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Abstract 

This paper presents the complete design, implementation, and performance analysis of a 32bit MIPS-based Reduced 

Instruction Set Computer (RISC) processor using FPGA toolchains. The work begins with the development of a single- 

cycle processor to establish fundamental datapath functionality, followed by the integration of R-type, I-type, and J- 

type instruction formats. To enhance throughput, a fully functional 5- stage pipelined architecture—comprising In- 

struction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and Write-Back (WB)—is implemented 

using Verilog HDL. Xilinx Vivado 2023.1 is used for design, simulation, and FPGA synthesis, while Cadence 45 nm 

technology is used for detailed timing, area, and power analysis. The design incorporates hazard detection and for- 

warding mechanisms to ensure pipeline correctness and minimize stalls. Experimental results confirm accurate exe- 

cution of all supported instruction classes, reduced propagation delay, and efficient hardware utilization. The imple- 

mentation demonstrates a complete academic-to-industry design flow, providing insights into processor architecture, 

pipelining efficiency, and low- power digital design strategies. 
 

1. Introduction 

 

The rapid growth of embedded systems, 

automation, and high-performance computing 

has created a strong demand for processors that 

offer both speed and hardware efficiency. 

Among the different processor design 

philosophies, the Reduced Instruction Set 

Computer (RISC) architecture remains highly 

preferred due to its emphasis on simplicity, 

modularity, and predictable execution. The 

MIPS (Microprocessor without Interlocked 

Pipeline Stages) architecture, in particular, is 

widely used in both academic and industrial 

domains because of its clean instruction 

formats, well-structured datapath, and 

suitability for pipelined implementation. These 

features make MIPS an ideal platform to 

understand processor organization, control 

logic generation, dataflow design, and the 

fundamentals of instruction-level parallelism. 

 

This project focuses on the complete design, 

simulation, and hardware realization of a MIPS- 

based RISC processor using Verilog HDL. The 

design evolves in stages, beginning with a 

single-cycle processor that executes every 

instruction within one clock cycle. This initial 

model establishes core architectural concepts 

such as instruction fetch, decoding, operand 

selection, ALU operations, memory access, and 

result write-back. Once the fundamental 

datapath is verified, the processor is extended to 

support all three major MIPS instruction 

formats—R-type, I-type, and J-type—ensuring 

compatibility with arithmetic, logical, data 

transfer, and control-flow instructions. 

 

To enhance execution speed, the processor is 

further developed into a 5-stage pipelined 

architecture consisting of the Instruction Fetch 

(IF), Instruction Decode (ID), Execution (EX), 

Memory (MEM), and Write-Back (WB) stages. 

Pipelining allows multiple instructions to be 

processed simultaneously, significantly 

increasing throughput without raising the clock 

frequency. Essential pipeline support units, such 

as hazard detection and forwarding systems, are 
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integrated to manage data dependencies and 

prevent incorrect execution. These units ensure 

that the processor maintains high performance 

while preserving functional accuracy. 

 

The hardware description is implemented using 

Verilog HDL in Xilinx Vivado 2023.1, where 

functional simulation, synthesis, and FPGA 

implementation are performed. Vivado 

waveforms confirm the correctness of 

instruction flow, timing relationships across 

pipeline stages, and the generation of 

appropriate control signals. The design is then 

analyzed using Cadence tools with a 45 nm 

technology library to evaluate delay, power 

consumption, and area utilization. Cadence 

analysis provides detailed insight into low-level 

behavior, enabling validation of the processor’s 

physical performance and efficiency. 

 

This work demonstrates the complete digital 

design process—from theoretical architecture 

to hardware verification using industry- 

standard tools. The implementation highlights 

the benefits of pipelining, structured datapath 

design, and hazard handling in developing an 

efficient processor architecture. The results 

confirm that the designed MIPS- based RISC 

processor achieves accurate instruction 

execution, reduced delay, improved throughput, 

and optimized hardware utilization, making it 

suitable for academic learning as well as real- 

time embedded applications. 

 

2. Related work 

 

Several researchers have explored MIPS-based 

RISC architectures implemented on FPGAs. 

Dewangan et al. (2021) presented a pipelined 

32-bit MIPS processor with hazard detection 

and forwarding units to minimize stalls. 

Gautham et al. (2009) proposed a low-power 

pipelined MIPS processor that reduces dynamic 

power consumption by bypassing unused 

pipeline stages. Bharadwaja et al. (2015) 

integrated low-power design methodologies 

such as clock gating and multi-threshold 

voltage techniques to enhance energy 

efficiency. Krishna Prasad and Vijay Prakash 

(2021) demonstrated a five-stage pipelined 

design capable of resolving data hazards 

efficiently on FPGA platforms. 

These works collectively emphasize the 

advantages of pipelined RISC architectures in 

improving throughput and power efficiency, 

providing the foundation for the present design 

and implementation. 

 

3. Design Methodology 

 

The design of the MIPS processor follows a 

structured top-down methodology. Each 

functional block is modeled as a separate 

Verilog module and later integrated to form the 

complete system. 

 

A. Single-Cycle MIPS Processor 

the design process began with defining the 

architecture of a basic single-cycle MIPS 

processor. The essential datapath components— 

Program Counter, Instruction Memory, Register 

File, ALU, Data Memory, Control Unit, Sign- 

Extend Unit, and required multiplexers—were 

identified. Each module was modeled in Verilog 

HDL. The datapath was then constructed by 

interconnecting these modules to execute an 

instruction completely within one clock cycle. 

Functional simulations were performed in 

Xilinx Vivado to verify correct PC updates, 

ALU operations, register reads/writes, memory 

interactions, and control-signal generation. This 

stage established the baseline architecture 

required for further extension. 

 

The single-cycle MIPS processor executes 

every instruction in one clock cycle by allowing 

all operations—fetch, decode, execute, memory 

access, and write-back—to occur within a 

single, continuous datapath. The block diagram 

begins with the Program Counter (PC), which 

supplies the address of the next instruction. This 

address is sent to the Instruction Memory, and 

the fetched instruction is passed into the 

datapath for decoding and execution. 

 

The Instruction Fetch (IF) stage produces the 

next sequential PC value by adding 4 through 

an adder. This updated PC is selected through a 

https://ijsrem.com/


         
            International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 09 Issue: 12 | Dec - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM55694                                 |        Page 3 
 

 

multiplexer and written back into the PC 

register at the end of the cycle. The fetched 

instruction enters the Instruction Decode (ID) 

stage, where the Register File reads two source 

operands (RS1 and RS2) based on the 

instruction fields. A Sign-Extend Unit generates 

a 32-bit immediate value for I-type instructions. 

The control logic associated with decoding 

determines the ALU operation, register write- 

back selection, and whether memory access is 

required. In the Execution (EX) stage, a set of 

multiplexers selects appropriate ALU 

operands—either the second register value or 

the immediate value. The ALU performs 

arithmetic or logical operations and also 

generates a zero flag for branch decisions. The 

branch target address is formed by adding the 

sign-extended immediate value (shifted left by 

two) to the next sequential PC. A branch- 

decision multiplexer chooses between the 

normal PC and branch target address based on 

the zero flag and control signals. 

 

Fig. 1: Block Diagram Single-Cycle MIPS Processor 

 

For load and store instructions, the Memory 

Access (MEM) stage uses the ALU output as 

the memory address. The Data Memory either 

retrieves data (for load) or stores data from the 

second register value (for store). Finally, in the 

Write-Back (WB) stage, a multiplexer selects 

between the ALU result and memory output. 

The selected value is written into the Register 

File, completing the instruction’s execution 

path. 

This integrated datapath allows each instruction 

to flow through all required operations in one 

cycle, making the design simple but limited by 

the slowest instruction’s execution time. 

 

B. Instruction Formats 

The processor supports three instruction types: 

• R-type: R-type instructions perform 

operations that in- volve only registers, such 

as addition, subtraction, logical AND, 

logical OR, and set-on-less-than. During 

execution, these instructions are decoded to 

extract the function (funct) code, which 

specifies the exact operation the ALU needs 

to carry out. 

 

• I-type: I-type instructions are used for 

operations that involve immediate values, 

memory access, or branching. They include 

instructions like addi, andi, ori, lw, sw, beq, 

and bne. In arithmetic and logical 

operations, the immediate value is sign- 

extended and provided as one of the inputs 

to the ALU. For load and store instructions, 

the ALU calculates the effective address in 

memory where the data will be read from or 

written to. 

 

• J-type: J-type instructions, such as j and jal, 

are primarily used to control the program’s 

flow by performing jump operations. In 

these instructions, the EX stage calculates 

the jump target address by shifting the 26- 

bit immediate value and combining it with 

the upper bits of the current program coun- 

ter (PC). The IF stage then updates the PC 

with this new address to continue execution 

from the target location. 

 

C. 5-Stage Pipelined MIPS Processor 

To improve performance, the single-cycle 

processor  was  extended  into  a  5-stage 
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pipelined architecture consisting of IF, ID, 

EX, MEM, and WB stages. Pipeline regis- 

ters (IF/ID, ID/EX, EX/MEM, and 

MEM/WB) were added to store in-termedi- 

ate values and control signals. The 5-stage 

pipelined MIPS processor divides instruc- 

tion execution into five sequential stages— 

Fetch, Decode, Execute, Memory, and 

Write- Back—allowing multiple instruc- 

tions to be processed simultaneously. Pipe- 

line registers separate each stage, ensuring 

smooth instruction flow while preserving 

intermediate values and control signals. 

 

1) Instruction Fetch (IF) Stage: In the Fetch 

stage, the Program Counter (PC) provides 

the address to the Instruction Memory, 

which outputs the instruction to be exe- 

cuted. The PC is incremented by 4 using an 

adder to form the next sequential address. 

The fetched instruction and PC+4 value are 

stored in the IF/ID pipeline register. Stall 

signals from the hazard unit can freeze the 

PC or prevent instruction loading when 

required. 

 

2) Instruction Decode (ID) Stage: The De- 

code stage reads the source register values 

(RD1 and RD2) from the Register File 

based on the instruction fields. The Control 

Unit generates essential control signals such 

as RegWrite, MemtoReg, MemWrite, ALU- 

Control, ALUSrc, and RegDst. The imme- 

diate field is processed through the Sign-Ex- 

tend Unit, and branch address calculation 

begins by shifting the immediate left by two 

bits. Hazard detection occurs here—signals 

like StallD, BranchD, and ForwardAD/BD 

help manage data dependencies and branch 

decisions. 

 

3) Execute (EX) Stage: In the Execute stage, 

ALU operations are performed. Multiplex- 

ers select ALU inputs using forwarded val- 

ues from later pipeline stages (ForwardAE 

and ForwardBE) to resolve data hazards. 

 

 
Fig. 2: Block Diagram 5-Stage MIPS Processor 
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The ALU computes arithmetic/logic results and 

branch comparison signals. Destination register 

selection (RegDstE) determines which register 

receives the result. All outcomes, including 

ALUOutputE, WriteDataE, and WriteRegE, are 

stored in the EX/MEM register. 

 

4) Memory (MEM) Stage: The Memory 

stage handles load and store operations. The 

Data Memory uses ALUOutputM as the ad- 

dress. For store (sw) instructions, the value 

WriteDataM is written to memory; for load 

(lw), the memory output is prepared for for- 

warding to the next stage. Control signals 

like MemWriteM, MemtoRegM, and Reg- 

WriteM ensure correct behavior. Outputs 

are stored in the MEM/WB register. 

 

5) Write-Back (WB) Stage: In the Write- 

Back stage, a multiplexer selects between 

Memory output (Read- DataW) and ALU 

output (ALUOutW). The selected value, 

ResultW, is written back into the Register 

File if RegWriteW is enabled. This com- 

pletes the instruction lifecycle. 

D. Low-Power MIPS Processor 

After the pipelined architecture was validated, 

the entire design was synthesized and evaluated 

using Cadence tools with a 45 nm technology 

library. Power reports were generated to meas- 

ure dynamic and static power consumption. 

Based on this analysis, unnecessary signal tran- 

sitions were minimized by optimizing datapath 

paths and refining control logic. Clock gating 

and efficient resource utilization were consid- 

ered to reduce switching activity. The optimized 

design demonstrated reduced power usage 

while maintaining correct functionality and per- 

formance. 

4. Implementation 

 

The development process started with the sin- 

gle-cycle architecture, which served as the 

foundation  for  the  complete  design.  All 

essential components—including the Program 

Counter (PC), Instruction Memory, Register 

File, ALU, Data Memory, Control Unit, Sign- 

Extend Unit, and required multiplexers—were 

modeled in Verilog. These components were in- 

tegrated into a single datapath where each in- 

struction completed all its operations during one 

clock cycle. Simulation in Xilinx Vivado veri- 

fied the correctness of arithmetic, logical, 

load/store, and branch instructions. Waveform 

inspection confirmed proper control-signal gen- 

eration, ALU output behavior, memory ac- 

cesses, and register updates. 

 

After validating the single-cycle functionality, 

support for R-type, I-type, and J-type instruc- 

tions was fully implemented. This required en- 

hancements to the Control Unit and ALU 

Control Unit to decode the opcode and funct 

fields appropriately. The immediate handling 

logic, shift operations, and jump address calcu- 

lations were incorporated to match the instruc- 

tion format specifications. Testbenches were 

created for each instruction category to ensure 

correct decoding, operand selection, and output 

generation. 

 

The design was then extended into a 5-stage 

pipelined processor, consisting of the Instruc- 

tion Fetch (IF), Instruction Decode (ID), Exe- 

cute (EX), Memory (MEM), and Write-Back 

(WB) stages. Pipeline registers (IF/ID, ID/EX, 

EX/MEM, MEM/WB) were added to store in- 

termediate results and control signals between 

stages. Care was taken to ensure that each 

stage operated independently while maintaining 

synchronized control flow across the pipeline. 

The ALU and branch units were updated to sup- 

port forwarding and early branch decision logic, 

reducing unnecessary stalls. 

 

A significant aspect of the implementation was 

the integration of the Hazard Detection Unit and 

Forwarding Unit. The Hazard Detection Unit 

monitored load-use scenarios  and  inserted 
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stalls when necessary, while the Forwarding 

Unit redirected outputs from the EX, MEM, and 

WB stages to earlier stages whenever data de- 

pendencies occurred. These additions improved 

pipeline throughput and significantly reduced 

the number of wasted cycles. The branch con- 

trol logic was also modified to include flushing 

of incorrect instructions upon a taken branch, 

ensuring accurate program execution. 

 

Following successful pipelined simulation, the 

design was synthesized and implemented using 

Xilinx Vivado 2023.1 on an FPGA target. Syn- 

thesis reports provided resource utilization de- 

tails such as LUT count, register usage, and tim- 

ing paths. Post-implementation timing analysis 

confirmed that the processor met the required 

clock constraints. The functional simulation of 

the synthesized netlist validated that the pipe- 

lined processor behaved identically to the RTL 

model. 

 

To evaluate the design’s performance at a more 

detailed hardware level,into Cadence tools us- 

ing a 45 nm standard cell library. Gate-level 

simulations were performed to analyze propa- 

gation delay, switching activity, and power con- 

sumption. The Cadence environment provided 

area and power reports, highlighting opportuni- 

ties for optimization. Careful refinement of con- 

trol paths, reduction of redundant logical opera- 

tions, and minimization of switching activity 

contributed to improving the low-power charac- 

teristics of the processor. 

 

5. Results and Discussion 

 

The single-cycle MIPS processor implementa- 

tion correctly performs all supported instruc- 

tions. Simulation using Xilinx Vivado con- 

firmed that all datapath components, including 

the ALU, register file, instruction memory, and 

data memory, were synchronized and produced 

accurate outputs for every instruction. Test 

cases verified that arithmetic, logic, load/store, 

branch, and jump instructions operated as in- 

tended. The control unit successfully decoded 

all instruction formats and issued the correct 

control signals, enabling smooth data flow 

through the datapath. These results confirmed 

the accuracy of the original single-cycle design 

and established a strong foundation for future 

pipelining improvements. 

 

The pipelined design improved the processor’s 

performance by allowing it to execute more 

than one instruction simultaneously across its 

five stages. Intermediate signals were accu- 

rately captured at all pipeline registers (IF/ID, 

ID/EX, EX/MEM, MEM/WB), ensuring stable 

progression through each stage. Instruction se- 

quences were simulated to demonstrate that the 

Forwarding Unit and Hazard Detection Unit 

functioned correctly by addressing data haz- 

ards, forwarding ALU results when necessary, 

and stalling only when required, such as in load- 

use cases. Branch instructions were properly 

handled through pipeline flushing, and the over- 

all pipeline control logic ensured that programs 

with high dependency remained consistently 

free of timing errors. 
 

 

 

Fig. 3: Waveform of the Single-cycle MIPS- 

based RISC processor using Xilinx Vivado 

2023.1 
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Fig. 4: Waveform of the 5-Stage MIPS-based 
RISC processor using Xilinx Vivado 2023.1 
 

Timing and routing reports from Vivado con- 

firmed that the design utilized an optimal num- 

ber of lookup tables, flip-flops, and routing re- 

sources. Timing analysis also verified that the 

processor operated at the intended clock speed 

without setup or hold violations. Additionally, 

Cadence tool-based variable analysis using a 45 

nm technology library was conducted for com- 

parison. The results showed that the designed 

architecture had low power consumption and 

minimal area overhead, due to its RISC-based 

simplicity and optimized control paths. These 

findings demonstrated that the final pipelined 

processor achieved high correctness, good per- 

formance, and efficient hardware usage, effec- 

tively meeting all design requirements. 
 

 

 

Fig. 5: Table of Area, Power, and Timing Report 
Generated Using Cadence Genus (45-nm Tech- 
nology) 

6. Conclusion and future work 

 

A 32-bit RISC MIPS-based processor was suc- 

cessfully designed, simulated and synthesis on 

an FPGA platform with Verilog HDL language 

and Xilinx Vivado. The modular design of the 

five-stage pipeline, as well as its accompani- 

ment of R, I, and J instruction formats provides 

a practical view on implementing RISC archi- 

tecture. Simulation and synthesis results con- 

firm the correctness of operation and its ability 

to use resources effectively. 

 

Further enhancements can include dynamic 

hazard resolution units, branch prediction logic, 

and instruction/data caching to increase proces- 

sor speed and efficiency. This work provides a 

good framework for further study on custom 

processor design, advanced pipelining and 

VLSI implementation. 
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