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Abstract

This paper presents the complete design, implementation, and performance analysis of a 32bit MIPS-based Reduced
Instruction Set Computer (RISC) processor using FPGA toolchains. The work begins with the development of a single-
cycle processor to establish fundamental datapath functionality, followed by the integration of R-type, I-type, and J-
type instruction formats. To enhance throughput, a fully functional 5- stage pipelined architecture—comprising In-
struction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and Write-Back (WB)—is implemented
using Verilog HDL. Xilinx Vivado 2023.1 is used for design, simulation, and FPGA synthesis, while Cadence 45 nm
technology is used for detailed timing, area, and power analysis. The design incorporates hazard detection and for-
warding mechanisms to ensure pipeline correctness and minimize stalls. Experimental results confirm accurate exe-
cution of all supported instruction classes, reduced propagation delay, and efficient hardware utilization. The imple-
mentation demonstrates a complete academic-to-industry design flow, providing insights into processor architecture,
pipelining efficiency, and low- power digital design strategies.

1. Introduction

The rapid growth of embedded systems,
automation, and high-performance computing
has created a strong demand for processors that
offer both speed and hardware -efficiency.
Among the different processor design
philosophies, the Reduced Instruction Set
Computer (RISC) architecture remains highly
preferred due to its emphasis on simplicity,
modularity, and predictable execution. The
MIPS (Microprocessor without Interlocked
Pipeline Stages) architecture, in particular, is
widely used in both academic and industrial
domains because of its clean instruction
formats,  well-structured  datapath, and
suitability for pipelined implementation. These
features make MIPS an ideal platform to
understand processor organization, control
logic generation, dataflow design, and the
fundamentals of instruction-level parallelism.

This project focuses on the complete design,
simulation, and hardware realization of a MIPS-
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based RISC processor using Verilog HDL. The
design evolves in stages, beginning with a
single-cycle processor that executes every
instruction within one clock cycle. This initial
model establishes core architectural concepts
such as instruction fetch, decoding, operand
selection, ALU operations, memory access, and
result write-back. Once the fundamental
datapath is verified, the processor is extended to
support all three major MIPS instruction
formats—R-type, I-type, and J-type—ensuring
compatibility with arithmetic, logical, data
transfer, and control-flow instructions.

To enhance execution speed, the processor is
further developed into a S5-stage pipelined
architecture consisting of the Instruction Fetch
(IF), Instruction Decode (ID), Execution (EX),
Memory (MEM), and Write-Back (WB) stages.
Pipelining allows multiple instructions to be
processed simultaneously, significantly
increasing throughput without raising the clock
frequency. Essential pipeline support units, such
as hazard detection and forwarding systems, are
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integrated to manage data dependencies and
prevent incorrect execution. These units ensure
that the processor maintains high performance
while preserving functional accuracy.

The hardware description is implemented using
Verilog HDL in Xilinx Vivado 2023.1, where
functional simulation, synthesis, and FPGA
implementation are performed. Vivado
waveforms confirm the correctness of
instruction flow, timing relationships across
pipeline stages, and the generation of
appropriate control signals. The design is then
analyzed using Cadence tools with a 45 nm
technology library to evaluate delay, power
consumption, and area utilization. Cadence
analysis provides detailed insight into low-level
behavior, enabling validation of the processor’s
physical performance and efficiency.

This work demonstrates the complete digital
design process—from theoretical architecture
to hardware verification using industry-
standard tools. The implementation highlights
the benefits of pipelining, structured datapath
design, and hazard handling in developing an
efficient processor architecture. The results
confirm that the designed MIPS- based RISC
processor achieves accurate instruction
execution, reduced delay, improved throughput,
and optimized hardware utilization, making it
suitable for academic learning as well as real-
time embedded applications.

2. Related work

Several researchers have explored MIPS-based
RISC architectures implemented on FPGAs.
Dewangan et al. (2021) presented a pipelined
32-bit MIPS processor with hazard detection
and forwarding units to minimize stalls.
Gautham et al. (2009) proposed a low-power
pipelined MIPS processor that reduces dynamic
power consumption by bypassing unused
pipeline stages. Bharadwaja et al. (2015)
integrated low-power design methodologies
such as clock gating and multi-threshold
voltage techniques to enhance energy
efficiency. Krishna Prasad and Vijay Prakash
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(2021) demonstrated a five-stage pipelined
design capable of resolving data hazards
efficiently on FPGA platforms.

These works collectively emphasize the
advantages of pipelined RISC architectures in
improving throughput and power efficiency,
providing the foundation for the present design
and implementation.

3. Design Methodology

The design of the MIPS processor follows a
structured top-down methodology. Each
functional block is modeled as a separate
Verilog module and later integrated to form the
complete system.

A. Single-Cycle MIPS Processor

the design process began with defining the
architecture of a basic single-cycle MIPS
processor. The essential datapath components—
Program Counter, Instruction Memory, Register
File, ALU, Data Memory, Control Unit, Sign-
Extend Unit, and required multiplexers—were
identified. Each module was modeled in Verilog
HDL. The datapath was then constructed by
interconnecting these modules to execute an
instruction completely within one clock cycle.
Functional simulations were performed in
Xilinx Vivado to verify correct PC updates,
ALU operations, register reads/writes, memory
interactions, and control-signal generation. This
stage established the baseline architecture
required for further extension.

The single-cycle MIPS processor executes
every instruction in one clock cycle by allowing
all operations—fetch, decode, execute, memory
access, and write-back—to occur within a
single, continuous datapath. The block diagram
begins with the Program Counter (PC), which
supplies the address of the next instruction. This
address is sent to the Instruction Memory, and
the fetched instruction is passed into the
datapath for decoding and execution.

The Instruction Fetch (IF) stage produces the

next sequential PC value by adding 4 through
an adder. This updated PC is selected through a
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multiplexer and written back into the PC
register at the end of the cycle. The fetched
instruction enters the Instruction Decode (ID)
stage, where the Register File reads two source
operands (RS1 and RS2) based on the
instruction fields. A Sign-Extend Unit generates
a 32-bit immediate value for I-type instructions.
The control logic associated with decoding
determines the ALU operation, register write-
back selection, and whether memory access is
required. In the Execution (EX) stage, a set of
multiplexers  selects  appropriate ~ ALU
operands—either the second register value or
the immediate value. The ALU performs
arithmetic or logical operations and also
generates a zero flag for branch decisions. The
branch target address is formed by adding the
sign-extended immediate value (shifted left by
two) to the next sequential PC. A branch-
decision multiplexer chooses between the
normal PC and branch target address based on
the zero flag and control signals.
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Fig. 1: Block Diagram Single-Cycle MIPS Processor

For load and store instructions, the Memory
Access (MEM) stage uses the ALU output as
the memory address. The Data Memory either
retrieves data (for load) or stores data from the
second register value (for store). Finally, in the
Write-Back (WB) stage, a multiplexer selects
between the ALU result and memory output.
The selected value is written into the Register
File, completing the instruction’s execution
path.

This integrated datapath allows each instruction
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to flow through all required operations in one
cycle, making the design simple but limited by
the slowest instruction’s execution time.

B. Instruction Formats

The processor supports three instruction types:

e R-type: R-type instructions perform
operations that in- volve only registers, such
as addition, subtraction, logical AND,
logical OR, and set-on-less-than. During
execution, these instructions are decoded to
extract the function (funct) code, which
specifies the exact operation the ALU needs
to carry out.

Opcode Rs Rt Rd Shamt | Function
e I-type: I-type instructions are used for
operations that involve immediate values,
memory access, or branching. They include
instructions like addi, andi, ori, Iw, sw, beq,
and bne. In arithmetic and logical
operations, the immediate value is sign-
extended and provided as one of the inputs
to the ALU. For load and store instructions,
the ALU calculates the effective address in
memory where the data will be read from or

written to.

Opcode Rs Rt Addressimmediate Value

e J-type: J-type instructions, such as j and jal,
are primarily used to control the program’s
flow by performing jump operations. In
these instructions, the EX stage calculates
the jump target address by shifting the 26-
bit immediate value and combining it with
the upper bits of the current program coun-
ter (PC). The IF stage then updates the PC
with this new address to continue execution
from the target location.

311026 Z5100)

Opcode Target Address

C. 5-Stage Pipelined MIPS Processor
To improve performance, the single-cycle
processor was extended into a 5-stage
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pipelined architecture consisting of IF, ID,
EX, MEM, and WB stages. Pipeline regis-

required.

ters (IF/ID, ID/EX, EX/MEM, and 2) Instruction Decode (ID) Stage: The De-
MEM/WB) were added to store in-termedi- code stage reads the source register values
ate values and control signals. The 5-stage (RD1 and RD2) from the Register File
pipelined MIPS processor divides instruc- based on the instruction fields. The Control
tion execution into five sequential stages— Unit generates essential control signals such
Fetch, Decode, Execute, Memory, and as RegWrite, MemtoReg, MemWrite, ALU-
Write- Back—allowing multiple instruc- Control, ALUSrc, and RegDst. The imme-
tions to be processed simultaneously. Pipe- diate field is processed through the Sign-Ex-
line registers separate each stage, ensuring tend Unit, and branch address calculation
smooth instruction flow while preserving begins by shifting the immediate left by two
intermediate values and control signals. bits. Hazard detection occurs here—signals
like StallD, BranchD, and Forward AD/BD
1) Instruction Fetch (IF) Stage: In the Fetch help manage data dependencies and branch
stage, the Program Counter (PC) provides decisions.
the address to the Instruction Memory,
which outputs the instruction to be exe- 3) Execute (EX) Stage: In the Execute stage,

cuted. The PC is incremented by 4 using an
adder to form the next sequential address.
The fetched instruction and PC+4 value are
stored in the IF/ID pipeline register. Stall
signals from the hazard unit can freeze the
PC or prevent instruction loading when
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ers select ALU inputs using forwarded val-
ues from later pipeline stages (ForwardAE
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Fig. 2: Block Diagram 5-Stage MIPS Processor

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 4


https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

T
@REM\"
< Journal
w Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

The ALU computes arithmetic/logic results and
branch comparison signals. Destination register
selection (RegDstE) determines which register
receives the result. All outcomes, including
ALUOutputE, WriteDataE, and WriteRegE, are
stored in the EX/MEM register.

4) Memory (MEM) Stage: The Memory
stage handles load and store operations. The
Data Memory uses ALUOutputM as the ad-
dress. For store (sw) instructions, the value
WriteDataM is written to memory; for load
(Iw), the memory output is prepared for for-
warding to the next stage. Control signals
like MemWriteM, MemtoRegM, and Reg-
WriteM ensure correct behavior. Outputs
are stored in the MEM/WB register.

5) Write-Back (WB) Stage: In the Write-
Back stage, a multiplexer selects between
Memory output (Read- DataW) and ALU
output (ALUOutW). The selected value,
ResultW, is written back into the Register
File if RegWriteW is enabled. This com-
pletes the instruction lifecycle.

D. Low-Power MIPS Processor

After the pipelined architecture was validated,
the entire design was synthesized and evaluated
using Cadence tools with a 45 nm technology
library. Power reports were generated to meas-
ure dynamic and static power consumption.
Based on this analysis, unnecessary signal tran-
sitions were minimized by optimizing datapath
paths and refining control logic. Clock gating
and efficient resource utilization were consid-
ered to reduce switching activity. The optimized
design demonstrated reduced power usage
while maintaining correct functionality and per-
formance.

4. Implementation

The development process started with the sin-
gle-cycle architecture, which served as the
foundation for the complete design. All
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essential components—including the Program
Counter (PC), Instruction Memory, Register
File, ALU, Data Memory, Control Unit, Sign-
Extend Unit, and required multiplexers—were
modeled in Verilog. These components were in-
tegrated into a single datapath where each in-
struction completed all its operations during one
clock cycle. Simulation in Xilinx Vivado veri-
fied the correctness of arithmetic, logical,
load/store, and branch instructions. Waveform
inspection confirmed proper control-signal gen-
eration, ALU output behavior, memory ac-
cesses, and register updates.

After validating the single-cycle functionality,
support for R-type, I-type, and J-type instruc-
tions was fully implemented. This required en-
hancements to the Control Unit and ALU
Control Unit to decode the opcode and funct
fields appropriately. The immediate handling
logic, shift operations, and jump address calcu-
lations were incorporated to match the instruc-
tion format specifications. Testbenches were
created for each instruction category to ensure
correct decoding, operand selection, and output
generation.

The design was then extended into a 5-stage
pipelined processor, consisting of the Instruc-
tion Fetch (IF), Instruction Decode (ID), Exe-
cute (EX), Memory (MEM), and Write-Back
(WB) stages. Pipeline registers (IF/ID, ID/EX,
EX/MEM, MEM/WB) were added to store in-
termediate results and control signals between
stages. Care was taken to ensure that each
stage operated independently while maintaining
synchronized control flow across the pipeline.
The ALU and branch units were updated to sup-
port forwarding and early branch decision logic,
reducing unnecessary stalls.

A significant aspect of the implementation was
the integration of the Hazard Detection Unit and
Forwarding Unit. The Hazard Detection Unit
monitored load-use scenarios and inserted
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stalls when necessary, while the Forwarding
Unit redirected outputs from the EX, MEM, and
WB stages to earlier stages whenever data de-
pendencies occurred. These additions improved
pipeline throughput and significantly reduced
the number of wasted cycles. The branch con-
trol logic was also modified to include flushing
of incorrect instructions upon a taken branch,
ensuring accurate program execution.

Following successful pipelined simulation, the
design was synthesized and implemented using
Xilinx Vivado 2023.1 on an FPGA target. Syn-
thesis reports provided resource utilization de-
tails such as LUT count, register usage, and tim-
ing paths. Post-implementation timing analysis
confirmed that the processor met the required
clock constraints. The functional simulation of
the synthesized netlist validated that the pipe-
lined processor behaved identically to the RTL
model.

To evaluate the design’s performance at a more
detailed hardware level,into Cadence tools us-
ing a 45 nm standard cell library. Gate-level
simulations were performed to analyze propa-
gation delay, switching activity, and power con-
sumption. The Cadence environment provided
area and power reports, highlighting opportuni-
ties for optimization. Careful refinement of con-
trol paths, reduction of redundant logical opera-
tions, and minimization of switching activity
contributed to improving the low-power charac-
teristics of the processor.

5. Results and Discussion

The single-cycle MIPS processor implementa-
tion correctly performs all supported instruc-
tions. Simulation using Xilinx Vivado con-
firmed that all datapath components, including
the ALU, register file, instruction memory, and
data memory, were synchronized and produced
accurate outputs for every instruction. Test
cases verified that arithmetic, logic, load/store,
branch, and jump instructions operated as in-
tended. The control unit successfully decoded
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all instruction formats and issued the correct
control signals, enabling smooth data flow
through the datapath. These results confirmed
the accuracy of the original single-cycle design
and established a strong foundation for future
pipelining improvements.

The pipelined design improved the processor’s
performance by allowing it to execute more
than one instruction simultaneously across its
five stages. Intermediate signals were accu-
rately captured at all pipeline registers (IF/ID,
ID/EX, EX/MEM, MEM/WB), ensuring stable
progression through each stage. Instruction se-
quences were simulated to demonstrate that the
Forwarding Unit and Hazard Detection Unit
functioned correctly by addressing data haz-
ards, forwarding ALU results when necessary,
and stalling only when required, such as in load-
use cases. Branch instructions were properly
handled through pipeline flushing, and the over-
all pipeline control logic ensured that programs
with high dependency remained consistently
free of timing errors.

Fig. 3: Waveform of the Single-cycle MIPS-
based RISC processor using Xilinx Vivado
2023.1
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Fig. 4: Waveform of the 5-Stage MIPS-based
RISC processor using Xilinx Vivado 2023.1

Timing and routing reports from Vivado con-
firmed that the design utilized an optimal num-
ber of lookup tables, flip-flops, and routing re-
sources. Timing analysis also verified that the
processor operated at the intended clock speed
without setup or hold violations. Additionally,
Cadence tool-based variable analysis using a 45
nm technology library was conducted for com-
parison. The results showed that the designed
architecture had low power consumption and
minimal area overhead, due to its RISC-based
simplicity and optimized control paths. These
findings demonstrated that the final pipelined
processor achieved high correctness, good per-
formance, and efficient hardware usage, effec-
tively meeting all design requirements.

Parameter ] Value

Synthesiz ol Cadence Genus 21,14

45 nm Standard Cell Library
32-bit MIPS RISC

Technology Node

Processor Architecture

Total Cell Area 1.368

Net Area 0.000
9.51318 x 109 W

2.39910 x 104 W

Total Power

Leakage Power

Internal Power 9.27327 x 107w
Switching Power ow

Clock Period . 10000 ps
;&}%&;E;i Path Slack [00

| Timing Violations None

Fig. 5: Table of Area, Power, and Timing Report
Generated Using Cadence Genus (45-nm Tech-

nology)
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6. Conclusion and future work

A 32-bit RISC MIPS-based processor was suc-
cessfully designed, simulated and synthesis on
an FPGA platform with Verilog HDL language
and Xilinx Vivado. The modular design of the
five-stage pipeline, as well as its accompani-
ment of R, I, and J instruction formats provides
a practical view on implementing RISC archi-
tecture. Simulation and synthesis results con-
firm the correctness of operation and its ability
to use resources effectively.

Further enhancements can include dynamic
hazard resolution units, branch prediction logic,
and instruction/data caching to increase proces-
sor speed and efficiency. This work provides a
good framework for further study on custom
processor design, advanced pipelining and
VLSI implementation.
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