

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 1

Design and Implementation of a MIPS-Based RISC Processor on FPGA

Shivani N Shetty1, Soundarya R M2, Srushti G M3, Vaishnavi G H4

Department of Electronics and Communication Engineering JNN College of Engineering,

Shivamogga, Karnataka, India

shivaninshetty04@gmail.com, soundaryamudigouda@gmail.com, srush2004gm@gmail.com ,

ghvaishnavi2703@gmail.com .

Abstract

This paper presents the complete design, implementation, and performance analysis of a 32bit MIPS-based Reduced

Instruction Set Computer (RISC) processor using FPGA toolchains. The work begins with the development of a single-

cycle processor to establish fundamental datapath functionality, followed by the integration of R-type, I-type, and J-

type instruction formats. To enhance throughput, a fully functional 5- stage pipelined architecture—comprising In-

struction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and Write-Back (WB)—is implemented

using Verilog HDL. Xilinx Vivado 2023.1 is used for design, simulation, and FPGA synthesis, while Cadence 45 nm

technology is used for detailed timing, area, and power analysis. The design incorporates hazard detection and for-

warding mechanisms to ensure pipeline correctness and minimize stalls. Experimental results confirm accurate exe-

cution of all supported instruction classes, reduced propagation delay, and efficient hardware utilization. The imple-

mentation demonstrates a complete academic-to-industry design flow, providing insights into processor architecture,

pipelining efficiency, and low- power digital design strategies.

1. Introduction

The rapid growth of embedded systems,

automation, and high-performance computing

has created a strong demand for processors that

offer both speed and hardware efficiency.

Among the different processor design

philosophies, the Reduced Instruction Set

Computer (RISC) architecture remains highly

preferred due to its emphasis on simplicity,

modularity, and predictable execution. The

MIPS (Microprocessor without Interlocked

Pipeline Stages) architecture, in particular, is

widely used in both academic and industrial

domains because of its clean instruction

formats, well-structured datapath, and

suitability for pipelined implementation. These

features make MIPS an ideal platform to

understand processor organization, control

logic generation, dataflow design, and the

fundamentals of instruction-level parallelism.

This project focuses on the complete design,

simulation, and hardware realization of a MIPS-

based RISC processor using Verilog HDL. The

design evolves in stages, beginning with a

single-cycle processor that executes every

instruction within one clock cycle. This initial

model establishes core architectural concepts

such as instruction fetch, decoding, operand

selection, ALU operations, memory access, and

result write-back. Once the fundamental

datapath is verified, the processor is extended to

support all three major MIPS instruction

formats—R-type, I-type, and J-type—ensuring

compatibility with arithmetic, logical, data

transfer, and control-flow instructions.

To enhance execution speed, the processor is

further developed into a 5-stage pipelined

architecture consisting of the Instruction Fetch

(IF), Instruction Decode (ID), Execution (EX),

Memory (MEM), and Write-Back (WB) stages.

Pipelining allows multiple instructions to be

processed simultaneously, significantly

increasing throughput without raising the clock

frequency. Essential pipeline support units, such

as hazard detection and forwarding systems, are

https://ijsrem.com/
mailto:shivaninshetty04@gmail.com
mailto:soundaryamudigouda@gmail.com
mailto:srush2004gm@gmail.com
mailto:ghvaishnavi2703@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 2

integrated to manage data dependencies and

prevent incorrect execution. These units ensure

that the processor maintains high performance

while preserving functional accuracy.

The hardware description is implemented using

Verilog HDL in Xilinx Vivado 2023.1, where

functional simulation, synthesis, and FPGA

implementation are performed. Vivado

waveforms confirm the correctness of

instruction flow, timing relationships across

pipeline stages, and the generation of

appropriate control signals. The design is then

analyzed using Cadence tools with a 45 nm

technology library to evaluate delay, power

consumption, and area utilization. Cadence

analysis provides detailed insight into low-level

behavior, enabling validation of the processor’s

physical performance and efficiency.

This work demonstrates the complete digital

design process—from theoretical architecture

to hardware verification using industry-

standard tools. The implementation highlights

the benefits of pipelining, structured datapath

design, and hazard handling in developing an

efficient processor architecture. The results

confirm that the designed MIPS- based RISC

processor achieves accurate instruction

execution, reduced delay, improved throughput,

and optimized hardware utilization, making it

suitable for academic learning as well as real-

time embedded applications.

2. Related work

Several researchers have explored MIPS-based

RISC architectures implemented on FPGAs.

Dewangan et al. (2021) presented a pipelined

32-bit MIPS processor with hazard detection

and forwarding units to minimize stalls.

Gautham et al. (2009) proposed a low-power

pipelined MIPS processor that reduces dynamic

power consumption by bypassing unused

pipeline stages. Bharadwaja et al. (2015)

integrated low-power design methodologies

such as clock gating and multi-threshold

voltage techniques to enhance energy

efficiency. Krishna Prasad and Vijay Prakash

(2021) demonstrated a five-stage pipelined

design capable of resolving data hazards

efficiently on FPGA platforms.

These works collectively emphasize the

advantages of pipelined RISC architectures in

improving throughput and power efficiency,

providing the foundation for the present design

and implementation.

3. Design Methodology

The design of the MIPS processor follows a

structured top-down methodology. Each

functional block is modeled as a separate

Verilog module and later integrated to form the

complete system.

A. Single-Cycle MIPS Processor

the design process began with defining the

architecture of a basic single-cycle MIPS

processor. The essential datapath components—

Program Counter, Instruction Memory, Register

File, ALU, Data Memory, Control Unit, Sign-

Extend Unit, and required multiplexers—were

identified. Each module was modeled in Verilog

HDL. The datapath was then constructed by

interconnecting these modules to execute an

instruction completely within one clock cycle.

Functional simulations were performed in

Xilinx Vivado to verify correct PC updates,

ALU operations, register reads/writes, memory

interactions, and control-signal generation. This

stage established the baseline architecture

required for further extension.

The single-cycle MIPS processor executes

every instruction in one clock cycle by allowing

all operations—fetch, decode, execute, memory

access, and write-back—to occur within a

single, continuous datapath. The block diagram

begins with the Program Counter (PC), which

supplies the address of the next instruction. This

address is sent to the Instruction Memory, and

the fetched instruction is passed into the

datapath for decoding and execution.

The Instruction Fetch (IF) stage produces the

next sequential PC value by adding 4 through

an adder. This updated PC is selected through a

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 3

multiplexer and written back into the PC

register at the end of the cycle. The fetched

instruction enters the Instruction Decode (ID)

stage, where the Register File reads two source

operands (RS1 and RS2) based on the

instruction fields. A Sign-Extend Unit generates

a 32-bit immediate value for I-type instructions.

The control logic associated with decoding

determines the ALU operation, register write-

back selection, and whether memory access is

required. In the Execution (EX) stage, a set of

multiplexers selects appropriate ALU

operands—either the second register value or

the immediate value. The ALU performs

arithmetic or logical operations and also

generates a zero flag for branch decisions. The

branch target address is formed by adding the

sign-extended immediate value (shifted left by

two) to the next sequential PC. A branch-

decision multiplexer chooses between the

normal PC and branch target address based on

the zero flag and control signals.

Fig. 1: Block Diagram Single-Cycle MIPS Processor

For load and store instructions, the Memory

Access (MEM) stage uses the ALU output as

the memory address. The Data Memory either

retrieves data (for load) or stores data from the

second register value (for store). Finally, in the

Write-Back (WB) stage, a multiplexer selects

between the ALU result and memory output.

The selected value is written into the Register

File, completing the instruction’s execution

path.

This integrated datapath allows each instruction

to flow through all required operations in one

cycle, making the design simple but limited by

the slowest instruction’s execution time.

B. Instruction Formats

The processor supports three instruction types:

• R-type: R-type instructions perform

operations that in- volve only registers, such

as addition, subtraction, logical AND,

logical OR, and set-on-less-than. During

execution, these instructions are decoded to

extract the function (funct) code, which

specifies the exact operation the ALU needs

to carry out.

• I-type: I-type instructions are used for

operations that involve immediate values,

memory access, or branching. They include

instructions like addi, andi, ori, lw, sw, beq,

and bne. In arithmetic and logical

operations, the immediate value is sign-

extended and provided as one of the inputs

to the ALU. For load and store instructions,

the ALU calculates the effective address in

memory where the data will be read from or

written to.

• J-type: J-type instructions, such as j and jal,

are primarily used to control the program’s

flow by performing jump operations. In

these instructions, the EX stage calculates

the jump target address by shifting the 26-

bit immediate value and combining it with

the upper bits of the current program coun-

ter (PC). The IF stage then updates the PC

with this new address to continue execution

from the target location.

C. 5-Stage Pipelined MIPS Processor

To improve performance, the single-cycle

processor was extended into a 5-stage

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 4

pipelined architecture consisting of IF, ID,

EX, MEM, and WB stages. Pipeline regis-

ters (IF/ID, ID/EX, EX/MEM, and

MEM/WB) were added to store in-termedi-

ate values and control signals. The 5-stage

pipelined MIPS processor divides instruc-

tion execution into five sequential stages—

Fetch, Decode, Execute, Memory, and

Write- Back—allowing multiple instruc-

tions to be processed simultaneously. Pipe-

line registers separate each stage, ensuring

smooth instruction flow while preserving

intermediate values and control signals.

1) Instruction Fetch (IF) Stage: In the Fetch

stage, the Program Counter (PC) provides

the address to the Instruction Memory,

which outputs the instruction to be exe-

cuted. The PC is incremented by 4 using an

adder to form the next sequential address.

The fetched instruction and PC+4 value are

stored in the IF/ID pipeline register. Stall

signals from the hazard unit can freeze the

PC or prevent instruction loading when

required.

2) Instruction Decode (ID) Stage: The De-

code stage reads the source register values

(RD1 and RD2) from the Register File

based on the instruction fields. The Control

Unit generates essential control signals such

as RegWrite, MemtoReg, MemWrite, ALU-

Control, ALUSrc, and RegDst. The imme-

diate field is processed through the Sign-Ex-

tend Unit, and branch address calculation

begins by shifting the immediate left by two

bits. Hazard detection occurs here—signals

like StallD, BranchD, and ForwardAD/BD

help manage data dependencies and branch

decisions.

3) Execute (EX) Stage: In the Execute stage,

ALU operations are performed. Multiplex-

ers select ALU inputs using forwarded val-

ues from later pipeline stages (ForwardAE

and ForwardBE) to resolve data hazards.

Fig. 2: Block Diagram 5-Stage MIPS Processor

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 5

The ALU computes arithmetic/logic results and

branch comparison signals. Destination register

selection (RegDstE) determines which register

receives the result. All outcomes, including

ALUOutputE, WriteDataE, and WriteRegE, are

stored in the EX/MEM register.

4) Memory (MEM) Stage: The Memory

stage handles load and store operations. The

Data Memory uses ALUOutputM as the ad-

dress. For store (sw) instructions, the value

WriteDataM is written to memory; for load

(lw), the memory output is prepared for for-

warding to the next stage. Control signals

like MemWriteM, MemtoRegM, and Reg-

WriteM ensure correct behavior. Outputs

are stored in the MEM/WB register.

5) Write-Back (WB) Stage: In the Write-

Back stage, a multiplexer selects between

Memory output (Read- DataW) and ALU

output (ALUOutW). The selected value,

ResultW, is written back into the Register

File if RegWriteW is enabled. This com-

pletes the instruction lifecycle.

D. Low-Power MIPS Processor

After the pipelined architecture was validated,

the entire design was synthesized and evaluated

using Cadence tools with a 45 nm technology

library. Power reports were generated to meas-

ure dynamic and static power consumption.

Based on this analysis, unnecessary signal tran-

sitions were minimized by optimizing datapath

paths and refining control logic. Clock gating

and efficient resource utilization were consid-

ered to reduce switching activity. The optimized

design demonstrated reduced power usage

while maintaining correct functionality and per-

formance.

4. Implementation

The development process started with the sin-

gle-cycle architecture, which served as the

foundation for the complete design. All

essential components—including the Program

Counter (PC), Instruction Memory, Register

File, ALU, Data Memory, Control Unit, Sign-

Extend Unit, and required multiplexers—were

modeled in Verilog. These components were in-

tegrated into a single datapath where each in-

struction completed all its operations during one

clock cycle. Simulation in Xilinx Vivado veri-

fied the correctness of arithmetic, logical,

load/store, and branch instructions. Waveform

inspection confirmed proper control-signal gen-

eration, ALU output behavior, memory ac-

cesses, and register updates.

After validating the single-cycle functionality,

support for R-type, I-type, and J-type instruc-

tions was fully implemented. This required en-

hancements to the Control Unit and ALU

Control Unit to decode the opcode and funct

fields appropriately. The immediate handling

logic, shift operations, and jump address calcu-

lations were incorporated to match the instruc-

tion format specifications. Testbenches were

created for each instruction category to ensure

correct decoding, operand selection, and output

generation.

The design was then extended into a 5-stage

pipelined processor, consisting of the Instruc-

tion Fetch (IF), Instruction Decode (ID), Exe-

cute (EX), Memory (MEM), and Write-Back

(WB) stages. Pipeline registers (IF/ID, ID/EX,

EX/MEM, MEM/WB) were added to store in-

termediate results and control signals between

stages. Care was taken to ensure that each

stage operated independently while maintaining

synchronized control flow across the pipeline.

The ALU and branch units were updated to sup-

port forwarding and early branch decision logic,

reducing unnecessary stalls.

A significant aspect of the implementation was

the integration of the Hazard Detection Unit and

Forwarding Unit. The Hazard Detection Unit

monitored load-use scenarios and inserted

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 6

stalls when necessary, while the Forwarding

Unit redirected outputs from the EX, MEM, and

WB stages to earlier stages whenever data de-

pendencies occurred. These additions improved

pipeline throughput and significantly reduced

the number of wasted cycles. The branch con-

trol logic was also modified to include flushing

of incorrect instructions upon a taken branch,

ensuring accurate program execution.

Following successful pipelined simulation, the

design was synthesized and implemented using

Xilinx Vivado 2023.1 on an FPGA target. Syn-

thesis reports provided resource utilization de-

tails such as LUT count, register usage, and tim-

ing paths. Post-implementation timing analysis

confirmed that the processor met the required

clock constraints. The functional simulation of

the synthesized netlist validated that the pipe-

lined processor behaved identically to the RTL

model.

To evaluate the design’s performance at a more

detailed hardware level,into Cadence tools us-

ing a 45 nm standard cell library. Gate-level

simulations were performed to analyze propa-

gation delay, switching activity, and power con-

sumption. The Cadence environment provided

area and power reports, highlighting opportuni-

ties for optimization. Careful refinement of con-

trol paths, reduction of redundant logical opera-

tions, and minimization of switching activity

contributed to improving the low-power charac-

teristics of the processor.

5. Results and Discussion

The single-cycle MIPS processor implementa-

tion correctly performs all supported instruc-

tions. Simulation using Xilinx Vivado con-

firmed that all datapath components, including

the ALU, register file, instruction memory, and

data memory, were synchronized and produced

accurate outputs for every instruction. Test

cases verified that arithmetic, logic, load/store,

branch, and jump instructions operated as in-

tended. The control unit successfully decoded

all instruction formats and issued the correct

control signals, enabling smooth data flow

through the datapath. These results confirmed

the accuracy of the original single-cycle design

and established a strong foundation for future

pipelining improvements.

The pipelined design improved the processor’s

performance by allowing it to execute more

than one instruction simultaneously across its

five stages. Intermediate signals were accu-

rately captured at all pipeline registers (IF/ID,

ID/EX, EX/MEM, MEM/WB), ensuring stable

progression through each stage. Instruction se-

quences were simulated to demonstrate that the

Forwarding Unit and Hazard Detection Unit

functioned correctly by addressing data haz-

ards, forwarding ALU results when necessary,

and stalling only when required, such as in load-

use cases. Branch instructions were properly

handled through pipeline flushing, and the over-

all pipeline control logic ensured that programs

with high dependency remained consistently

free of timing errors.

Fig. 3: Waveform of the Single-cycle MIPS-

based RISC processor using Xilinx Vivado

2023.1

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 7

Fig. 4: Waveform of the 5-Stage MIPS-based
RISC processor using Xilinx Vivado 2023.1

Timing and routing reports from Vivado con-

firmed that the design utilized an optimal num-

ber of lookup tables, flip-flops, and routing re-

sources. Timing analysis also verified that the

processor operated at the intended clock speed

without setup or hold violations. Additionally,

Cadence tool-based variable analysis using a 45

nm technology library was conducted for com-

parison. The results showed that the designed

architecture had low power consumption and

minimal area overhead, due to its RISC-based

simplicity and optimized control paths. These

findings demonstrated that the final pipelined

processor achieved high correctness, good per-

formance, and efficient hardware usage, effec-

tively meeting all design requirements.

Fig. 5: Table of Area, Power, and Timing Report
Generated Using Cadence Genus (45-nm Tech-
nology)

6. Conclusion and future work

A 32-bit RISC MIPS-based processor was suc-

cessfully designed, simulated and synthesis on

an FPGA platform with Verilog HDL language

and Xilinx Vivado. The modular design of the

five-stage pipeline, as well as its accompani-

ment of R, I, and J instruction formats provides

a practical view on implementing RISC archi-

tecture. Simulation and synthesis results con-

firm the correctness of operation and its ability

to use resources effectively.

Further enhancements can include dynamic

hazard resolution units, branch prediction logic,

and instruction/data caching to increase proces-

sor speed and efficiency. This work provides a

good framework for further study on custom

processor design, advanced pipelining and

VLSI implementation.

Acknowledgment

The authors would like to acknowledge Dr.

Sharath S. M., Associate Professor,Dept. of

ECE, JNNCE, Shivamogga for his precious

guidance, suggestions and motivation provided

throughout the work. His profound technical

knowledge, timely recommendations, and pa-

tient guidance was instrumental in steering the

course and quality of this study. The authors

would also like to thank him for his constant

support, motivation and commitment which had

a positive impact on the outcome of this study.

References

[1] Gaurav K. Dewangan, Govind Prasad,

Bipin C. Mandi, “Design and Implementation

of 32-bit MIPS based RISC Processor,” IEEE

SPIN, 2021.

[2] Gautham P., Parthasarathy R., Karthi B.,

“Low-Power Pipelined MIPS Processor De-

sign,” IEEE, 2009.

[3] V.S.R. Bharadwaja et al., “Advanced

Low Power RISC Processor Design using MIPS

Instruction Set,” IEEE ICECS, 2015.

[4] S.P. Ritpurkar, M.N. Thakare, G.D.

Korde, “Synthesis and Simulation of 32-Bit

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55694 | Page 8

MIPS RISC Processor using VHDL,” IEEE

ICAETR, 2014.

[5] Krishna Prasad K., Vijay Prakash A.M.,

“Design and Implementation of 32-bit 5-stage

Pipelined MIPS-based RISC Processor Capable

of Resolving Data Hazards,” IEEE ICMNWC,

2021.

https://ijsrem.com/

