Fac \33‘
‘{IJSREM\
gw i7 International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Design and Implementation of Linkify: A Secure Full-Stack URL Shortening
System with Real-Time Analytics

Satyam S. Deshpande!, Prof. Nagraj Kamble?, Prof. Sunil Kale?

IStudent, Department of Information Technology, M.S. Bidve Engineering College, Latur
?Assistant Professor, Department of Information Technology, M.S. Bidve Engineering College, Latur
3 Assistant Professor, Department of Information Technology, M.S. Bidve Engineering College, Latur
Affiliated to Dr. Babasaheb Ambedkar Technological University (DBATU), Lonere, Maharashtra, India
Corresponding Author: Satyam S. Deshpande
Email: deshpandesatyam235@gmail.com

Co-Author Emails: nagraj.kamble@gmail.com, smkalel4jan@gmail.com

Abstract -

This research presents the design and development of Linkify, an enterprise-ready full-stack web application for URL
shortening with integrated traffic analytics. The study explores whether a modular architectural approach combining
Spring Boot backend with React frontend and PostgreSQL persistence layer can achieve improved data consistency and
reduced response latency compared to conventional implementations. The system leverages Base62 encoding to generate
collision-resistant short identifiers and employs JSON Web Token (JWT) authentication to secure analytics access.
Performance evaluation across one hundred test cases revealed an average redirect latency of 182 milliseconds with
standard deviation of 15 milliseconds. Authentication testing confirmed complete rejection of unauthorized requests
across five hundred simulated attacks. Zero identifier collisions occurred during generation of ten thousand unique short
codes. The analytics subsystem demonstrated complete accuracy in recording visitor information including access patterns
and device classifications. This work establishes a viable framework for organizations seeking self-hosted link
management with enhanced privacy controls and comprehensive usage monitoring capabilities.

Key Words: URL Shortening, Spring Boot, React.js, PostgreSQL, JWT Authentication, Web Analytics.

1. INTRODUCTION

The proliferation of web resources has led to increasingly complex Uniform Resource Locators (URLs) that present
usability challenges in contexts with character limitations. Social media platforms commonly restrict message lengths,
while print media requires URLs that users can manually transcribe. URL shortening services address these constraints
by establishing mappings between lengthy addresses and compact alphanumeric identifiers.

Commercial shortening platforms have achieved widespread adoption, yet these services raise concerns regarding user
privacy and data stewardship. Research by Aggarwal and Verma demonstrates that popular URL shortening providers
often retain analytics data indefinitely and may redistribute this information to external parties. Organizations requiring
detailed usage analytics frequently encounter cost barriers when utilizing commercial solutions. These limitations
motivate development of self-hosted alternatives that preserve organizational control over redirection metadata and user
information.

This investigation examines whether modular system design principles can maintain service availability while capturing
detailed analytics for every shortened link. The central hypothesis proposes that relational database implementations
provide superior data consistency guarantees for click-through tracking compared to document-oriented alternatives
commonly employed in commercial systems. This hypothesis guided selection of PostgreSQL as the persistence layer due
to its Atomicity, Consistency, Isolation, Durability (ACID) compliance characteristics.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM55695 | Page 1

https://ijsrem.com/

Fac ‘33&

‘{IJSREM"

tee-wd? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

The research establishes three specific objectives. First, implement a deterministic encoding mechanism that generates
unique short identifiers without collision risk. Second, deploy stateless authentication protecting sensitive analytics
endpoints while supporting horizontal scalability. Third, develop real-time visualization capabilities with minimal
performance impact on core redirection functionality. To validate these objectives, the system was constructed following
Representational State Transfer (REST) architectural principles. This approach advances current understanding by
demonstrating integration of comprehensive analytics within standard web utilities while preserving user privacy and
maintaining organizational data sovereignty. Section 2 describes the systematic methodology employed during system
construction.

2. METHODS
2.1 Materials and Tools

System development utilized contemporary software engineering tools selected for production stability and community
support. The backend implementation employed Spring Boot version 3.2.x executing on Java Development Kit (JDK) 17
Long-Term Support (LTS) release. This framework was selected because it provides comprehensive security features and
simplified dependency management through convention over-configuration design patterns. The frontend utilized React.js
version 18.x with Tailwind Cascading Style Sheets (CSS) framework for responsive interface design. This combination
was chosen to enable component reusability and rapid interface prototyping.

Data persistence relied on PostgreSQL version 15 selected for its proven reliability in production environments and
advanced indexing capabilities. The security layer integrated Spring Security framework with JWT implementation
following Request for Comments (RFC) 7519 specifications. Real-time data visualization employed Chart.js library
version 4.x providing interactive graphics with minimal performance overhead. Development workflow incorporated
Maven for build automation, Git for distributed version control, and Postman for Application Programming Interface
(API) validation testing.

2.2 System Architecture

The implementation follows three-tier architectural separation ensuring loose coupling between presentation, business
logic, and data access layers. This design decision was selected because it facilitates independent scaling of each tier and
simplifies maintenance through clear responsibility boundaries. Figure 1 illustrates the complete architectural
organization.

The presentation layer comprises React.js client components responsible for user interaction and data visualization. This
layer communicates with backend services exclusively through Hypertext Transfer Protocol (HTTP) requests carrying
JavaScript Object Notation (JSON) payloads. Authentication tokens accompany all requests to protected endpoints using
Bearer authentication scheme.

The application layer implements core business logic within Spring Boot framework. This tier processes incoming
requests through multiple specialized services. The JWT security filter intercepts all requests to verify token validity and
extract user identity before permitting access to protected resources. The URL shortening service generates unique
identifiers and persists URL mappings. The redirection service resolves short identifiers to target URLs and initiates
browser redirects. The analytics engine asynchronously captures visitor metadata to prevent blocking primary redirection
workflows. This architectural separation was chosen to ensure analytics processing cannot degrade user-facing
performance.

The data layer utilizes PostgreSQL relational database providing ACID transaction guarantees. Three primary tables
organize information storage. The URL mappings table stores identifier-to-URL associations with indexed slug columns
enabling rapid lookups. The click analytics table records individual access events including network addresses, device
classifications, and temporal information. The user sessions table maintains JWT tokens and expiration metadata for
authentication state management.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM55695 | Page 2

https://ijsrem.com/

i 2

‘{IJSREM"

;w7 International Journal of Scientific Research in Engineering and Management (I[JSREM)
fa) Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Spr'iirE; Boot Backend

React.js Frontend REST Controllers PostgreSQL Database

JWT Security Filter L

HTTP - | SQL
User Interface / Requests URL Shortening Service Queries
Visualization (JS}ON); '

Analytics Service ’ URL Mapping Table

Click Analytics Table

User/Auth Table

III |

Fig. - 1: System Architecture diagram showing React Client, Spring Boot Backend with JWT Security Filter, and
PostgreSQL Database

2.3 Base62 Encoding Implementation

The system generates short identifiers through Base62 encoding of sequential database identifiers. This technique was
selected because it produces compact representations while guaranteeing uniqueness through deterministic
transformation. The encoding alphabet comprises sixty-two characters including digits zero through nine, lowercase letters
a through z, and uppercase letters A through Z. Eight-character identifiers provide a namespace exceeding 218 trillion
possible combinations calculated as 62 raised to the eighth power.

The encoding algorithm accepts integer database primary keys as input and produces fixed-length alphanumeric strings.
Processing begins by initializing an empty result buffer. The algorithm repeatedly divides the input identifier by base
sixty-two, appending the corresponding character from the encoding alphabet based on the division remainder. This
process continues until the input value reaches zero. The accumulated characters undergo reversal to establish correct
positional significance. If the resulting string length falls below eight characters, the algorithm prepends zero characters
to achieve the target length. This approach improves reliability by ensuring all generated identifiers maintain consistent
length regardless of input magnitude.

The deterministic nature of this transformation ensures each database identifier maps to exactly one short code, eliminating
collision possibility at the algorithmic level. Reverse transformation from short code to database identifier follows the
inverse mathematical operation, enabling efficient lookup of original database records for analytics aggregation purposes.

2.4 Redirection Service

The redirection service processes incoming requests for shortened URLs by extracting the identifier from the request path,
retrieving the corresponding target URL from persistent storage, and initiating browser redirection. This workflow was
designed to minimize latency while capturing comprehensive analytics data.

When users access a shortened link, the Spring Boot application receives an HTTP GET request containing the short
identifier as a path parameter. The service extracts this identifier and validates its format against expected patterns to reject
malformed requests early in the processing pipeline. Valid identifiers trigger database queries using indexed lookups on
the slug column. This design decision leverages PostgreSQL B-tree indexing to reduce query complexity from linear to
logarithmic time relative to table size.

If the database query successfully locates a matching record, the service retrieves the associated target URL and prepares
an HTTP 302 Found response. This status code instructs browsers to automatically navigate to the target location.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 3

https://ijsrem.com/

SOl
¢ IJSREM
@w' International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Simultaneously, the service dispatches an asynchronous task to capture visitor metadata including network address, device
classification derived from User-Agent string parsing, request timestamp formatted according to International
Organization for Standardization (ISO) 8601 standard, and HTTP Referer header indicating traffic source. The
asynchronous design ensures analytics processing executes independently of the response path, preventing measurement
overhead from degrading redirect latency.

When database queries fail to locate matching records, the service returns HTTP 404 Not Found responses informing
users that the requested short identifier does not exist. Figure 2 illustrates the complete request processing flow including
decision points and asynchronous operations.

[User Clicks Shortened URL]

.

‘ Incoming Request to Server ‘

Return 404 Validate Short Code? @\’L Datbase Lookup
Not Found J

Return 404
i t URL F d? T R
Not Found ko Sh

Async Processing

2 Redirect to Target URL

Fig. - 2: Flowchart showing redirection flow from user click through database lookup to analytics logging and redirect

1
1
i
1
‘|
1
‘
1
'
i

Log Analytics Data

2.5 Security Architecture

The security implementation employs JWT-based authentication to protect administrative interfaces and analytics
dashboards. This approach was selected because token-based authentication eliminates server side session storage
requirements, thereby supporting stateless operation and horizontal scaling across multiple application instances.

Upon successful user authentication through credential verification, the system generates a JWT containing user
identification and role claims. Token generation employs HMAC-SHA256 cryptographic signature algorithm ensuring
token integrity and preventing tampering. Each token includes standard claims for subject identification, issued-at
timestamp, and expiration timestamp. The expiration mechanism enforces automatic session termination after
predetermined intervals, reducing exposure from token theft.

Protected API endpoints require clients to include valid JWTs within HTTP Authorization headers using Bearer token
scheme. The security filter intercepts incoming requests and extracts tokens for validation. Validation verifies
cryptographic signatures, checks expiration timestamps, and extracts user claims for authorization decisions. Role-based
access control logic examines user roles to determine endpoint access permissions. This design improves system security
by enforcing principle of least privilege, granting users only the minimum permissions necessary for their responsibilities.

© 2025, 1JSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 4

https://ijsrem.com/

Fac ‘33&
‘{IJSREM"

tee-wd? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

2.6 Analytics Collection

The analytics subsystem captures detailed usage information for every redirect event to support data driven link
management decisions. Collection occurs asynchronously relative to user-facing response delivery to ensure measurement
activities cannot degrade perceived performance.

Captured data dimensions include temporal information recording precise access timestamps in Coordinated Universal
Time (UTC) with ISO 8601 formatting. Network information logs Internet Protocol (IP) addresses enabling geographic
analysis and access pattern detection. Device classification parsing User-Agent strings identifies whether visitors utilize
desktop computers, mobile phones, or tablet devices. Traffic source information extracted from HTTP Referer headers
identifies which websites or platforms directed visitors to shortened links. Optional geographic enrichment through IP
geolocation databases provides country and city approximations for visitors.

The frontend dashboard leverages Chart.js library to render captured data into interactive visualizations. Time-series line
graphs display click-through rates over user-selected intervals. Pie charts illustrate device type distributions helping
organizations optimize content for prevalent device categories. Bar charts rank traffic sources by volume assisting
marketing teams in evaluating channel effectiveness. This visualization approach improves usability by transforming raw
analytics data into actionable insights accessible to non-technical stakeholders.

3. RESULTS

Performance evaluation employed systematic testing across multiple dimensions to characterize system behavior and
validate design objectives. All measurements were conducted in controlled development environments to ensure
reproducibility and eliminate external interference.

3.1 Redirection Performance

Redirect latency measurements utilized one hundred unique shortened URLs with diverse target destinations. Each URL
received multiple access requests to characterize response time distributions. Statistical analysis revealed mean latency of
182 milliseconds with standard deviation of 15 milliseconds. The distribution approximated normal characteristics with
95 percent of requests completing within 212 milliseconds, calculated as mean plus two standard deviations. These
measurements demonstrate consistent performance across varied workloads.

Base62 encoding efficiency testing measured identifier generation time across ten thousand sequential database
identifiers. Each transformation completed in under 5 milliseconds, confirming computational efficiency suitable for high-
throughput scenarios. The deterministic algorithm generated zero duplicate identifiers across the complete test set,
validating collision resistance claims.

Database query performance remained stable across expanding dataset sizes. Indexed slug lookups completed in under 50
milliseconds for tables containing ten thousand records. PostgreSQL query execution plans confirmed B-tree index
utilization avoiding full table scans. Connection pooling metrics using HikariCP showed average acquisition latency of 2
milliseconds with zero timeout events throughout testing duration.

3.2 Security Validation

Security effectiveness testing simulated unauthorized access attempts against protected analytics endpoints. Five hundred
requests lacking valid authentication tokens targeted restricted resources. The JWT security filter successfully rejected all
unauthorized attempts, returning appropriate HTTP 401 Unauthorized or HTTP 403 Forbidden responses based on
specific failure conditions. Chi-square statistical testing confirmed rejection consistency with significance level p less
than 0.05. Token validation processing introduced average overhead of 3 milliseconds per authenticated request,
demonstrating minimal performance impact from security mechanisms.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 5

https://ijsrem.com/

SO TY
';‘IJSREM\

tee-wd? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

3.3 Analytics Accuracy

Analytics capture accuracy evaluation examined one hundred redirect events to verify complete and correct metadata
recording. Validation compared captured values against expected ground truth for all data dimensions. Internet Protocol
address capture achieved 100 percent accuracy extracting values from X-Forwarded-For or Remote-Addr HTTP headers.
Device classification parsing User-Agent strings achieved 100 percent accuracy across tested browser and device
combinations. Timestamp formatting compliance with ISO 8601 standard reached 100 percent across all captured events.
HTTP Referer header capture when present in requests achieved 100 percent accuracy.

3.4 Performance Metrics Summary

Table 1 consolidates measured performance characteristics across all evaluation dimensions. These quantitative results
provide evidence supporting system design decisions and validate achievement of research objectives.

Table - 1: Performance Metrics Summary

Metric Value Sample Size Statistical Note
Mean Redirection Latency 182 ms n=100 95% CI: [179, 185] ms
Standard Deviation 15 ms n=100 Normal distribution
95th Percentile Latency 210 ms n=100 -
Slug Generation Time <5ms n=10,000 Consistent performance
Slug Collision Rate 0% n= 10,000 p <0.001
Security Block Success 100% n =500 p <0.05
JWT Validation Latency 3 ms n=100 Minimal overhead
Analytics Accuracy 100% n=100 All metadata correct

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 6

https://ijsrem.com/

Fac ‘33&

‘{IJSREM"

tee-wd? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Database Lookup Time <50 ms n=10,000 B-tree indexed

Throughput Capacity ~450 req/sec Load Test Single instance

The experimental evidence demonstrates that the implemented system meets or exceeds performance benchmarks
established by commercial URL shortening platforms while maintaining complete organizational control over user data
and analytics information.

4. DISCUSSION
4.1 Interpretation of Findings

The empirical results support the initial hypothesis that modular architecture combining Spring Boot with PostgreSQL
provides adequate data consistency and performance for click-through tracking applications. Mean redirect latency of 182
milliseconds compares favorably with commercial services typically exhibiting response times between 150 and 300
milliseconds depending on geographic distribution infrastructure. The implementation achieves competitive performance
while enabling complete data ownership, addressing primary privacy concerns motivating this research.

The low standard deviation of 15 milliseconds indicates predictable system behavior across varying request patterns. This
consistency characteristic improves reliability by ensuring users experience similar performance regardless of access
timing or load conditions. Consistency becomes particularly valuable for organizational deployments where unpredictable
latency could disrupt user workflows or reduce service adoption.

4.2 Achievement of Research Objectives

The investigation successfully addressed all three established research objectives with quantitative validation. The first
objective sought collision-resistant identifier generation through deterministic encoding. Zero collisions across ten
thousand generated codes confirms mathematical soundness of the Base62 approach. The namespace capacity of
approximately 218 trillion unique eight-character identifiers provides sufficient scalability for organizations managing
millions of shortened URLs. The deterministic transformation guarantees bijective mapping between database identifier
space and short code space, eliminating collision risk at the algorithmic level regardless of generation volume.

The second objective required stateless authentication protecting sensitive analytics data. Security testing demonstrated
100 percent success blocking unauthorized access attempts, validating authentication architecture robustness. JWT-based
implementation eliminates server-side session storage overhead, directly supporting horizontal scalability objectives.
Multiple application instances can operate independently without session replication requirements. The 3-millisecond
average validation latency imposes minimal performance penalty, confirming that security mechanisms do not
significantly degrade user-facing response times.

The third objective demanded real-time visualization without compromising redirect performance. Asynchronous
analytics design successfully decouples metadata capture from critical response pathways. The 100 percent accuracy rate
across all measured dimensions ensures captured data provides reliable foundation for organizational decision-making.
Chart.js integration enables interactive visualizations updating dynamically as click events occur, meeting real-time
presentation requirements.

4.3 Advantages Over Existing Solutions

Comparison with existing literature and commercial offerings reveals several distinctive advantages of the presented
approach. Unlike commercial services where organizations surrender data custody to external providers, self-hosted
deployment maintains complete organizational control over all captured information. This architectural decision directly

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM55695 | Page 7

https://ijsrem.com/

Fac ‘33&
‘{IJSREM"

tee-wd? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

addresses privacy concerns identified in prior research by Aggarwal and Verma regarding third-party data access and
monetization.

The implementation eliminates recurring subscription costs associated with commercial analytics features while providing
equivalent or superior functionality. Organizations avoid vendor lock-in risks and maintain flexibility to customize
analytics dimensions according to specific requirements. Complete source code access enables security auditing and
integration with existing enterprise authentication systems, capabilities unavailable with commercial software-as-a-
service offerings.

4.4 Scalability Analysis

Although testing occurred within development environments, architectural decisions position the system for production
deployment scaling. Stateless authentication design eliminates session affinity requirements, allowing load balancers to
distribute requests across application instances using any available server. PostgreSQL replication capabilities support
read-heavy workloads through read replica deployment, with write operations directed to primary database instances.
Asynchronous analytics processing enables offloading measurement tasks to dedicated worker nodes in distributed
architectures, preventing analytics load from impacting redirect performance.

4.5 Limitations and Future Work

Several limitations constrain generalization of these findings. Testing exclusively within local development environments
cannot fully characterize performance under production conditions including network latency variability and geographic
distribution effects. Concurrent access patterns and sustained high throughput scenarios require additional evaluation
beyond single-instance capacity measurements. Sample sizes while statistically significant for validation purposes
represent limited operational scales compared to large-scale production deployments.

User-Agent parsing accuracy demonstrated perfect results across tested browser strings but may encounter challenges
with uncommon or intentionally spoofed user agents. Geographic distribution effects including content delivery network
integration remain uncharacterized. Production deployments would benefit from evaluation across geographically
dispersed data centers to quantify latency impacts on global user populations.

Future research should explore distributed caching integration using Redis or Memcached to reduce database load for
frequently accessed URLs. Advanced analytics capabilities including conversion tracking, A/B testing support, and bot
detection algorithms would enhance organizational value. Enterprise authentication integration with OAuth 2.0 providers,
LDAP directories, or SAML-based single sign-on systems would improve adoption in corporate environments.
Performance optimization through database sharding strategies and materialized views for complex analytics aggregations
would support scaling beyond current tested limits.

4.6 Practical Implications

These findings carry several implications for organizations considering URL shortening infrastructure. Results
demonstrate that production-standard URL shortening with comprehensive analytics capabilities can be achieved through
self-hosted deployment using contemporary open-source frameworks. JWT based authentication provides adequate
security for sensitive analytics data while maintaining horizontal scalability characteristics necessary for growth.

Self-hosted architecture facilitates regulatory compliance with data protection frameworks including General Data
Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA) by eliminating third-party data sharing
inherent in commercial services. Organizations gain complete audit trails for data access and retention, supporting
compliance documentation requirements. Development resource requirements prove manageable for small engineering
teams with modern framework proficiency, as demonstrated by successful completion within student-led project timelines.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 8

https://ijsrem.com/

Fac ‘33&
‘{IJSREM"
gw i7 International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 [ssue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

5. CONCLUSIONS

This investigation presented comprehensive design, implementation, and evaluation of Linkify, a secure full-stack URL
shortening system incorporating real-time analytics capabilities. The primary findings validate that decoupled
architectural approach utilizing Spring Boot backend, React frontend, and PostgreSQL persistence achieves efficient
performance for secure link management and detailed traffic analysis.

Measured redirect latency averaging 182 milliseconds with 15-millisecond standard deviation combined with zero
identifier collisions across ten thousand generations supports the hypothesis that properly indexed relational database
implementations ensure superior data consistency for click-through tracking applications. Base62 encoding demonstrated
mathematical robustness through deterministic collision free identifier generation. JWT-based authentication achieved
perfect success rate protecting sensitive analytics endpoints while maintaining stateless scalability characteristics.

This work contributes to Information Technology knowledge by establishing validated reference architecture for secure
URL shortening addressing gaps in existing literature regarding self-hosted enterprise solutions. The research
demonstrates effective JWT integration patterns for stateless authentication in URL shortening contexts and establishes
quantitative performance benchmarks for Base62 encoding efficiency, redirect latency, and analytics accuracy. The
successful implementation within student-led project framework proves that production-standard security and data
processing capabilities remain accessible to academic institutions and small development teams.

Future investigations should explore distributed caching integration to reduce latency below 100 milliseconds, advanced
analytics features including conversion tracking and predictive performance modeling, enterprise authentication system
integration supporting OAuth 2.0 and LDAP protocols, performance optimization through geographic distribution and
database sharding, enhanced security capabilities including malicious URL detection and click fraud prevention, and
mobile application development for native iOS and Android platforms. The modular architecture established provides
solid foundation for these extensions while preserving core principles of security, performance, and data integrity.

ACKNOWLEDGEMENT

The author express sincere gratitude to Prof. Nagraj Kamble for invaluable technical guidance and continuous mentorship
throughout the project lifecycle. We thank Prof. Sunil Kale for constant support and expert advice on system architecture
design. Special thanks to the Department of Information Technology at M.S. Bidve Engineering College, Latur and Dr.
Babasaheb Ambedkar Technological University, Lonere for providing the academic framework and research environment
necessary for this investigation.

REFERENCES

[1] Field, T.: Effective Spring Boot 3.0: Build Cloud-Native Applications with Modern Frameworks. O'Reilly Media,
Sebastopol (2023)

[2] Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax. RFC 3986, Internet
Engineering Task Force (2005)

[3] Walls, C.: Spring Boot in Action. Manning Publications, Shelter Island (2023)

[4] PostgreSQL Global Development Group: PostgreSQL 15 Documentation. Available at
https://www.postgresql.org/docs/15/ (2023)

[5] Jones, M., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519, Internet Engineering Task Force (2015)

[6] Aggarwal, S., Verma, J.: Analysis of URL Shortening Services: Security, Privacy, and Performance Considerations.
International Journal of Computer Applications, Vol. 145, No. 12, pp. 23-29 (2018)

[7] DBATU: Project Guidelines for Final Year B.Tech IT Programs. Dr. Babasaheb Ambedkar Technological
University, Lonere (2024-25)

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 9

https://ijsrem.com/

.'t-, ‘z;k‘
‘J"IJSREM."
s-=f? International Journal of Scientific Research in Engineering and Management (IJSREM)
fa) Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

[8] Fielding, R. T.: Architectural Styles and Design of Network-based Software Architectures. Doctoral Dissertation,
UC Irvine (2000)

[9] Spring Security Reference Documentation: Spring Security 6.x. Available at https://docs.spring.io/spring-
security/reference/ (2024)

[10] Allamaraju, S.: RESTful Web Services Cookbook. O'Reilly Media, Sebastopol (2010)

[11] Kleppmann, M.: Designing Data-Intensive Applications. O'Reilly Media, Sebastopol (2017)

[12] ISO/IEC 8601:2019: Date and time — Representations for information interchange. ISO, Geneva (2019)
[13] OWASP Foundation: OWASP Top Ten Web Application Security Risks (2021)

[14] Newman, S.: Building Microservices: Designing Fine-Grained Systems. 2nd Ed., O'Reilly Media (2021)
[15] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston (2002)

BIOGRAPHY

Satyam S. Deshpande is a final year Bachelor of Technology student in Information Technology at M.S. Bidve
Engineering College, Latur, affiliated with Dr. Babasaheb Ambedkar Technological University. His research interests
include full-stack web development, distributed systems architecture, RESTful API design, and web security protocols.
He has demonstrated proficiency in Spring Boot, React.js, and PostgreSQL database systems.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55695 | Page 10

https://ijsrem.com/

