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Abstract—Modern digital signal processing (DSP) systems 
require both high performance and energy efficiency, particularly 
for image processing. This research outlines the design and 
verification of a RISC-V processor using the RV32IP instruction 
set, which supports SIMD (Single Instruction Multiple Data) op- 
erations.It introduces support for performing parallel operations 
on 8, 16, and 32-bit integer data within a single instruction, 
significantly improving efficiency in data-parallel processing. The 
main objective is to test and confirm that RV32IP architecture 
can correctly run SIMD instructions that are useful in digital 
signal processing (DSP) tasks such as audio and image pro- 
cessing. Performance is assessed across two RISC-V instruction 
set architectures: the baseline scalar RV32I and the SIMD- 
enabled RV32IP,to highlight the benefits of parallel processing. 
The testing includes running programs on simulators, checking 
results, and comparing performance between RV32I and RV32IP 
architectures. The results indicate significant improvements in 
throughput and instruction-level parallelism. 

Index Terms—RISC-V, RV32I, Packed extension, DSP, SIMD 
operations,Instruction Set Architecture. 

 

I. INTRODUCTION 

The increasing prevalence of real-time embedded systems in 

areas like surveillance, robotics, and IoT-based edge de- vices 

has led to a growing need for energy-efficient image 

processing solutions. Tasks such as edge detection, masking, 

and pattern matching are common in these applications but 

often place a heavy computational burden on traditional scalar 

processing units. The RISC-V architecture, known for its 

open-source, modular, and flexible instruction set, allows for 

domain-specific extensions tailored to application needs. One 

such variant, RV32IP, integrates SIMD (Single Instruction, 

Multiple Data) functionality, offering enhanced performance 

for parallel image processing workloads. 

Single Instruction, Multiple Data (SIMD) refers to a parallel 

processing approach where a single operation is carried out 

across multiple data elements at the same time. In a SIMD- 

enabled processor, there are multiple processing units (or ele- 

ments), each capable of performing the same task on separate 

pieces of data simultaneously. This method is highly effective 

for speeding up a wide range of tasks in signal processing 

applications. 

Packed SIMD deals with multiple data values grouped within 

a single register. For example, a 32-bit packed SIMD register 

may contain four 4-bit values. Packed SIMD offers 

greater flexibility compared to vector parallelism, as it enables 

operations on various data types within a single instruction. 

This makes it especially suitable for applications that involve 

processing multiple types of data at once, such as multimedia 

tasks and image manipulation. This form of parallelism works 

on data vectors continuous sequences of elements that are of 

the same data type. For instance, a vector composed of 32-bit 

floating-point values might hold 32 such numbers stored in 

adjacent memory addresses. 

The number of data elements that can be processed in parallel 

depends on the bit-width of the processor’s regis- ters—

whether general-purpose or dedicated SIMD/vector reg- isters. 

Some architectures use standard registers for SIMD 

instructions, while others rely on specialised SIMD hardware. 

In the case of RISC-V, known for its straightforward and 

extensible instruction set, SIMD functionality is available 

through the P-extension using instructions like ADD8 and 

ADD16. 

Design and validation of a RISC-V-based processor tailored 

for digital signal processing (DSP) tasks involving image data. 

Utilising the SIMD capabilities of the RV32IP extension leads 

to notable gains in throughput and instruction-level efficiency 

when compared to the baseline scalar RV32I. Simple example 

to show the working of packed SIMD instruction (MUL8 rd, 

rs1,rs2 ; parallel 8-bit multiplication) is shown in Fig.1 

 

 

 

 

Fig. 1. Packed SIMD MUL8 instruction 
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II. LITERATURE REVIEW 

Waterman et al. introduced the RISC-V instruction set 

architecture, laying the foundation for modern open-source 

processor design [1]. Asanovic´ and Patterson emphasized the 

case for a free, extensible ISA, which enabled rapid innovation 

in domains like image processing [2]. The official RISC-V 

“P” extension, designed for packed SIMD operations, offers a 

lightweight way to accelerate multimedia and DSP workloads 

[3]. Kothari et al. analyzed the RISC-V Vector Extension 

(RVV), demonstrating scalability and parallelism for compute- 

heavy tasks [4]. Hennessy and Patterson provided architectural 

insights into how SIMD improves data-level parallelism, mak- 

ing it suitable for image kernels [5]. 

Halder and Sinha implemented the Sobel edge detection filter 

on FPGA using SIMD, showing measurable acceleration over 

scalar designs [6]. Wu et al. designed a RISC-V processor 

optimized for image filtering, incorporating SIMD-style vector 

instructions for better efficiency [7]. Martin and Brossier 

developed a low-cost RISC-V SoC for edge image processing, 

targeting constrained devices like drones and surveillance sys- 

tems [8]. Lee and Yoo proposed a CMOS-based image feature 

extraction accelerator optimized for low power embedded 

systems [9]. Chang et al. benchmarked multiple RISC-V cores 

on edge AI workloads, including image tasks, and reported 

improved latency with SIMD support [10]. 

Gonzalez and Gonzalez proposed a SIMD processor archi- 

tecture with virtual memory that informed many future parallel 

designs [11]. Cheung et al. discussed compiling pipelined 

hardware from behavioral image processing specifications 

on FPGAs [12]. Jain introduced fundamental algorithms for 

digital image processing, including edge detection and con- 

volution, foundational for hardware mapping [13]. Gonza- 

lez and Woods extended these algorithms into performance- 

aware image analysis pipelines [14]. Mangard et al. addressed 

hardware/software design trade-offs in secure and efficient 

embedded computation, relevant to trusted edge vision systems 

[15]. 

Wei and Zhang proposed a lightweight RISC-V SIMD 

core specifically for machine vision applications, demonstrat- 

ing improved edge detection speeds [16]. Tumeo and Villa 

explored FPGA acceleration for pattern-matching kernels in 

image/DNA analysis, offering insights into parallelism in 

specialized domains [17]. Henkel described the SoC design 

gap and the need for domain-specific accelerators, reinforcing 

the motivation for RV32IP integration in image pipelines [18]. 

Waterman’s dissertation further examined instruction mix and 

performance bottlenecks in baseline RISC-V cores [19]. RISC- 

V International’s official SIMD spec (v0.9.7) served as the 

reference model for implementing and evaluating RV32IP 

image tasks [20]. 

Gautier et al. introduced vectorised RISC-V intrinsics to 

optimise OpenCV kernels, showing significant performance 

gains on embedded platforms using the RISC-V Vector Ex- 

tension [21]. Gupta and Perica`s studied the implementation of 

Winograd convolution on RVV cores, highlighting trade-offs 

in vector length and register usage for convolutional neural 

networks [22]. Wang et al. developed SPEED, a scalable vector 

processor based on RISC-V, which achieved efficient multi- 

precision ng notable acceleration in image filtering and 

transformation tasks [24]. Li et al. further expanded SIMD 

compatibility through the SIMDe framework, automating the 

translation of ARM NEON code to RISC-V vector intrinsics 

with measurable improvements in XNNPACK libraries [25]. 

III. RV32I BASE INSTRUCTION SET 

The RV32I instruction set represents the 32-bit base integer 

architecture of RISC-V. It offers a streamlined, efficient, 

and adaptable framework suitable for both general-purpose 

computing and embedded system applications. RV32I serves 

as the foundational architecture for executing programs, han- 

dling data operations, and managing control structures. RV32I 

includes: 

• Load/store instructions (e.g., LW, SW) for moving 

data between memory and registers. 

• Arithmetic/logical operations (e.g., ADD, SUB, 

AND, OR, XOR). 

• Shift instructions (SLL, SRL, SRA). 

• Control flow instructions (BEQ, JAL, JALR) for 

manag- ing loops and conditional operations in. 

• Immediate operations (ADDI, ORI, etc.) for fast 

constant- based computations. 

RV32I serves as the scalar processing baseline. This approach 

ensures portability and simplicity, but lacks the instruction-

level parallelism found in SIMD-enhanced archi- tectures. The 

performance metrics and throughput results derived from 

RV32I help establish a reference point for comparing with 

extended architectures like RV32IP. 

IV. RV32IP BASE INSTRUCTIN SET 

The RV32IP is a Packed SIMD extension to the standard 

RV32I RISC-V architecture, designed to enhance performance 

by enabling parallel operations on subword data within 32-bit 

registers. It is particularly suitable for image processing tasks, 

where similar operations are applied across multiple pixels. 

RV32IP includes: 

• Packed arithmetic and logical instructions (e.g., 

PADD8, PSUB16, PAND8) to operate on multiple 

smaller-width data (e.g., 4×8-bit or 2×16-bit) in a single 

instruction, useful for simultaneous p. 

• Packed shift and comparison operations (CMPEQ8, 

CM- PEQ16) that allow for efficient gradient 

calculations and conditional processing. 

• Packed load and store instructions 

(LB8,LH16,SB8,SH16) optimized for reading/writing 

grouped pixel values, efficient sub-word memory access 

in data-parallel applications. 

• Support for parallel saturating 

operations to prevent over- flow during image 

enhancement or convolution. 

http://www.ijsrem.com/
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RV32IP allows you to process multiple pixels in parallel, in- 

creasing throughput and energy efficiency. Compared to scalar 

RV32I execution, RV32IP significantly reduces the instruction 

count and improves performance in similar operations. 

A. RISC-V Packed-SIMD Instructions 

Some of the RISC-V P-extension instructions which are 

required in signal processing applications are: 
 

Instruction Description 

ADD8 Adds 4 pairs of 8-bit integers in 32-bit registers. 

ADD16 Adds 2 pairs of 16-bit integers in 32-bit registers. 

AVE Averages two values (e.g., pixels). 

BITREV Reverses all bits in a register. 

BITREVI Bit reversal using a bitmask. 

CMPEQ8 Compares 8-bit values; returns result mask. 

CMPEQ16 Compares 16-bit values for equality. 

CRAS16 Subtracts upper, adds lower 16-bit halves. 

KABS8 Absolute value of 4 packed 8-bit integers. 

KABS16 Absolute value of 2 packed 16-bit integers. 

KADD8 Saturating add for packed 8-bit values. 

KADD16 Saturating add for packed 16-bit values. 
TABLE I 

DESCRIPTIONS OF SELECTED RV32IP SIMD INSTRUCTIONS 
 

V. DESIGN METHODOLOGY 

We have designed a set of assembly-level test programs that 

target specific architectural features to categorise instruction 

groups and hardware components typically described in the 

RISC-V ISA manual. These tests function as synthetic bench- 

marks, aimed at achieving full utilisation of the functional 

units under test. With the integration of the RISC-V P exten- 

sion, the test framework has been extended to focus on packed 

SIMD operations—including parallel addition, subtraction, 

multiplication, and division across multiple subword elements 

within a 32-bit register. As part of the evaluation methodol- 

ogy, instructions supported by both RV32I and RV32IP are 

executed using dedicated testbenches. Performance is then 

compared in terms of execution time, allowing a clear analysis 

of the efficiency gains provided by SIMD-enhanced processing 

over the baseline scalar architecture. 

• Develop a five-stage pipelined 

datapath for instruction execution based upon RV32I. 

• Resolve any hazards by installing 

stalls or data forward- ing. 

• Develope test cases to verify the 

instructions supported by the CPU. 

• Execute selected instructions to test 

on the core by implementing the RISC-V tool. 

VI. 5-STAGE PIPELINED RV32I 

ARCHITECTURE 

A 5-stage pipelined processor enhances instruction through- 

put by dividing execution into five stages. However, pipeline 

hazards: data and control hazards can disrupt seamless execu- 

tion. Data hazards occur when instructions depend on previous 

results. Control hazards, mainly caused by branches, affect 

instruction flow and require effective handling strategies. since 

we are executing only arithematic instructions there will be no 

control hazards in the processor. 

To mitigate data hazards- techniques such as instruction 

reordering, forwarding, and pipeline stalling are considered 

within the simulation framework. a complete 5stage pipelined 

RV32I processor architecture is shown in Fig.2. 

 

 
Fig. 2. 5-Stage Pipelined RV32I Processor Architecture 

 

VII. RV32I PROCESSOR WITH 

PACKED EXTENSION 

ARCHITECTURE 

The RV32IP architecture builds upon the baseline RV32I 

processor by incorporating the Packed SIMD (Single In- 

struction, Multiple Data) extension. This enhancement allows 

the execution of parallel operations on multiple 8-bit, 16- 

bit, or 32-bit data elements within a single 32-bit register, 

significantly improving performance for data-parallel work- 

loads common in digital signal processing, multimedia, and 

embedded applications. the architectural design of RV32I with 

Packed (P) extension is shown in Fig. 3. 

 

Fig. 3. RV32I with P extension 

 

VIII. VERIFICATION ENVIRONMENT 

The verification environment Makefile serves as a pivotal 

component for managing the verification process, as depicted 

in Fig. 3 It encapsulates various tasks essential for verifying 

the functionality and correctness of the design, compilation, 

simulation, and analysis stages. The Makefile manages the 

verification process by integrating several essential software 

tools required for compiling tests and running them on the 

verilog design. These tools include: 

• Icarus Verilog (Iverilog) for 

Compilation Icarus Verilog (iverilog) is used to compile 

and simulate Verilog HDL designs. It processes the 

Verilog source code, linking all modules, and generates 

an executable simulation file. This compiled design can 

then be executed to verify the functionality of the 

RV32IP processor. 

http://www.ijsrem.com/
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• GTKWave for Waveform Analysis 

GTKWave is an open- source waveform viewer used to 

visualise signal transi- tions within the processor. By 

analysing the waveform, one can verify correct 

instruction execution, identify hazards, and debug 

unexpected behaviour in different pipeline stages. 

 

A. Performance Comparision Between RV32I and RV32IP 

• RV32I is a scalar instruction set, 

processing one data element at a time, while RV32IP 

supports SIMD (Single Instruction, Multiple Data), 

allowing parallel processing of multiple data elements. 

• In signal processing tasks, RV32IP 

significantly outper- forms RV32I by reducing the 

number of instructions and execution time. 

• Clock cycles and memory accesses 

are substantially lower in RV32IP. 

• This concludes that RV32IP is better 

suited for compute- intensive, data-parallel applications 

such as edge detec- tion, audio filtering, and machine 

learning on embedded platforms. 

• RV32IP reduces the instruction count 

and improves throughput, which is shown in results. 

 

IX. RESULS AND DISCUSSIONS 
 

The verilog codes for arithematic operations such as addi- tion 

and multiplication are shown in Fig.4 and Fig.5 respec- tively. 

 

 
 

Fig. 5. Multiplication in RV32I (left) and RV32IP (right) 

 

The executed arithmatic operations shows the execution time 

of RV32IP is less compared to RV32I. This concludes that 

RV32IP reduces the instruction count and improves throughput 

and RV32IP is better suited for computentensive, data-parallel 

applications such as audio filtering, and machine learning on 

embedded platforms. 

Similar to other ISAs, RISC-V includes a packed SIMD 

extension known as the P-extension, which supports parallel 

operations on 8-bit, 16-bit, and 32-bit integers within a 32- 

bit register. Although still in the draft stage (version 0.9.5 

at the time of writing) and not yet officially ratified, the P- 

extension is being explored due to its potential performance 

advantages. Current hardware implementations are limited, 

and software support is still evolving, but the extension holds 

promise for data-parallel tasks and is gaining interest in the 

RISC-V community. 
 

 

 
 

 

 
 

 

 
 

 

Fig. 4. Addition in RV32I (left) and RV32IP (right) 

 

 
Processor Type Execution Time Cycles 

RV32I 1.6 micro Sec 160 

RV32IP 0.4 micro sec 40 

TABLE II 
EXECUTION TIME OF ADDITION 

 

 

 
Processor Type Execution Time Cycles 

RV32I 3.9 micro Sec 390 

RV32IP 0.4 micro sec 40 

TABLE III 
EXECUTION TIME OF MULTIPLICATION 

X. CONCLUSION 

The design and assessment of the RISC-V P extension define 

a packed Single Instruction, Multiple Data (SIMD) instruction 

set specifically developed for RISC-V processors. This 

extension brings in capabilities for handling 8-bit, 16-bit, and 

32-bit integer data types, effectively enhancing the RISC- V 

instruction set architecture. With this upgrade, developers are 

enabled to build more efficient and powerful data-parallel 

applications. The importance of the P extension is highlighted 

by its ability to accelerate a broad range of workloads, 

including graphics rendering, audio computation, and scientific 

data processing. 

The comparative analysis between the baseline RV32I and the 

SIMD-enhanced RV32IP clearly demonstrates the perfor- 

mance benefits of parallel processing. Through software sim- 

ulation and result validation, the study confirms that RV32IP 

offers noticeable improvements in throughput and instruction- 

level parallelism. These findings reinforce the effectiveness 

of SIMD integration in the RISC-V architecture for acceler- 

ating data-parallel workloads, especially in signal processing 

domains. 
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