
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

Design and FPGA implementation of Lorenz key

generator for information security

Nandha kumar S

PG Student, Department of ECE

PSG College of Technology

Coimbatore, India

s.nandhakumar333@gmail.com

Dr. J. Ramesh

Professor,Department of ECE,

PSG college of Technology,

Coimbatore, India

jramesh60@yahoo.com

P. Vivek Karthick

Assistant Professor, Department of

ECE,

SONA college of Technology,

Salem, India

vivekmalar@gmail.com

Abstract— In recent years, enormous amount of

information obtained from digital media, are available through

the Internet, satellites, mobiles and other sources making it

possible to access these contents. Thus, protecting information

from unauthorized access has become a major task for

researchers as the usual encryption systems are unable to resist

the evolution of hacker attacks. The advantages of Lorenz key is

encryption is faster, very secure transmission and storage when

compared to the other key. Many cryptosystems based on the

generation of Lorenz key for hiding messages, using chaotic

systems as a generator for those sequences have been gaining

attention recently. The chaos is generated from a nonlinear

dynamic system, known for its aperiodicity, randomness and

sensitivity with respect to initial values and control parameters.

This work presents an approach for a real-time FPGA

implementation of a random key, based on Lorenz's chaotic

generator for information security. At first, the Lorenz chaotic

oscillator model is designed using MATLAB code. The

performance is successfully verified, and the model is

constructed using MATLAB-Simulink model. Simulink models

in MATLAB provide a modelling environment that is well suited

for hardware design. Then, the model is converted to Xilinx

System Generator model. The Xilinx system generator

technology is used for the conception of the Lorenz chaotic

system and for generating the code. This code is then dumped to

configure the FPGA.

Keywords— Chaos, Lorenz, MATLAB, Simulink, Xilinx System

Generator, FPGA

I. INTRODUCTION

During the past decades, there has been huge interest

worldwide in the possibility of using chaos in communication

systems. Chaos occurs in nonlinear systems that are sensitive

to the initial conditions. The behaviour of these systems

appears to be random, almost like the behaviour of a system

strongly influenced by random noise, even though these

systems are deterministic. Chaotic signals are desirable for

secure communication because of its broadband nature,

sensitive to initial conditions, aperiodic and noise like nature.

Many methods had been proposed to realize secure

communication system using chaotic signals says Pecora-

Carroll [1-2].

In recent years, enormous amount of information

obtained from digital media, are available through the

Internet, satellites, mobiles and other sources making it

possible to access these contents. Thus, protecting

information from unauthorized access has become a major

task for researchers as the usual encryption systems are

unable to resist the evolution of hacker attacks.

There are two types of approaches when using

chaotic dynamics in cryptography. The first one used as key

streams to mask the plaintext in a manifold of ways. The next

one is used as initial state and the cipher text follows from the

orbit being generated. A new method to implement any type

of a chaotic generator was introduced by using Field

Programmable Gate Array (FPGA) in the paper given by

M.A. Aseeri, M.I. Sobhi and P. Lee [5, 7]. The aim of that

method was to increase the frequency of the chaotic signals.

A. Abel and W. Schwartz [6]. Starting from general demands

for communications, the general communication system

structure was introduced by them.

Chaos occurs in nonlinear systems that are sensitive

to the initial conditions. The behaviour of these systems

appears to be random, almost like the behaviour of a system

strongly influenced by random noise, even though these

systems are deterministic. These facts were clearly explained

by Robert C.Hilborn [9] and M.Lakshmanan, S.Rajasekar

[10] in their work.

This work is organized as follows. In section II Flow

diagram. In section III Lorenz equations system are

explained. Implementation of Lorenz System Using

MATLAB code are given in section IV. Implementation of

Lorenz System Using Xilinx System Generator are given in

section V. In the last section, the FPGA implementation of

Lorenz chaotic generator and its simulation results are shown.

Finally, the results are summarized in the conclusion.

II. LORENZ EQUATIONS SYSTEM

The Lorenz system, invented for Edward N. Lorenz,

The Lorenz system is an example of a non-linear dynamic

system these systems are corresponding to the long-term

behaviour of the Lorenz system. The Lorenz equation is

based on the fundamental Navier-Stokes equation for fluid.

The fluid motion and the resulting temperature difference can

be expressed in terms of three variables called X(t), Y(t), Z(t);

where X is related to time-dependence of the so-called fluid

stream function. Y is proportional to the temperature

difference between the rising and falling parts of the fluid.

and Z is proportional to the deviation from temperature

linearity as a function of vertical position. The graphical

representation of such system shows how the state of a

dynamical system.

http://www.ijsrem.com/
mailto:s.nandhakumar333@gmail.com
mailto:jramesh60@yahoo.com
mailto:vivekmalar@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

The three equations that govern the Lorenz system following:

dX = σ ∗ (y – x) (1)
dt

unbreakable.

dy = ((r ∗ x) − (y) − (x ∗ z)) (2)
dt

dz = ((x ∗ y)– (β ∗ z)) (3)
dt

where, σ, β and r called the control parameters. All control

parameters should be greater than zero (σ, r, β > 0), but

usually σ = 10, β = 8/3 and r is varied. The system exhibits

chaotic behaviour for r = 28. To resolving this Lorenz system.

III. FLOW DIAGRAM

At very first, the Lorenz chaotic oscillator model is

designed using MATLAB code. Once code is successfully

verified after that the model is constructed using MATLAB-

Simulink model. Simulink models in MATLAB to provide a

modelling environment that is well suited to hardware design

and later it is converted to the Xilinx System Generator

model. Xilinx system generator model is used to convert

Simulink mode into HDL design. The Xilinx System

Generator bridges the gap between conceptual architectural

design and the actual implementation in a Xilinx FPGA.

Xilinx ISE design suite software is used to allows us to

generate the FPGA’s programming file. Fig 1 shows

implementation flow diagram of this work.

Fig 1: Flow diagram of this work

IV. IMPLEMENTATION OF LORENZ SYSTEM USING MATLAB

CODE

The generators are first represented by a set of nonlinear
equations and a system-based model is developed to represent
the equations directly. The systems are first represented by a
set of nonlinear equations and a system-based model is
developed to represent the equations directly. Here first a
system model from state equation was developed using
MATLAB software. Fig 2 represent a Lorenz equation model
output. Here that output is non-repeated pattern. So, this non-
repeated pattern is very use full for the high security purposes.
Because these patterns are not easily predictable and

Fig 2: Lorenz equation model MATLAB code output

V. IMPLEMENTATION OF LORENZ SYSTEM USING MATLAB

SIMULINK

Once MATLAB code is successfully verified after

that the model is constructed using MATLAB-Simulink

model. Here first a system model from state equation was

developed using MATLAB/Simulink software. Then the

model was simulated to adjust the required frequency. Next

step was to convert all models by using Xilinx System

Generator block set. In the Lorenz three equations the value

σ =10, r=28 and b=8/3 were submitted. Lorenz’s equations

have two nonlinearities responsible for the chaotic behavior.

The products xz and xy that are performed by two multipliers.

The equations are simulated using the Simulink block

diagram presented by Fig 3. and Fig 4. The first parts relate

to the phase plane (x, y) and (y, z) and final parts relate to the

phase plane (x, z).

Fig 3: Simulink model of Lorenz Choatic system

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

Fig 4: Space diagram of (XY) and (YZ) attractor.

Fig 5: Space diagram of (ZX) attractor.

VI. IMPLEMENTATION OF LORENZ SYSTEM USING XILINX

SYSTEM GENERATOR

Now the Simulink model was converted to Xilinx

System Generator Model using Xilinx block set under the

MATLAB. The main problem was there is no integrator

within the Xilinx System Generator toolbox, so the integrator

block was converted to model as shown in Fig 6. This

integrator block was converted to model using the basic

numerical operations such as summation and delay blocks.

This integrator was used into Lorenz chaotic system to

eliminate algebraic loop for the hardware. The block AddSub

is composed of one adder and one subtractor. This circuit uses

32-bits words with the binary point position after the bit

number 16. The parameter dt presented in the block dt

represents the integration step. The initial state of the

integrator is stored inside the block Register, in the field

Initial Value.

Fig 6: Integrator model using Xilinx system generator

The Lorenz system presented previously is now
implemented using Xilinx block set library’s elements as can
be seen in Fig 7 Three integrators blocks that can be seen in
this structure are the same as already presented in Fig 6. From
the reference paper [6] the author chooses three different value
for different integrators.

Fig 7: Lorenz chaotic generator using Xilinx System
Generator blocks.

The all three Integrators has an initial condition equal to
10. The integration step dt used in this design is equal to 0.01.
Many authors choose different initial values (x0, y0, z0) for
getting perfect Lorenz output. The perfect output based on
control parameters constant values.

Fig 8: Space diagram of (XY) and (YZ) attractor.

Fig 9: Space diagram of (ZX) attractor.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

The Fig 8. The first parts relate to the phase plane

(x, y) and second part is (y, z) and final part Fig 9 is related

to the phase plane (x, z) of System generator output. Fig 10

shows Signals x, y and z generated by the Lorenz system

created using Xilinx system generator. All the control

parameter values in every cycle period in Fig 10. The figures

below are obtained by fixing the following parameters, σ =

10, β = 8/3 and r = 28. The initial conditions x0 = 10, y0 = 10

and z0 = 10. It seems clearly that the different signals x, y and

z have a random behaviour.

Fig 10 Signals x, y and z generated by the Lorenz system

using system generator

TABLE I. NIST RANDOMNESS TEST

Fig 11 Simulation results using HDL code

The Fig 11 presents a simulation results using HDL

code. The design was implemented using ARTIX-7

(xc7a35ticsg236-1L) FPGA and the resource utilization was

estimated as shown below.

TABLE II. RESOURCE UTILIZATION TABLE

Logic

Utilization

Used Available Utilization

(%)

Look-up Table

(LUTs)

1782 20800 8.57

Flip-Flops 93 41600 0.22

Bonded IOB 98 106 92.45

BUFG 1 32 3.13

DSP 10 90 11.11

The 32-bit floating-point design is optimized in

order to meet the timing requirement for 10 ns clock period

at 100 MHz system clock frequency. The optimized 32-bit

model achieves a maximum frequency of 14.925 MHz with a

low latency time of 67 ns.

TABLE III. TIMING REPORT

Table I is performed using NIST SP800-22 test that

was published by the National Institute of Standards and

Technology. There are 13 different testes there. If P-value >

0.01 for each of the 13 tests, the test is considered to have

passed.

VII. FPGA IMPLEMENTATION OF LORENZ CHAOTIC GENERATOR

In this section, discuss the implementation of the

Lorenz key generators in FPGA. When the performance of

Simulink and system generator design are completed, the

hardware implementation VHDL code can be generated. We

used in our study the Xilinx FPGA ARTIX-7

(xc7a35ticsg236-1L). Which includes,1800K-bit block

RAMs, 400K-bit distributed RAMs and 250 user I/Os. It

offers 33280 logic cells.

TABLE IV. RESOURCE UTILIZATION COMPARISION TABLE

Logic

Utilization

Artix-7 Spartan-3EA Virtex-IIB Kintex-7C

Look-up Table
(LUTs)

1782 1,912 2057 516

Flip-Flops 93 144 554 256

Bonded IOB 98 14 224 129

BUFG 1 2 NA 1

DSP 10 8 8 14

A Reference design in [2]
B Reference design in [6]
C Reference design in [7]

Statistical Test Status P-value

Frequency Pass 0.727622

Block Frequency Pass 0.928730

Cumulative Sums Pass 0.625562

Long Runs of Ones Pass 0.685843

Overlapping Pass 0.122325

Runs Pass 0.999715

Clock period Ts(ns) 10 ns

Worst Negative Slack(ns) 1.569 ns

Maximum Frequency (MHz) 14.925 MHz

Total On-chip Power(W) 0.75W

Min clock rate (ns) 67 ns

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

Compared to reference design [2], [6] and [7] shows

in Table IV. The number of logic elements used is reduced in

this performance implementation. This work uses a smaller

number (93 out of 41600) of flip-flops, LUTs (1782 out of

20800), and BUFG (1 out of 32) to implement this work. So,

compared with the Spartan-3E FPGA, Kintex-7, Virtex-II

FPGA and Artix-7. Artix-7 will give an efficient and better

performance.

VIII. CONCLUSION

This work focuses on the real-time FPGA

implementation of a random key, based on Lorenz's chaotic

generator for information security. The developed approach

consists on using the implemented forth order Rung-Kutta

method to resolve the differential equations system of the

Lorenz chaotic generator. Lorenz chaotic oscillator model

was designed and simulated using MATLAB code,

MATLAB-Simulink and Xilinx System Generator. This

design approach can be extended for FPGA implementation

of other chaotic generator designs. In this experiment, every

sequence is generated by the Lorenz Generator and tested by

NIST. Chaotic bit stream has been used to generate a truly

random key. The design was implemented in ARTIX-7

(xc7a35ticsg236-1L) FPGA and the resource utilization was

also calculated. The optimized 32-bit model achieves a

maximum frequency of 14.925 MHz with a low latency time

of 67 ns. The implementation of the proposed architecture

allows a very useful and attractive trade-off between high

speed, low area cost and data security transmission for an

information security system.

REFERENCES

[1] L.M.Pecora and T.L.Carroll, ”Synchronization in chaotic

systems”, Phys. Rev.Let, vol,pp.821-824,Feb.1990.

[2] Merah, L., Ali-Pacha, A., Said, N.H., Mamat, M.: “Design and

FPGA implementation of Lorenz chaotic system for
information security issues”. Appl. Math. Sci. 7(5), 237–246

(2013).

[3] Zhengguo Li, Kun Li, Changyun Wen, and Yeng Chai Soh; “A
new chaotic secure communication system” IEEE Transaction

on Communications, Vol.51, No.8, Aug 2003.

[4] L. Zhang, "System generator model-based fpga design
optimization and hardware co- simulation for lorenz chaotic

generator", 2017 2nd Asia-Pacific Conference on Intelligent

Robot Systems (ACIRS 2017), pp. 170-174, June 2017.

[5] A.Abel and W. Schwartz, “Chaos Communications-Principles,
Schemes and Systems analysis’’, Proc. of the IEEE Inst. for

Fundamentals of Electr.Eng. & Electron.,Dresden Univ. of

Technol, 90. 2002. pp. 691-710.
[6] B N, Aryalekshmi, “FPGA Implementation of Lorenz’s Chaotic

Generator”, Universal review, vol viii, March 2019.

[7] Qiang lai, xiao-wen zhao, karthikeyan rajagopal, guanghui

xu,Akif akgul, and emre guleryuz “ Dynamic analyses, FPGA
implementation and engineering applications of multi-butterfly

chaotic attractors generated from generalised Sprott C system”,

2018.
[8] Sadoudi S, Azzaz M.S., Djeddou, M., Benssalah, M. “An FPGA

real-time implementation of the Chen’s chaotic system for

securing chaotic communicate ons” International Journal,
Nonlinear Science. 7, 467–474 (2009).

[9] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE

Standard 754-2008, New York: IEEE, Inc., Aug. 29, 2008.

[10] IEEE standard for binary-floating point arithmetic, ANSI/IEEE

Std 754-1985, The Institute of Electrical and Electronic

Engineers Inc., New York, August 1985.
[11] M. Aseeri, M. I. Sobhy, and P. Lee “Lorenz chaotic model using

field programmable gate array (fpga),” in The Midwest

Symposium on Circuits and Systems, Midwest Symposium on

Circuit and Systems, 2002, pp. 686-699.
[12] M.Lakshmanan, S.Rajasekar, ”Nonlinear Dynamics

Integrability, Chaos and Patterns “ 3rd edition Springer

International Edition.

http://www.ijsrem.com/

