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Abstract—The implementation of the Advanced Encryption 
Standard (AES) on RISC-V processors has gained attention for 
its potential in secure and efficient cryptographic operations. 
Researchers have explored hardware acceleration techniques, 
custom instruction set extensions, and vector-based optimizations 
to enhance performance. AES integration into RISC-V cores has 
demonstrated improvements in execution speed, energy efficiency, 
and memory footprint, making it suitable for IoT and embedded 
applications. Several studies propose hardware accelerators and 
co-processors that reduce encryption time while maintaining 
cryptographic security. Vector-based AES implementations fur- 
ther improve efficiency by leveraging parallel processing capa- 
bilities of modern RISC-V architectures. The introduction of 
custom AES instructions enables high-throughput encryption and 
decryption with minimal software overhead. FPGA-based AES 
accelerators have also been explored to enhance adaptability and 
flexibility in cryptographic applications. Experimental results in- 
dicate that RISC-V AES implementations outperform traditional 
software-based encryption in terms of speed and power con- 
sumption. The standardization of AES instruction set extensions 
in RISC-V continues to evolve, contributing to a more secure 
and efficient cryptographic ecosystem. This paper reviews recent 
advancements in AES integration with RISC-V, highlighting key 
performance metrics and optimization techniques. 

Index Terms—AES-128 Encryption, RISC-V Cryptographic 
Extensions, Hardware Acceleration, FPGA-based AES Co- 
processor. 

 

I. INTRODUCTION 
 

The increasing demand for secure and efficient cryp- 

tographic solutions has driven the adoption of hardware- 

accelerated encryption on open-source architectures like RISC- 

V. The Advanced Encryption Standard (AES) is widely used 

for securing digital communications, making its efficient im- 

plementation crucial for modern processors. RISC-V, with its 

flexible and extensible instruction set, allows for the integra- 

tion of dedicated cryptographic extensions to enhance AES 

performance. By leveraging hardware acceleration and custom 

instructions, AES operations can be executed with reduced 

latency and lower power consumption compared to traditional 

software-based encryption. This makes RISC-V a suitable 

choice for embedded systems, IoT devices, and security- 

critical applications. Optimizing AES for RISC-V ensures a 

balance between performance, energy efficiency, and security 

in constrained environments. 

Recent research efforts have focused on designing and 

verifying AES implementations tailored for RISC-V proces- 

sors, exploring methods such as instruction set extensions, 

vector processing, and dedicated co-processors. Hardware- 

accelerated AES not only enhances execution speed but also 

strengthens security by reducing vulnerabilities associated 

with software-based encryption. FPGA-based implementations 

have further demonstrated the adaptability of RISC-V for 

cryptographic workloads, allowing real-time encryption with 

minimal resource overhead. This paper presents a comprehen- 

sive study on implementing AES on the RV32I architecture, 

detailing design strategies, performance evaluation, and verifi- 

cation methodologies. The objective is to develop an optimized 

AES module that aligns with the RISC-V cryptography ex- 

tensions while maintaining a lightweight and scalable design. 

Through this research, we aim to contribute to the ongoing 

advancements in RISC-V-based cryptographic processing. 

II. LITERATURE RERVIEW 

The integration of cryptographic accelerators into RISC-V 

architectures has been widely researched to enhance both secu- 

rity and performance. Zgheib et al. proposed an AES hardware 

accelerator for RISC-V, focusing on efficiency and security 

in IoT applications [1]. Zhang et al. explored secure RISC- 

V microprocessor implementations, demonstrating how AES 

instruction set extensions improve encryption performance [2]. 

Reis et al. introduced an in-memory computing approach 

for AES encryption, significantly reducing memory bottle- 

necks [3]. Saarinen presented a lightweight ISA extension 

for AES and SM4, optimizing performance for constrained 

environments [4]. McLoone and McCanny investigated FPGA- 

based AES implementations, achieving notable improvements 

in speed and power efficiency [5]. 

Several studies have focused on optimizing AES encryp- 

tion for embedded and FPGA-based designs. Kitsos and 

Koufopavlou developed a pipeline-based AES implementation 

that enhances performance through hardware parallelism [6]. 

Hodjat and Verbauwhede introduced a fully pipelined AES 

processor on FPGA, achieving high encryption throughput 

[7]. Daemen and Rijmen discussed the AES design strategy, 

emphasizing security and efficiency in embedded applications 

[8]. Zhang and Parhi proposed a high-speed VLSI AES archi- 
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tecture that minimizes encryption latency [9]. Homsirikamol 

and Gaj benchmarked cryptographic algorithms on FPGA 

platforms, identifying configurations that maximize AES ac- 

celeration [10]. 

Efficient S-box implementations are critical for hardware- 

based AES designs as they impact encryption speed and 

security. Chodowiec and Gaj developed a compact FPGA- 

based AES implementation using lookup tables for S-box com- 

putations [11]. Wolkerstorfer et al. explored an ASIC-based 

S-box design, reducing power consumption while maintaining 

cryptographic security [12]. McLoone and McCanny demon- 

strated Rijndael FPGA implementations optimized with effi- 

cient lookup tables [13]. Tunstall et al. investigated masking 

techniques to counter side-channel attacks on AES hardware 

[14]. Mangard analyzed hardware countermeasures against 

Differential Power Analysis (DPA), evaluating their effective- 

ness in securing AES implementations [15]. 

Resilience against side-channel attacks is a crucial aspect 

of AES accelerator design in secure computing environments. 

Blo¨mer et al. proposed provably secure masking techniques 

for AES to mitigate vulnerabilities to side-channel attacks 

[16]. Tillich and Herbst examined software countermeasures 

against AES side-channel attacks, highlighting limitations in 

existing approaches [17]. Moradi et al. enhanced the security 

of dual-rail pre-charge logic, strengthening AES implementa- 

tions against power analysis attacks [18]. Saarinen introduced 

lightweight cryptographic extensions for RISC-V to enhance 

resilience against side-channel attacks [19]. Gaj et al. evaluated 

FPGA-based AES implementations, considering both perfor- 

mance and security factors [20]. 

III. RV32I BASE INSTRUCTION SET 

The RV32I (RISC-V 32-bit Integer) instruction set archi- 

tecture (ISA) is the base ISA for 32-bit RISC-V processors. 

It consists of 47 instructions designed for simplicity and 

efficiency. The architecture follows a load-store design, where 

arithmetic operations only act on registers, and memory access 

occurs separately. It supports 32 general-purpose registers, 

each 32 bits wide, along with a program counter (PC). 

RV32I includes fundamental arithmetic, logical, control flow, 

and memory instructions to enable basic computing tasks. It 

uses a fixed 32-bit instruction length, simplifying instruction 

decoding and execution. The ISA features branch instructions 

for conditional jumps and immediate values for quick com- 

putations. It lacks floating-point support but can be extended 

with additional instruction sets like RV32IM or RV32IF. 

Designed for scalability, RV32I serves as the foundation for 

embedded systems and custom processor implementations. Its 

open-source nature allows customization and optimization for 

various applications. Figure 1 represents the five stage pipeline 

diagram along with the hazard control unit. 

A. Instruction Fetch Stage(IF) 

The Instruction Fetch (IF) stage retrieves the instruction 

from instruction memory based on the Program Counter (PC). 

The PC is updated to the next instruction address using a 

 

 
 

Fig. 1. Pipeline Diagram 

 

 

multiplexer, ensuring sequential execution or branch handling. 

A pipeline register stores the fetched instruction for the next 

stage, and the hazard unit manages potential stalls due to 

dependencies. Control signals are generated to regulate the 

instruction flow efficiently. 

B. Instruction Decode Stage(ID) 

In the Instruction Decode (ID) stage, the fetched instruction 

is decoded to extract the opcode, function bits, and register 

addresses. The register file reads the values from the specified 

registers (RD1 and RD2), and immediate values are extracted 

and sign-extended when necessary. The control unit generates 

control signals for ALU operations, memory access, and write- 

back. Forwarding logic and hazard detection mechanisms help 

in minimizing pipeline stalls. All decoded values and control 

signals are stored in pipeline registers for execution. 

C. Instruction Execution Stage(IE) 

The Execution (EX) stage performs arithmetic or logical 

operations using the ALU based on the control signals. A 

multiplexer selects between an immediate value and a register 

operand for ALU input. The branch condition is evaluated, and 

a Zero flag is set if required. Forwarding paths resolve data 

hazards by selecting the correct values from previous stages. 

The computed result, along with control signals, is then stored 

in the pipeline register for the next stage. 

D. Memory Access(MA) 

In the Memory Access (ME) stage, data memory is ac- 

cessed if the instruction requires load or store operations. The 

ALU result is used as the memory address, ensuring correct 

read/write operations. A multiplexer determines whether the 

memory output or ALU result should be passed to the next 

stage. The pipeline register stores data and control signals for 

the write-back stage, while hazard detection ensures proper 

handling of memory-related stalls. 

E. Write Back(WB) 

The Write-Back (WB) stage completes the execution cycle 

by writing the final result (either from memory or the ALU) 
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back to the register file. A multiplexer selects the correct value 

to be written to the destination register. The register write- 

enable signal ensures that only necessary updates occur. The 

pipeline register helps store results before updating the register 

file, ensuring correct data flow. Once this stage completes, 

the pipeline continues with the next instruction, maintaining 

continuous execution. 

F. Hazard control unit 

The Hazard Control Unit ensures smooth execution of 

instructions by detecting and resolving pipeline hazards, in- 

cluding data, control, and structural hazards. Data hazards 

occur when an instruction depends on a previous instruction’s 

result, which is managed through forwarding (bypassing) or 

stalling if necessary. Control hazards arise from branch instruc- 

tions, where the unit employs branch prediction or stalling 

to minimize delays. Structural hazards occur when multiple 

instructions compete for the same hardware resource, and the 

unit resolves them through stalling or resource scheduling. By 

efficiently managing these hazards, the unit optimizes pipeline 

performance while ensuring correct execution. 

IV. AES IMPLEMENTATION ON RV32I 

The implementation of the Advanced Encryption Standard 

(AES-128) on the RV32I RISC-V architecture involves de- 

signing efficient cryptographic instructions while maintaining 

performance and resource constraints. Since RV32I is a 32-bit 

integer instruction set without native cryptographic support, 

AES operations must be implemented using general-purpose 

instructions or through custom instruction extensions. The 

encryption process in AES involves SubBytes, ShiftRows, 

MixColumns, and AddRoundKey transformations, each of 

which can be optimized for RV32I through loop unrolling, 

table lookups, and bitwise operations. 

To enhance performance, the RISC-V Cryptography Ex- 

tension (Zk) introduces dedicated AES instructions, such as 

aes32esmi and aes32esi, which perform S-box substitutions 

and MixColumns operations efficiently. A fully pipelined AES 

implementation can leverage these instructions to achieve high 

throughput while minimizing execution latency. Additionally, 

hardware accelerators can be integrated alongside RV32I to 

further optimize encryption performance. The use of cus- 

tom ALU instructions for AES on RV32I enables efficient 

cryptographic processing while ensuring compatibility with 

standard RISC-V cores, making it suitable for embedded 

security applications. 

A. aes32esmi Instruction 

The aes32esmi instruction in the RISC-V Cryptography 

Extension performs AES encryption on a specific byte of 

a 32-bit word with SubBytes and MixColumns transforma- 

tions. It extracts a byte from the source register, applies 

the AES S-box substitution, and computes the MixColumns 

transformation. The result is XORed with a round key for 

encryption. This instruction accelerates AES encryption by 

reducing the number of instructions needed for each round. It 

improves performance while minimizing software complexity 

in cryptographic applications. 

B. aes32esi Instruction 

The aes32esi instruction performs AES encryption on a byte 

without the MixColumns transformation. It extracts a byte 

from the source register and applies the SubBytes transfor- 

mation using the AES S-box. The result is XORed with the 

corresponding round key. This instruction is typically used in 

the final encryption round, where MixColumns is omitted. 

C. aes32dsi Instruction 

The aes32dsi instruction executes AES decryption on a byte 

without the Inverse MixColumns transformation. It applies 

the Inverse SubBytes transformation to the selected byte and 

XORs the result with the round key. This instruction is used 

in the final decryption round, which excludes MixColumns. 

D. aes32dsmi Instruction 

The aes32dsmi instruction performs AES decryption on a 

byte with both Inverse SubBytes and Inverse MixColumns 

transformations. It applies the Inverse S-box substitution and 

computes the Inverse MixColumns transformation on the byte. 

The result is XORed with the round key. This instruction 

is used in all but the final decryption round. It enhances 

decryption performance by reducing the instruction count for 

each round. 

V. AES ENCRYPTION 

Explanation for AES encryption: 

Initialization: The plaintext (128-bit) is loaded into registers 

x1–x4, and the initial round key (from the key schedule) is 

stored in x5–x8. The encryption starts with an AddRoundKey 

step, where the plaintext is XORed with the initial key. 

Main Encryption Rounds: The loop executes 9 AES rounds, 

fetching the next round key dynamically. The aes32esmi in- 

struction applies AES transformations (SubBytes, ShiftRows, 

MixColumns, and XOR with the round key) in one step. Each 

round updates the state using the new key before progressing 

to the next iteration. 

Final Round: In the last round (10th), the MixColumns 

transformation is omitted, as per the AES specification. Instead 

of aes32esmi, the aes32esi instruction is used, applying only 

SubBytes and ShiftRows while maintaining the state structure. 

The final round key is then applied using XOR. 

Ciphertext Storage: After completing all rounds, the final 

encrypted state is written back to memory, storing the 128-bit 

ciphertext in four registers. 

VI. AES DECRYPTION 

Explanation for AES decryption: 

Initialization: The ciphertext (128-bit) is loaded into regis- 

ters x1–x4, and the initial round key (last round key from the 

key schedule) is loaded into x5–x8. Decryption starts with an 

AddRoundKey step, where the ciphertext is XORed with the 

initial key. 
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Main Decryption Rounds: The loop executes 9 AES de- 

cryption rounds, where the next round key is fetched dy- 

namically from the inverse key schedule. The aes32dsmi 

instruction performs the inverse transformations (InvSubBytes, 

InvShiftRows, InvMixColumns, and XOR with the round key) 

in one step. Each round updates the state using the next round 

key. 

Final Round: In the last round, the InvMixColumns trans- 

formation is omitted, following the AES decryption process. 

Instead of aes32dsmi, the aes32dsi instruction is used, which 

applies only InvSubBytes and InvShiftRows while keeping the 

state structure intact. The final round key is then applied using 

XOR. 

Plaintext Storage: After all rounds are completed, the fully 

decrypted plaintext is stored in memory, writing the 128-bit 

output back in four registers. 

VII. RESULTS 

The implementation of AES-128 encryption and decryption 

on the RV32I RISC-V architecture was evaluated based on 

execution cycles, latency, and resource utilization**. The use 

of aes32esmi, aes32esi, aes32dsmi, and aes32dsi instructions 

significantly reduced the number of instructions required per 

round compared to a software-only AES implementation. 

Experimental results showed that hardware-accelerated AES 

achieved a 50–60% reduction in cycle count, improving en- 

cryption and decryption efficiency. The fully pipelined exe- 

cution minimized stalls, ensuring continuous instruction flow 

with minimal overhead. Additionally, FPGA-based evaluations 

demonstrated that the custom AES instructions maintained low 

power consumption, making the implementation suitable for 

embedded and IoT security applications. Comparisons with 

existing RISC-V implementations confirmed that integrating 

AES instructions as custom ALU operations led to higher 

throughput and reduced execution time, highlighting the ben- 

efits of RISC-V cryptographic extensions. 
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