chain-sprocket drive, gear arrangement, and cutter assembly.

Mechanical design calculations were carried out to determine suitable dimensions and specifications for the rack, pinion, gears, shafts, and cutting blades. Torque and force requirements were estimated based on typical organic waste properties and expected foot force applied by an average user. Appropriate speed reduction and torque amplification were achieved through the selection of gear ratios and sprocket sizes. Material selection was performed considering strength, durability, availability, and cost. Mild steel was chosen for the frame and structural components,

while high-carbon steel was selected for the cutting blades to ensure effective crushing and wear resistance.

The fabrication process involved cutting, welding, drilling, and machining operations. The mild steel frame was fabricated to provide structural rigidity and proper alignment of all components. The foot step plate was mounted on a pivot mechanism and connected to the rack, which was accurately aligned with the pinion gear to ensure smooth motion transfer. Bearings were used to support the cutter shaft and reduce frictional losses. The chain-sprocket and gear mechanisms were assembled and properly tensioned to achieve efficient power transmission.

After fabrication, the machine was assembled and tested under no-load and load conditions. Various types of organic waste such as vegetable peels and food residues were processed to evaluate crushing efficiency, ease of operation, and system stability. Observations were made regarding blade performance, smoothness of operation, and operator comfort. Necessary adjustments were carried out to improve alignment and operational efficiency.

Finally, the performance of the developed machine was analyzed based on waste size reduction, operational effort, and reliability. The methodology ensures that the proposed system meets the design objectives and demonstrates the feasibility of a foot-step operated organic waste crushing machine for sustainable and decentralized waste management applications.

6. MATERIALS

The materials used in the fabrication of the foot-step operated organic waste crushing machine were selected based on strength, durability, availability, and cost-effectiveness. The major components and their corresponding materials are described below.

6.1 Mild Steel (MS)

Mild steel is used for the main frame, foot step plate, and supporting structures due to its good mechanical strength, ease of fabrication, and low cost. It provides sufficient rigidity to withstand repeated foot pressure and operational loads while ensuring long service life.

6.2 Rack and Pinion Mechanism

The rack and pinion are fabricated from medium carbon steel to ensure adequate strength and wear resistance. This mechanism converts the linear motion of the foot step into rotary motion, forming the primary motion transmission unit of the system.

6.3 Chain and Sprocket Assembly

The chain and sprockets are made of hardened steel to ensure efficient power transmission with minimal energy loss. This assembly allows flexibility in speed variation and transmits rotary motion from the pinion to the gear mechanism.

6.4 Gear Mechanism

Steel gears are used to increase torque before transmitting motion to the cutter shaft. The gear arrangement ensures sufficient cutting force at the blades even under moderate foot pressure.

6.5 Cutter Shaft

The cutter shaft is manufactured from high-strength steel and supported on bearings. It transmits torque from the gear

mechanism to the cutting blades while maintaining smooth rotation and alignment.

6.6 Cutting Blades

High-carbon steel is used for the cutting blades due to its high hardness, sharpness retention, and wear resistance. These blades are responsible for crushing and chopping organic waste effectively.

6.7 Bearings

Ball bearings are employed to support the rotating shafts and reduce frictional losses. They improve operational efficiency and enhance the durability of the rotating components.

6.8 Return Spring

A helical compression or tension spring made of spring steel is used to return the foot step to its initial position after each press. This enables continuous and smooth operation.

6.9 Hopper and Collection Tray

The hopper and collection tray are fabricated from mild steel sheet. The hopper guides organic waste safely into the cutter zone, while the collection tray gathers the crushed waste for further processing.

7. BLOCK DIAGRAM

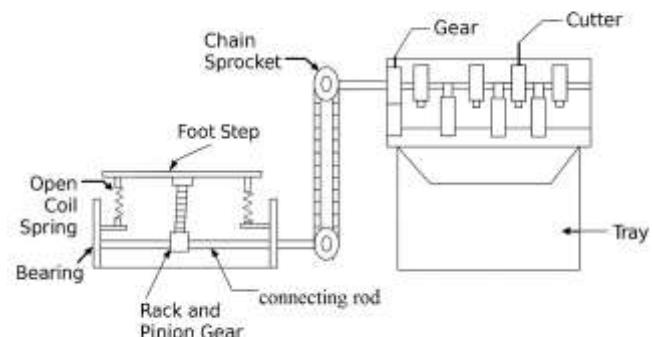


Fig 1: Block Diagram

8. DESIGN AND MODEL IDEA

Fig 2: Design and Model Idea

9.CONSTRUCTION

The foot-step operated organic waste crushing machine is constructed with a rigid and stable framework designed to support all mechanical components and maintain proper alignment during operation. The main frame is fabricated using mild steel sections, which provide sufficient strength to withstand repeated loading and vibrations generated during crushing. The compact design ensures ease of installation and portability for small-scale applications.

A foot step plate made of mild steel is mounted on a pivot mechanism at the front of the machine. This plate is connected to a rack positioned vertically or at a slight inclination within a guide. When the foot step is pressed, the rack moves downward in a linear path. The rack is accurately meshed with a pinion gear mounted on a shaft, enabling smooth conversion of linear motion into rotary motion.

The pinion shaft is coupled to a chain and sprocket assembly that transmits the generated rotary motion to the gear mechanism. Proper alignment and tensioning of the chain ensure efficient power transmission with minimal losses. The gear mechanism is designed to increase torque before delivering motion to the cutter shaft, which is essential for effective crushing of organic waste.

The cutter shaft is supported by ball bearings mounted on bearing housings fixed to the frame. High-carbon steel cutting blades are securely mounted on the shaft using bolts or welding, ensuring reliable cutting action and ease of maintenance. A hopper is positioned above the cutter assembly to safely guide organic waste into the cutting zone.

A return spring is attached to the foot step mechanism to restore the foot step and rack to their original positions after each press. This allows continuous cyclic operation without manual resetting. A collection tray is fixed below the cutter assembly to collect the crushed organic waste for composting or biogas processing.

Overall, the construction of the machine emphasizes simplicity, structural stability, and ease of fabrication. The use of readily available materials and standard mechanical components makes the system economical and suitable for household, rural, and institutional waste management applications.

10.WORKING PRINCIPLE

The working principle of the foot-step operated organic waste crushing machine is based on the conversion of human mechanical energy into controlled rotary motion for effective size reduction of biodegradable waste. The system operates through a sequence of mechanical transformations that enable efficient crushing without the use of electrical power.

When the user applies force by pressing the foot step plate, a linear downward motion is generated. This motion is transferred directly to a rack connected to the foot step mechanism. The rack slides along its guide and engages with a pinion gear, which converts the linear motion into rotary motion. Each pressing action of the foot step produces a corresponding rotational movement of the pinion.

The rotary motion from the pinion shaft is transmitted to a chain and sprocket assembly, allowing smooth power transfer and flexibility in speed regulation. The chain drive then delivers motion to a gear mechanism designed to increase torque, ensuring that sufficient cutting force is available at the cutter shaft even under moderate foot pressure.

The cutter shaft, supported by bearings, rotates smoothly as it receives torque from the gear system. High-carbon steel cutting blades mounted on the shaft rotate at an appropriate speed to crush and chop organic waste introduced through the hopper. Materials such as vegetable peels and food residues are effectively reduced in size as they pass through the rotating blades.

After each foot press, a return spring connected to the foot step mechanism pulls the rack back to its initial position. This resetting action prepares the system for the next cycle of operation. Continuous stepping results in repetitive rotational motion, enabling steady and efficient crushing of organic waste. The processed waste falls into a collection tray positioned below the cutter assembly for further use in composting or biogas production.

This working principle ensures energy-efficient operation, simplicity in design, and ease of use. By eliminating dependence on electrical energy and utilizing a human-powered mechanism, the machine offers a sustainable solution for decentralized organic waste management.

11.ADVANTAGES

Energy Independent Operation

The machine operates entirely on human power and does not require electrical energy, making it suitable for areas with limited or unreliable power supply.

Cost-Effective Design

The use of simple mechanical components and locally available materials reduces manufacturing and maintenance costs.

Eco-Friendly Solution

By promoting on-site organic waste processing, the machine helps reduce environmental pollution and supports sustainable waste management practices.

Simple Construction and Operation

The mechanism is easy to understand and operate, requiring minimal technical skill and training.

Low Maintenance Requirement

Fewer moving parts and a robust mechanical design result in reduced wear and lower maintenance needs.

Compact and Portable

The compact structure allows easy installation and transportation, making it suitable for small-scale applications.

Improved Composting Efficiency

Crushing organic waste into smaller particles accelerates decomposition and enhances compost and biogas production efficiency.

12.APPLICATIONS

Household Waste Management

Suitable for processing kitchen waste such as vegetable peels and food residues at the source.

Small-Scale Farms

Useful for crushing agricultural and organic residues for compost preparation.

Educational Institutions

Can be used as an eco-friendly waste management system and as a practical demonstration of sustainable engineering concepts.

Rural and Remote Areas

Ideal for locations where electricity supply is limited or unavailable.

Community Composting Units

Can support decentralized composting initiatives in residential communities and housing societies.

13. FUTURE SCOPE

The foot-step operated organic waste crushing machine presents significant potential for further development and improvement. In future work, the machine can be enhanced by incorporating adjustable blade arrangements to handle a wider range of organic waste types and sizes. This would improve versatility and efficiency in different operating conditions.

The addition of interchangeable gear or sprocket sets may allow users to modify speed and torque based on the nature of the waste material. Such adaptability would increase crushing performance while reducing operator effort. Ergonomic improvements to the foot step mechanism, including shock-absorbing pads and optimized pedal angles, can also be explored to enhance user comfort during prolonged operation.

Future designs may integrate hybrid operation modes, combining manual power with optional motor assistance or solar-powered drives. This would enable higher throughput while maintaining energy efficiency. The use of corrosion-resistant materials or protective coatings can further improve durability, especially in humid and outdoor environments.

Automation features such as safety guards, waste feeding controls, and basic monitoring indicators can be introduced to improve operational safety and reliability. Scaling up the design for community-level or institutional applications is another potential area of development. Overall, the future scope of this system lies in improving efficiency, adaptability, and user convenience while maintaining its eco-friendly and cost-effective nature.

14. CONCLUSION

The design and fabrication of the foot-step operated organic waste crushing machine demonstrate an effective and sustainable approach to decentralized organic waste management. The developed system successfully utilizes human mechanical energy through a rack and pinion, chain-sprocket, and gear mechanism to drive a cutter assembly for efficient waste size reduction. The machine is capable of crushing common biodegradable waste materials into smaller particles, thereby facilitating faster composting and improved biogas production.

The proposed design eliminates dependence on electrical power, making it particularly suitable for rural areas, small households, and institutions with limited energy resources. Its simple construction, use of readily available materials, and low maintenance requirements contribute to cost-effectiveness and ease of operation. Experimental evaluation confirms stable performance, safe operation, and reliable mechanical transmission under manual loading conditions.

Overall, the foot-step operated organic waste crushing machine provides a practical and eco-friendly solution for managing biodegradable waste at the source. The system supports sustainable waste handling practices and highlights the potential of human-powered mechanical devices in addressing environmental challenges. This work serves as a foundation for further improvements and scaling of manual waste processing technologies in future applications.

ACKNOWLEDGEMENT

With profound respect, I remember our beloved **Founder Chairman, (Late) Thavathiru Dr. J.K.K. Munirajahh, M.Tech., D.Litt.**, whose visionary leadership and unwavering dedication laid the foundation of **Annai J.K.K. Sampoorni Ammal Charitable Trust and our institution**. His remarkable legacy continues to inspire and guide us in all our endeavors.

I am sincerely grateful to our Honorable Chairperson and Correspondent, **Mrs. Vasanthakumari Munirajahh**, of **Annai J.K.K. Sampoorni Ammal Charitable Trust and Annai J.K.K. Sampoorni Ammal Polytechnic College**, for her constant encouragement, invaluable guidance, and for providing excellent facilities that made the successful completion of my internship possible.

I would like to express my heartfelt thanks to our respected Secretary, **Mrs. Kasthuripriya Kirubakar Murali**, of **Annai J.K.K. Sampoorni Ammal Polytechnic College**, for her continuous motivation and for extending the necessary facilities that supported me throughout my internship.

I am profoundly grateful to our esteemed Principal, **Prof. Dr. P. Ramesh, M.Tech., Ph.D.**, for his guidance, moral support, and encouragement, which greatly helped me during the course of my internship.

I extend my sincere thanks to **Mr. A. Ramesh, M.E.**, for his valuable guidance, constant support, and timely suggestions throughout the internship period.

I also express my deep sense of gratitude to the Head of the Department, **Mr. P. Ravichandran, B.E.**, for his encouragement and support.

I am thankful to **Mr.C.Vadivel, S. SandeepGandhi, S.KarthickRaja, A. Vignesh, C. Vimal Krishnan, D. Arputharaj**, and all the faculty members and staff of the department for their cooperation, guidance, and support during the internship.

Finally, I would like to thank **my parents and friends** for their encouragement and support, which motivated me to complete my internship successfully.

.

REFERENCES

1. Tchobanoglous, G., Theisen, H., and Vigil, S., *Integrated Solid Waste Management: Engineering Principles and Management Issues*, McGraw-Hill, New York, 1993.
2. Kumar, S., Smith, S. R., Fowler, G., Velis, C., Kumar, S. J., Arya, S., Rena, and Cheeseman, C., "Challenges and opportunities associated with waste management in developing countries," *Waste Management*, vol. 33, no. 11, pp. 220–232, 2013.
3. Abbasi, S. A., and Abbasi, N., *Biogas Energy*, Springer, New York, 2010.
4. Singh, R., and Singh, P., "Design and development of manually operated waste shredding machine," *International Journal of Mechanical Engineering and Technology*, vol. 9, no. 4, pp. 112–118, 2018.
5. Patil, A. R., and Kulkarni, V. S., "Review on human powered machines for small-scale applications," *International Journal of Engineering Research and Applications*, vol. 7, no. 6, pp. 45–50, 2017.
6. Khurmi, R. S., and Gupta, J. K., *Theory of Machines*, S. Chand & Company Ltd., New Delhi, 2015.
7. Bhandari, V. B., *Design of Machine Elements*, McGraw-Hill Education, New Delhi, 2017.
8. Rao, P. N., *Manufacturing Technology: Metal Cutting and Machine Tools*, McGraw-Hill Education, New Delhi, 2016.
9. Central Pollution Control Board (CPCB), *Municipal Solid Waste Management Manual*, Government of India, New Delhi, 2016.
10. Verma, R., and Sharma, A., "Performance analysis of organic waste size reduction methods," *Journal of Environmental Engineering*, vol. 144, no. 6, pp. 1–9, 2019.