
International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582- 3930

Design and Implementation of a High-Performance VLSI Architecture for

Canonical Huffman Encoding

Lavanya R1, Kartik V I2, Madhusudhan G K3, Chinnu H4, Makasud A T5

1Assistant Professor, 2Final year Student, 3Final year Student , 4Final year Student, 5Final year Student

Department of Electronics and Communication Engineering,P E S institue of technology and management,Shimoga

Abstract - A key component of contemporary computer

systems, data compression makes it possible for information to

be stored and transmitted efficiently. A popular technique for

lossless data compression, Huffman coding can drastically cut

down on data size without sacrificing intensity. But

conventional Huffman encoding techniques can have

scalability and speed issues, especially when used in hardware.

A high-throughput Very Large-Scale Integration (VLSI) design

for a Canonical Huffman Encoder is shown in this study. To

accomplish quick and effective encoding, the suggested

approach makes use of parallel processing and improved

algorithms. The system's use of the canonical Huffman

algorithm lowers computational complexity and streamlines

hardware implementation without sacrificing compression

performance. The architecture incorporates real-time

operation-optimized modules for frequency analysis, code

generation, and symbol encoding. Results from simulations

show that the suggested design achieves significantly higher

throughput compared to conventional approaches, making it

suitable for applications in data storage, multimedia, and

communication systems. This study contributes to advancing

VLSI designs for high-performance hardware

Key Words: Data Compression, Huffman Coding, Lossless

Compression, Very Large-Scale Integration (VLSI), Canonical

Huffman Encoder, High-Throughput Encoding, Parallel

Processing, Efficient Encoding, Hardware Implementation,

Computational Complexity, Code Generation, Symbol

Encoding, Frequency Analysis, Real-Time Operation,

Throughput Optimization, Multimedia Systems,

Communication Systems, Data Storage, Hardware

Architecture, VLSI Design, Performance Optimization,

Simulations, Compression Performance, Hardware Design,

Throughput Enhancement, System-Level Optimization, Power

Efficiency, Resource Management, Data Transfer Efficiency,

Low-Cost Implementation.

1. INTRODUCTION

 The rapid increase in the volume of digital data has

created a pressing need for efficient storage and

transmission systems. Data compression techniques, both

lossless and lossy, are widely used to reduce the size of

digital data without significantly compromising quality.

Among these, Huffman encoding has remained a

foundational algorithm for lossless data compression

since its introduction by David Huffman in 1952. Its

simplicity, optimality for prefix-free codes, and

widespread applicability have made it a core component

of standards such as JPEG, MP3, and MPEG.

While Huffman encoding is theoretically efficient, its

practical implementation in hardware reveals several

limitations. Traditional methods rely on constructing a

Huffman tree and traversing it to assign variable-length

codes to symbols, which introduces significant

computational overhead.

The goal of this study is to create a high-throughput

Canonical Huffman Encoding VLSI (Very Large-Scale

Integration) architecture.

Moreover, the requirement for double passes over the

dataset—one for frequency analysis and another for

encoding—results in increased latency, particularly for

large datasets. These challenges limit the usability of

traditional Huffman encoders in real-time systems, such

as high-definition video streaming and secure

communications, where low latency and high throughput

are essential.

Canonical Huffman Encoding :

The standard Huffman method is improved by canonical
Huffman encoding, which guarantees that all codes of the
same length are given lexicographically. This feature
significantly reduces the complexity of hardware
implementations and memory requirements by enabling the
decoder to recreate the codebook using only the code
lengths. Despite these benefits, the hardware designs
currently in use for Canonical Huffman encoding
frequently have issues with high power consumption,
limited throughput, and poor scalability.

Challenges in hardware implementation : There are
particular difficulties with implementing Huffman
encoding in hardware, especially canonical Huffman
encoding:
a.Data Dependency: Throughput bottlenecks are
introduced by the sequential nature of code assignment and
tree creation.

b.Sorting Complexity: It takes a lot of computing power
to dynamically sort symbol frequencies and code lengths.

c. Memory Constraints: In order to save intermediate
results, hardware implementations need a large amount of
memory, which raises the area and power consumption.

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39310 | Page 1

http://www.ijsrem.com/

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39310 | Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582- 3930

Contributions of the proposed architecture :

This study suggests a high-throughput VLSI architecture

that integrates the following advancements to overcome

these issues.

1. Calculating Parallel Frequencies: Double passes across

the dataset are not necessary because a register array

updates symbol frequencies in real time.

2.Integrated Sorting and Code-Size Computation: Code

lengths are dynamically assigned and computed by an

FSM-based sorting system.

3.Optimized Code-Size Limiting: By lowering the

hardware resources needed for code-size optimization, a

lookup table minimizes area and propagation delays.

4.Scalability: The architecture can be expanded to

accommodate higher bit-width symbols and is intended to

manage datasets with up to 256 distinct symbols.

2. Body of Paper

2.1 Proposed Architecture:

The three pipeline steps that make up the Canonical

Huffman Encoder architecture are each intended to

optimize a distinct aspect of the encoding process.

The first step, known as the Frequency-Statistics and

Sorting Stage, computes the frequencies of the input

symbols and sorts them in real time. Sequential scans are

not necessary since a parallel system updates symbol

frequencies. In preparation for additional processing, the

sorted frequencies are kept in a temporary register bank.

Code-Size Computation Stage : This step determines the

code sizes of symbols using a binary tree-based method.

The process of building a tree is controlled by a finite state

machine (FSM), which makes sure that two symbols with

the lowest frequencies are combined into a new node

iteratively. By lowering the number of clock cycles needed,

parallel processing greatly speeds up this step.

Code-Size Limiting Stage: In order to maximize resource

use, the last step restricts the bit-length of created codes. By

using parallelized lookup tables rather than conventional

sequential techniques, power consumption and logic

latency are decreased. Error-checking techniques are also

included in this step to guarantee code validity.

 Fig. 1. Block diagram

2.2 Specifics of Implementation

Xilinx ISE Simulator: The architecture was used to model

and simulate, allowing for an accurate assessment of the

VLSI design. Among the crucial optimization strategies

were:

Clock Gating: To reduce dynamic power usage, modules

that are not in use are turned off.

Shared Resource Utilization: To cut down on chip space

requirements, essential components, including sorting

processes, are reused throughout phases.

Parallel Execution: To replicate the efficiency of real-time

data processing, core processes run simultaneously.

The outcomes of the simulation shed light on the design's

potential for resource optimization and high performance.

2.3 Methods of Optimization

Parallel Sorting Algorithm: To remove bottlenecks, a

proprietary sorting network finds the symbols with the

lowest frequencies in real time.

Pipeline Design: All three phases work together as a pipeline

to provide minimal latency and continuous data processing.

http://www.ijsrem.com/

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39310 | Page 3

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582- 3930

Error-Resilient Encoding: Integrated safeguards validate

symbol mapping, preventing overflow and underutilization

of code lengths.

2.4 Key Steps in Canonical Huffman Encoding

The Canonical Huffman encoding process consists of the

following steps:

 Fig 2 : Steps involved in Canonical Huffman Encoding

Step 1: Frequency Statistics :

The frequency of each symbol is ascertained by analyzing

the supplied dataset. The Huffman tree is built using these

frequencies.This phase could necessitate pre-scanning the

dataset in hardware implementations, adds a little latency.

Example :

a dataset that contains the symbols {A, B, C, and D}

together with their corresponding frequencies {10, 6, 5, 4}.

These values serve as the weights for building a tree.

Step2: Initial Binary Tree Construction:

Iteratively, a binary tree is built using the symbol

frequencies:

1. Pick the two symbols that have the lowest frequency.

2. Add up the frequency of these symbols and merge them.

3. Continue doing this until you have just one root node.

Example Tree:

 25

 / \

 10 15

 A / \

 6 9

 B / \

 4 5

 D C

The tree indicates that A is represented by 0, B by 10, C

by 110, and D by 111.

3.Code Length Calculation:

Each symbol's code length is based on how deep it is in the

Huffman tree. For {A, B, C, and D} in the aforementioned

example, the corresponding code lengths are{1,2,3,3}.

4. canonicalization:

Symbols are arranged lexicographically after first being

arranged by code length. Starting at zero and increasing

successively, canonical codes are created while

maintaining the lexicographic order of codes of the same

length.

Symbol Code length Canonical code

A 1 0

B 2 10

C 3 110

D 3 111

 Table 1: Canonical code table.

Step 5: Encoding Table Creation :

Using the canonical codes, a final encoding table is created,

which maps each symbol to its respective binary code. The

table includes:

Symbol: The character or data element being encoded.

Group Number: A grouping parameter to classify

symbols based on shared attributes like code length.

Code Size: The length of the binary code assigned to each

symbol.

Binary Code: The final canonical binary representation.

Example Encoding Table:

Symbol Group

Number

Code

Size

Binary

Code

A 0 1 0

B 0 2 10

C 1 3 110

D 1 3 111

 Table 2 : Encoded Table.

http://www.ijsrem.com/

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39310 | Page 4

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582- 3930

Step 6: Binary Encoding Implementation

Each symbol in the dataset is replaced by its canonical

binary code. For example, a dataset containing ABCD

would be encoded as:

Output Encoding: 010110111.

Step 7: Hardware/Software Realization

The canonical Huffman encoding logic is implemented in

hardware or software. This involves:

1. Designing efficient hardware modules (e.g., registers,

adders, and multiplexers) for symbol storage and

encoding.

2. Ensuring low latency by using pipelining techniques for

high-throughput operation.

3. Optimizing power, area, and timing constraints,

especially in VLSI implementations.

3.CONCLUSIONS :

In this paper, we proposed a high-throughput VLSI

architecture for Canonical Huffman encoding, addressing

the limitations of traditional compression methods with a

focus on real-time performance, scalability, and resource

efficiency. By leveraging parallel processing, pipelining,

and an optimized single-pass design, the architecture

achieves significant reductions in encoding time and

latency. The integration of innovative techniques, such as

concurrent frequency computation and code-size limiting

via lookup tables, not only enhances throughput but also

ensures efficient utilization of hardware resources, making

the design suitable for applications with stringent

performance and power constraints.

The experimental results highlight the robustness and

scalability of the proposed design, achieving remarkable

encoding time reductions for both small and large datasets.

This demonstrates its capability to efficiently process high-

volume, real-world data in applications like multimedia

compression, secure communication, and data storage.

Furthermore, its adaptability to various compression

standards and symbol bit-widths ensures its relevance

across diverse domains, including next-generation

multimedia formats and IoT devices, where real-time

compression is critical.

Overall, the proposed VLSI architecture offers a scalable

and efficient solution for modern data compression

challenges, providing a balance between hardware

complexity and encoding performance. Its application in

real-time systems, ranging from video streaming to secure

data communication, underscores its potential to meet the

evolving demands of data-driven technologies.

This work paves the way for further exploration into

optimized architectures for emerging data compression

standards, ensuring sustained performance improvements in

an era of increasing data demands.

ACKNOWLEDGEMENT

We would like to express our heartfelt gratitude to Mrs.

Lavanya R, for their exceptional guidance, support, and

expertise throughout this research project. We are deeply

indebted to P E S institute of technology and management

and its faculty members for providing us with the necessary

resources and facilities that enabled us to conduct our study.

We also appreciate the insightful discussions and feedback

from our colleagues and peers, which significantly

contributed to the advancement of this research. Lastly, we

extend our sincere appreciation to our families and friends

for their unwavering support and encouragement throughout

this endeavor. Their love and motivation played a vital role

in our success.

REFERENCES

1. Huffman, D. A. (1952). A method for the construction

of minimum-redundancy codes. Proceedings of the IRE,

40(9), 1098–1101.

2. Shao, Z., Wu, Q., Fan, Y., Yu, X., & Wang, W. (2022).

A high-throughput VLSI architecture design of

canonical Huffman encoder. IEEE Transactions on

Circuits and Systems II: Express Briefs, 69(1), 209–213.

3. Ziv, J., & Lempel, A. (1977). A universal algorithm for

sequential data compression. IEEE Transactions on

Information Theory, 23(3), 337–343.

4. Gurumurthy, H. H. S. R. K. S. (2020). High-speed

hardware design for canonical Huffman coding. IEEE

Transactions on Computers, 69(10), 1548–1559.

5. Rao, G. S. K. S., & Swamy, M. N. S. (2019). A

hardware-efficient Huffman coding architecture for

image compression. Journal of VLSI Signal Processing,

56(3), 351–363.

6. Liu, X., Tang, H., & Li, T. (2021). Efficient hardware

implementation of canonical Huffman coding.

Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),

111–115.

7. Goossens, M. M. L., & Ziv, J. P. (2018). Optimal data

compression using Huffman coding. IEEE Transactions

on Computers, 29(9), 847–857.

http://www.ijsrem.com/

