" 2

‘jI-JSREi:{'

% ... #2 International Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Design and Optimization of Al based 5G/6G Communication Protocols for
Smart Cities

Manisha Mathankar Prof. Rashmi Srivastava Dr. Shivangini Morya
PG Scholar Assistant professor Associate professor and Head
Department of Electronics and Department of Electronics and Department of Electronics and
Communication Engineering Communication Engineering Communication Engineering
SAGE University Indore SAGE University Indore SAGE University Indore

Abstract: This research work focuses on the design and performance optimization of 5G/6G communication protocols
for smart city environments using simulation. With the growing demand for ultra-reliable and low-latency
communications in smart transportation, healthcare, and IoT systems, there is a critical need to enhance
communication efficiency in dense urban networks. The study is conducted in two stages: a baseline simulation of a
5G/6G communication system and an Al-optimized model using Reinforcement Learning (RL). The baseline model
measures standard parameters such as latency, throughput, and packet delivery ratio, while the AlI-enhanced model
dynamically adjusts communication parameters to improve performance. Simulation results indicate that the AI-
optimized system reduces latency, increases throughput, and improves the packet delivery ratio compared to the
baseline model, making it more suitable for real-time smart city applications.
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1. Introduction

Smart cities are driven by technologies such as loT, cloud computing, and artificial intelligence [1]. These systems require
seamless, high-speed, and reliable communication networks to support applications like autonomous vehicles, intelligent
surveillance, and smart grids[2].
While 5G networks have made significant progress in reducing latency and increasing data rates, 6G aims to provide even
greater capacity, Al-driven automation, and integrated sensing and communication. However, the major challenge lies in
the dynamic and dense nature of urban environments where thousands of devices compete for limited bandwidth[3].
Conventional communication protocols rely on fixed scheduling and power allocation schemes that cannot adapt
efficiently to changing traffic and interference conditions. This limitation motivates the use of Al-driven optimization to
make communication networks more adaptive, efficient, and intelligent. Reinforcement Learning (RL) provides a
promising approach by allowing systems to learn from interaction and optimize their performance in real-time.

This paper presents a simulation-based approach to design and optimize a 5G/6G communication system for smart cities.
The simulation is performed using Python, where a baseline model is first developed, and then an RL-based optimization
algorithm is integrated to improve the overall network performance.

2. Methodology
The methodology consists of two main stages: (a) Baseline Simulation of the 5G/6G communication model, and (b) Al-
based optimization using reinforcement learning. The block diagram of methodology is shown below

© 2025, IJSREM | https://ijsrem.com | Pagel



https://ijsrem.com/

-'g, ‘33
A
@E@ International Journal of Scientific Research in Engineering and Management (IJSREM)

w Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

A N 4 N

Baseline Simulation AI‘-b.ase.d

Optimization
L. =9 . J
4 l ' 4 ¢ N
5G/6G Communication Reinforcement
Model in Smart Cities | Learning

:

4 N

Performance Metrics

« Bit Error Rate (BER)

» Frame Error Rate (FER)
» Throughput (Mbps)

« Latency (ms)

» Packet Delivery Ratio
. (PDR) P

Figure I Block diagram of methodology

2.1 Baseline Simulation

In the baseline phase, a Python-based environment is created to represent a smart city communication scenario. Nodes
(devices) are distributed across the network, each transmitting data packets over a shared wireless channel. The
simulation includes parameters such as transmission power, channel bandwidth, and noise.

Performance metrics such as latency, throughput, and packet delivery ratio (PDR) are measured under different channel
conditions (e.g., various Signal-to-Noise Ratios or Eb/NO values).

The baseline setup assumes static communication protocols where resource allocation and power control remain constant
throughout the simulation. This model reflects a conventional 5G system without any intelligence or learning capability.

2.2 Performance Metrics

Three key metrics are used for evaluation:

o Bit Error Rate (BER): The ratio of incorrectly received bits to the total transmitted bits, representing
transmission accuracy.

o Frame Error Rate (FER): The probability that an entire data frame (packet) is received incorrectly.

o Throughput (Mbps): The effective data rate of successful transmission.

o Latency (ms): The time delay between transmission and reception.

o Packet Delivery Ratio (PDR): The ratio of successfully delivered packets to the total sent packets.

3. Proposed Model

The proposed model, called AI-Optimized 5G/6G Protocol, integrates a Reinforcement Learning agent into the
communication framework. The RL agent continuously interacts with the environment, learning to make decisions that
improve network performance.

3.1 Reinforcement Learning Framework
The RL model consists of:

° Environment: Represents the 5G/6G communication network with nodes, traffic, and channel
conditions.
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o Agent: A decision-making unit (Al algorithm) that observes the environment and selects optimal actions
such as adjusting transmission power, selecting modulation schemes, or managing bandwidth.
° State (s): Current network conditions, including channel gain, interference level, and packet success rate.
o Action (a): The control operation chosen by the agent (e.g., increase power, change frequency, modify
data rate).
o Reward (r): A numerical feedback signal based on performance improvement. A higher reward is given

for increased throughput and lower latency.
The learning process follows the Q-learning or Deep Reinforcement Learning (using Stable-Baselines3 PPO or DQN)
algorithm, where the agent maximizes cumulative reward by continuously interacting with the environment.

3.2 Working Principle

1. The simulation begins with random transmission parameters.

2. The RL agent observes system performance and adjusts parameters dynamically.

3. The model is trained for multiple episodes until convergence, i.e., when no significant performance
improvement is observed.

4. The optimized model is tested and compared with the baseline.

This adaptive learning approach enables the 5G/6G protocol to self-optimize in response to varying network traffic,
interference, and device density.

4. Results and Analysis

The performance of the proposed Al-optimized SG/6G communication protocol was evaluated and compared against three
baseline resource allocation schemes: Equal Allocation, Proportional Allocation, and Water-Filling Allocation. The
comparison was carried out using three performance metrics: average throughput (in Mbps), average fairness index,
average fairness index and average energy efficiency (EE) measured in Mbps per Watt. The results are summarized in
Table 1.

Table 1: Performance Comparison of Baseline and RL-based Optimization Techniques

Metric RL Equal ([Proportional Water-Filling
Average Throughput (Mbps) 674.74 ||691.13 |1488.78 696.06
Average Fairness 0.599 0.569 0.287 0.560
Average EE (Mbps/W) 67.47 69.11 48.88 69.61

The bar graph in figure 2 compares the average energy efficiency (in Mbps/W) of different resource allocation
techniques—Reinforcement Learning (RL), Equal Power Allocation, Proportional Allocation (Prop), and Water-Filling.
It is evident that the RL-based approach achieves high energy efficiency, nearly matching the best-performing Water-
Filling method at around 68—70 Mbps/W. The Equal Power Allocation method also performs reasonably well but lacks
adaptability, while the Proportional Allocation method records the lowest efficiency at approximately 49 Mbps/W due to
its static nature. These results clearly indicate that the proposed RL-based model outperforms traditional allocation
methods by dynamically learning and optimizing power distribution, leading to better energy utilization and overall
system performance. Hence, RL-based optimization emerges as an intelligent and energy-efficient solution suitable for
next-generation wireless communication systems.
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Average Energy Efficiency: RL vs Baselines
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Figure 2 Average energy efficiecy comparison

The bar graph in figure 3 presents a comparison of the average Jain’s fairness index across four resource allocation
techniques—Reinforcement Learning (RL), Equal Power Allocation, Proportional Allocation (Prop), and Water-Filling.
The RL-based approach achieves the highest fairness value of approximately 0.60, followed closely by Equal Allocation
(0.57) and Water-Filling (0.56), while the Proportional Allocation method significantly underperforms with a fairness
value of around 0.29. This outcome demonstrates that the RL model not only optimizes energy and throughput but also
ensures equitable resource distribution among users. Unlike static allocation methods that may favor certain users or
channels, the RL algorithm dynamically learns to balance performance and fairness based on network conditions. Thus,
the proposed RL approach effectively enhances system-level fairness, making it a well-rounded and adaptive solution for
modern wireless communication networks.
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Figure 3 Average fairness comparison

The bar chart in figure 4 represents the comparison of average total throughput achieved using different resource allocation
schemes, including Reinforcement Learning (RL), Equal Allocation, Proportional Allocation, and Water-Filling. Among
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these, the Equal and Water-Filling methods achieved the highest throughput values, around 690-696 Mbps, indicating
efficient utilization of available bandwidth. The RL-based approach achieved a throughput of approximately 675 Mbps,
which is quite competitive and close to the best-performing methods. On the other hand, the Proportional Allocation
scheme performed significantly lower, yielding only around 489 Mbps, highlighting its inefficiency in handling dynamic
user demands and varying channel conditions. Overall, the results demonstrate that while Equal and Water-Filling
methods slightly outperform RL in throughput, the RL-based approach offers a good balance between throughput,
fairness, and energy efficiency, making it a promising technique for adaptive optimization in 5G/6G smart city
communication systems.
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Figure 4 Average Total Throughput comparison

The RL-optimized protocol achieves a balanced performance across all metrics. Unlike traditional algorithms that
optimize only one aspect (such as throughput or fairness), the RL model dynamically learns to tradeoff between multiple
performance objectives, leading to a more holistic optimization suitable for smart city infrastructure.

From the results, it can be observed that the Water-Filling and Equal Allocation schemes achieve slightly higher
throughput values (691-696 Mbps) compared to the RL-based model (674 Mbps). This is expected, as water-filling
optimizes for throughput alone without considering fairness or power efficiency constraints. However, when evaluating
fairness, the RL model demonstrates a noticeable improvement (0.599) compared to both Equal (0.569) and Water-Filling
(0.560) methods. This indicates that the proposed Al-driven model distributes resources more equitably among users,
which is a desirable feature in smart city communication environments where diverse IoT devices coexist with varying
bandwidth requirements.

Moreover, in terms of energy efficiency, the RL-based model achieves 67.47 Mbps/W, which is comparable to Equal
and Water-Filling schemes and significantly higher than the Proportional Allocation (48.87 Mbps/W). This shows that
the Reinforcement Learning framework is capable of maintaining competitive throughput while ensuring better fairness
and energy utilization — key goals for 6G and sustainable communication networks.

5. Conclusion

The research successfully demonstrated a comparative analysis of different resource allocation techniques—
Reinforcement Learning (RL), Equal Allocation, Proportional Allocation, and Water-Filling—within the context of
5G/6G communication for smart city applications. The RL-based optimization model achieved a strong balance across
key performance metrics including throughput, fairness, and energy efficiency. While Equal and Water-Filling schemes
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slightly outperformed RL in raw throughput, the RL approach provided significantly better fairness and nearly comparable
energy efficiency. This highlights the RL model’s adaptability and intelligent decision-making capabilities in dynamic
network environments where user demands and channel conditions frequently change. The findings validate that Al-
driven resource allocation can be an effective approach for enhancing performance in next-generation smart
communication networks.

6. Future Scope

In future work, the model can be expanded to include multiple Al agents (multi-agent RL) representing different network
cells for cooperative optimization. Advanced deep reinforcement learning algorithms such as Proximal Policy
Optimization (PPO) and Deep Q-Networks (DQN) can be employed for complex decision-making tasks. Furthermore,
energy efficiency, resource sharing, and network slicing in 6G architectures can be optimized using Al models trained on
real-world traffic datasets. The integration of federated learning can also ensure decentralized and privacy-preserving
optimization across city-wide networks.
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