
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Design and Verification of RISC-V Processor for Signal Processing

Applications

Anil Darga 1, Mallikarjun Awwanna Teli2, Shashank Otihal3, Shashank K C4 & M. Govinda Raju5

Department of Electronics and Communication Engineering,

RV College of Engineering, Mysore Road, Bengaluru,560059. anildarga.ec21@rvce.edu.in 1,

mallikarjunat.ec21@rvce.edu.in 2, shashankro.ec21@rvce.edu.in 3

shashankakc.ec21@rvce.edu.in 4 & govindarajum@rvce.edu.in 5

Abstract—Modern digital signal processing (DSP) systems
require both high performance and energy efficiency, particularly
for image processing. This research outlines the design and
verification of a RISC-V processor using the RV32IP instruction
set, which supports SIMD (Single Instruction Multiple Data) op-
erations.It introduces support for performing parallel operations
on 8, 16, and 32-bit integer data within a single instruction,
significantly improving efficiency in data-parallel processing. The
main objective is to test and confirm that RV32IP architecture
can correctly run SIMD instructions that are useful in digital
signal processing (DSP) tasks such as audio and image pro-
cessing. Performance is assessed across two RISC-V instruction
set architectures: the baseline scalar RV32I and the SIMD-
enabled RV32IP,to highlight the benefits of parallel processing.
The testing includes running programs on simulators, checking
results, and comparing performance between RV32I and RV32IP
architectures. The results indicate significant improvements in
throughput and instruction-level parallelism.

Index Terms—RISC-V, RV32I, Packed extension, DSP, SIMD
operations,Instruction Set Architecture.

I. INTRODUCTION

The increasing prevalence of real-time embedded systems in

areas like surveillance, robotics, and IoT-based edge de- vices

has led to a growing need for energy-efficient image

processing solutions. Tasks such as edge detection, masking,

and pattern matching are common in these applications but

often place a heavy computational burden on traditional scalar

processing units. The RISC-V architecture, known for its

open-source, modular, and flexible instruction set, allows for

domain-specific extensions tailored to application needs. One

such variant, RV32IP, integrates SIMD (Single Instruction,

Multiple Data) functionality, offering enhanced performance

for parallel image processing workloads.

Single Instruction, Multiple Data (SIMD) refers to a parallel

processing approach where a single operation is carried out

across multiple data elements at the same time. In a SIMD-

enabled processor, there are multiple processing units (or ele-

ments), each capable of performing the same task on separate

pieces of data simultaneously. This method is highly effective

for speeding up a wide range of tasks in signal processing

applications.

Packed SIMD deals with multiple data values grouped within

a single register. For example, a 32-bit packed SIMD register

may contain four 4-bit values. Packed SIMD offers

greater flexibility compared to vector parallelism, as it enables

operations on various data types within a single instruction.

This makes it especially suitable for applications that involve

processing multiple types of data at once, such as multimedia

tasks and image manipulation. This form of parallelism works

on data vectors continuous sequences of elements that are of

the same data type. For instance, a vector composed of 32-bit

floating-point values might hold 32 such numbers stored in

adjacent memory addresses.

The number of data elements that can be processed in parallel

depends on the bit-width of the processor’s regis- ters—

whether general-purpose or dedicated SIMD/vector reg- isters.

Some architectures use standard registers for SIMD

instructions, while others rely on specialised SIMD hardware.

In the case of RISC-V, known for its straightforward and

extensible instruction set, SIMD functionality is available

through the P-extension using instructions like ADD8 and

ADD16.

Design and validation of a RISC-V-based processor tailored

for digital signal processing (DSP) tasks involving image data.

Utilising the SIMD capabilities of the RV32IP extension leads

to notable gains in throughput and instruction-level efficiency

when compared to the baseline scalar RV32I. Simple example

to show the working of packed SIMD instruction (MUL8 rd,

rs1,rs2 ; parallel 8-bit multiplication) is shown in Fig.1

Fig. 1. Packed SIMD MUL8 instruction

http://www.ijsrem.com/
mailto:anildarga.ec21@rvce.edu.in
mailto:mallikarjunat.ec21@rvce.edu.in
mailto:shashankro.ec21@rvce.edu.in
mailto:shashankakc.ec21@rvce.edu.in
mailto:govindarajum@rvce.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

II. LITERATURE REVIEW

Waterman et al. introduced the RISC-V instruction set

architecture, laying the foundation for modern open-source

processor design [1]. Asanovic´ and Patterson emphasized the

case for a free, extensible ISA, which enabled rapid innovation

in domains like image processing [2]. The official RISC-V

“P” extension, designed for packed SIMD operations, offers a

lightweight way to accelerate multimedia and DSP workloads

[3]. Kothari et al. analyzed the RISC-V Vector Extension

(RVV), demonstrating scalability and parallelism for compute-

heavy tasks [4]. Hennessy and Patterson provided architectural

insights into how SIMD improves data-level parallelism, mak-

ing it suitable for image kernels [5].

Halder and Sinha implemented the Sobel edge detection filter

on FPGA using SIMD, showing measurable acceleration over

scalar designs [6]. Wu et al. designed a RISC-V processor

optimized for image filtering, incorporating SIMD-style vector

instructions for better efficiency [7]. Martin and Brossier

developed a low-cost RISC-V SoC for edge image processing,

targeting constrained devices like drones and surveillance sys-

tems [8]. Lee and Yoo proposed a CMOS-based image feature

extraction accelerator optimized for low power embedded

systems [9]. Chang et al. benchmarked multiple RISC-V cores

on edge AI workloads, including image tasks, and reported

improved latency with SIMD support [10].

Gonzalez and Gonzalez proposed a SIMD processor archi-

tecture with virtual memory that informed many future parallel

designs [11]. Cheung et al. discussed compiling pipelined

hardware from behavioral image processing specifications

on FPGAs [12]. Jain introduced fundamental algorithms for

digital image processing, including edge detection and con-

volution, foundational for hardware mapping [13]. Gonza-

lez and Woods extended these algorithms into performance-

aware image analysis pipelines [14]. Mangard et al. addressed

hardware/software design trade-offs in secure and efficient

embedded computation, relevant to trusted edge vision systems

[15].

Wei and Zhang proposed a lightweight RISC-V SIMD

core specifically for machine vision applications, demonstrat-

ing improved edge detection speeds [16]. Tumeo and Villa

explored FPGA acceleration for pattern-matching kernels in

image/DNA analysis, offering insights into parallelism in

specialized domains [17]. Henkel described the SoC design

gap and the need for domain-specific accelerators, reinforcing

the motivation for RV32IP integration in image pipelines [18].

Waterman’s dissertation further examined instruction mix and

performance bottlenecks in baseline RISC-V cores [19]. RISC-

V International’s official SIMD spec (v0.9.7) served as the

reference model for implementing and evaluating RV32IP

image tasks [20].

Gautier et al. introduced vectorised RISC-V intrinsics to

optimise OpenCV kernels, showing significant performance

gains on embedded platforms using the RISC-V Vector Ex-

tension [21]. Gupta and Perica`s studied the implementation of

Winograd convolution on RVV cores, highlighting trade-offs

in vector length and register usage for convolutional neural

networks [22]. Wang et al. developed SPEED, a scalable vector

processor based on RISC-V, which achieved efficient multi-

precision ng notable acceleration in image filtering and

transformation tasks [24]. Li et al. further expanded SIMD

compatibility through the SIMDe framework, automating the

translation of ARM NEON code to RISC-V vector intrinsics

with measurable improvements in XNNPACK libraries [25].

III. RV32I BASE INSTRUCTION SET

The RV32I instruction set represents the 32-bit base integer

architecture of RISC-V. It offers a streamlined, efficient,

and adaptable framework suitable for both general-purpose

computing and embedded system applications. RV32I serves

as the foundational architecture for executing programs, han-

dling data operations, and managing control structures. RV32I

includes:

• Load/store instructions (e.g., LW, SW) for moving

data between memory and registers.

• Arithmetic/logical operations (e.g., ADD, SUB,

AND, OR, XOR).

• Shift instructions (SLL, SRL, SRA).

• Control flow instructions (BEQ, JAL, JALR) for

manag- ing loops and conditional operations in.

• Immediate operations (ADDI, ORI, etc.) for fast

constant- based computations.

RV32I serves as the scalar processing baseline. This approach

ensures portability and simplicity, but lacks the instruction-

level parallelism found in SIMD-enhanced archi- tectures. The

performance metrics and throughput results derived from

RV32I help establish a reference point for comparing with

extended architectures like RV32IP.

IV. RV32IP BASE INSTRUCTIN SET

The RV32IP is a Packed SIMD extension to the standard

RV32I RISC-V architecture, designed to enhance performance

by enabling parallel operations on subword data within 32-bit

registers. It is particularly suitable for image processing tasks,

where similar operations are applied across multiple pixels.

RV32IP includes:

• Packed arithmetic and logical instructions (e.g.,

PADD8, PSUB16, PAND8) to operate on multiple

smaller-width data (e.g., 4×8-bit or 2×16-bit) in a single

instruction, useful for simultaneous p.

• Packed shift and comparison operations (CMPEQ8,

CM- PEQ16) that allow for efficient gradient

calculations and conditional processing.

• Packed load and store instructions

(LB8,LH16,SB8,SH16) optimized for reading/writing

grouped pixel values, efficient sub-word memory access

in data-parallel applications.

• Support for parallel saturating

operations to prevent over- flow during image

enhancement or convolution.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

RV32IP allows you to process multiple pixels in parallel, in-

creasing throughput and energy efficiency. Compared to scalar

RV32I execution, RV32IP significantly reduces the instruction

count and improves performance in similar operations.

A. RISC-V Packed-SIMD Instructions

Some of the RISC-V P-extension instructions which are

required in signal processing applications are:

Instruction Description

ADD8 Adds 4 pairs of 8-bit integers in 32-bit registers.

ADD16 Adds 2 pairs of 16-bit integers in 32-bit registers.

AVE Averages two values (e.g., pixels).

BITREV Reverses all bits in a register.

BITREVI Bit reversal using a bitmask.

CMPEQ8 Compares 8-bit values; returns result mask.

CMPEQ16 Compares 16-bit values for equality.

CRAS16 Subtracts upper, adds lower 16-bit halves.

KABS8 Absolute value of 4 packed 8-bit integers.

KABS16 Absolute value of 2 packed 16-bit integers.

KADD8 Saturating add for packed 8-bit values.

KADD16 Saturating add for packed 16-bit values.
TABLE I

DESCRIPTIONS OF SELECTED RV32IP SIMD INSTRUCTIONS

V. DESIGN METHODOLOGY

We have designed a set of assembly-level test programs that

target specific architectural features to categorise instruction

groups and hardware components typically described in the

RISC-V ISA manual. These tests function as synthetic bench-

marks, aimed at achieving full utilisation of the functional

units under test. With the integration of the RISC-V P exten-

sion, the test framework has been extended to focus on packed

SIMD operations—including parallel addition, subtraction,

multiplication, and division across multiple subword elements

within a 32-bit register. As part of the evaluation methodol-

ogy, instructions supported by both RV32I and RV32IP are

executed using dedicated testbenches. Performance is then

compared in terms of execution time, allowing a clear analysis

of the efficiency gains provided by SIMD-enhanced processing

over the baseline scalar architecture.

• Develop a five-stage pipelined

datapath for instruction execution based upon RV32I.

• Resolve any hazards by installing

stalls or data forward- ing.

• Develope test cases to verify the

instructions supported by the CPU.

• Execute selected instructions to test

on the core by implementing the RISC-V tool.

VI. 5-STAGE PIPELINED RV32I

ARCHITECTURE

A 5-stage pipelined processor enhances instruction through-

put by dividing execution into five stages. However, pipeline

hazards: data and control hazards can disrupt seamless execu-

tion. Data hazards occur when instructions depend on previous

results. Control hazards, mainly caused by branches, affect

instruction flow and require effective handling strategies. since

we are executing only arithematic instructions there will be no

control hazards in the processor.

To mitigate data hazards- techniques such as instruction

reordering, forwarding, and pipeline stalling are considered

within the simulation framework. a complete 5stage pipelined

RV32I processor architecture is shown in Fig.2.

Fig. 2. 5-Stage Pipelined RV32I Processor Architecture

VII. RV32I PROCESSOR WITH

PACKED EXTENSION

ARCHITECTURE

The RV32IP architecture builds upon the baseline RV32I

processor by incorporating the Packed SIMD (Single In-

struction, Multiple Data) extension. This enhancement allows

the execution of parallel operations on multiple 8-bit, 16-

bit, or 32-bit data elements within a single 32-bit register,

significantly improving performance for data-parallel work-

loads common in digital signal processing, multimedia, and

embedded applications. the architectural design of RV32I with

Packed (P) extension is shown in Fig. 3.

Fig. 3. RV32I with P extension

VIII. VERIFICATION ENVIRONMENT

The verification environment Makefile serves as a pivotal

component for managing the verification process, as depicted

in Fig. 3 It encapsulates various tasks essential for verifying

the functionality and correctness of the design, compilation,

simulation, and analysis stages. The Makefile manages the

verification process by integrating several essential software

tools required for compiling tests and running them on the

verilog design. These tools include:

• Icarus Verilog (Iverilog) for

Compilation Icarus Verilog (iverilog) is used to compile

and simulate Verilog HDL designs. It processes the

Verilog source code, linking all modules, and generates

an executable simulation file. This compiled design can

then be executed to verify the functionality of the

RV32IP processor.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

• GTKWave for Waveform Analysis

GTKWave is an open- source waveform viewer used to

visualise signal transi- tions within the processor. By

analysing the waveform, one can verify correct

instruction execution, identify hazards, and debug

unexpected behaviour in different pipeline stages.

A. Performance Comparision Between RV32I and RV32IP

• RV32I is a scalar instruction set,

processing one data element at a time, while RV32IP

supports SIMD (Single Instruction, Multiple Data),

allowing parallel processing of multiple data elements.

• In signal processing tasks, RV32IP

significantly outper- forms RV32I by reducing the

number of instructions and execution time.

• Clock cycles and memory accesses

are substantially lower in RV32IP.

• This concludes that RV32IP is better

suited for compute- intensive, data-parallel applications

such as edge detec- tion, audio filtering, and machine

learning on embedded platforms.

• RV32IP reduces the instruction count

and improves throughput, which is shown in results.

IX. RESULS AND DISCUSSIONS

The verilog codes for arithematic operations such as addi- tion

and multiplication are shown in Fig.4 and Fig.5 respec- tively.

Fig. 5. Multiplication in RV32I (left) and RV32IP (right)

The executed arithmatic operations shows the execution time

of RV32IP is less compared to RV32I. This concludes that

RV32IP reduces the instruction count and improves throughput

and RV32IP is better suited for computentensive, data-parallel

applications such as audio filtering, and machine learning on

embedded platforms.

Similar to other ISAs, RISC-V includes a packed SIMD

extension known as the P-extension, which supports parallel

operations on 8-bit, 16-bit, and 32-bit integers within a 32-

bit register. Although still in the draft stage (version 0.9.5

at the time of writing) and not yet officially ratified, the P-

extension is being explored due to its potential performance

advantages. Current hardware implementations are limited,

and software support is still evolving, but the extension holds

promise for data-parallel tasks and is gaining interest in the

RISC-V community.

Fig. 4. Addition in RV32I (left) and RV32IP (right)

Processor Type Execution Time Cycles

RV32I 1.6 micro Sec 160

RV32IP 0.4 micro sec 40

TABLE II
EXECUTION TIME OF ADDITION

Processor Type Execution Time Cycles

RV32I 3.9 micro Sec 390

RV32IP 0.4 micro sec 40

TABLE III
EXECUTION TIME OF MULTIPLICATION

X. CONCLUSION

The design and assessment of the RISC-V P extension define

a packed Single Instruction, Multiple Data (SIMD) instruction

set specifically developed for RISC-V processors. This

extension brings in capabilities for handling 8-bit, 16-bit, and

32-bit integer data types, effectively enhancing the RISC- V

instruction set architecture. With this upgrade, developers are

enabled to build more efficient and powerful data-parallel

applications. The importance of the P extension is highlighted

by its ability to accelerate a broad range of workloads,

including graphics rendering, audio computation, and scientific

data processing.

The comparative analysis between the baseline RV32I and the

SIMD-enhanced RV32IP clearly demonstrates the perfor-

mance benefits of parallel processing. Through software sim-

ulation and result validation, the study confirms that RV32IP

offers noticeable improvements in throughput and instruction-

level parallelism. These findings reinforce the effectiveness

of SIMD integration in the RISC-V architecture for acceler-

ating data-parallel workloads, especially in signal processing

domains.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

ACKNOWLEDGMENT

We, Anil Darga, Mallikarjun Awwanna Teli, Shashank Oti-

hal and Shashank K C would like to thank our guide Dr.

M Govinda Raju for valuable insights and continous support

throughout this research. we also acknoweledge the Depart-

ment of Electronics and Communication Engineering, RV

College of Engineering, for providing the necessary resources

and infrastructure.

REFERENCES

[1] A. Waterman and K. Asanovic´, ”The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Version 2.2,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2017-157,
2017.

[2] RISC-V International, ”RISC-V ’P’ Extension: Packed SIMD/DSP
Ex- tension, Version 0.9.7,” 2021.

[3] S. Kothari, M. Schaffner, and L. Benini, ”Design and Evaluation of
SmallFloat SIMD Extensions to the RISC-V ISA,” in Proc. Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), Florence,
Italy, 2019, pp. 654-657.

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quanti- tative Approach, 5th ed., Morgan Kaufmann, 2011.

[5] N. Nausheen, A. Seal, P. Khanna, and S. Halder, ”A FPGA Based
Imple- mentation of Sobel Edge Detection,” Microprocessors and
Microsystems, vol. 56, pp. 84–91, 2018.

[6] J. Schiel and A. Bainbridge-Smith, ”Efficient Edge Detection on
Low- Cost FPGAs,” arXiv preprint arXiv:1512.00504, 2015.

[7] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
”Ara: A 1 GHz+ Scalable and Energy-Efficient RISC-V Vector Processor
with Multi-Precision Floating Point Support in 22 nm FD-SOI,” arXiv
preprint arXiv:1906.00478, 2019.

[8] D. Rossi et al., ”Vega: A 10-Core SoC for IoT End-Nodes
with DNN Acceleration and Cognitive Wake-Up From MRAM-Based
State- Retentive Sleep Mode,” arXiv preprint arXiv:2110.09101, 2021.

[9] J. K. L. Lee, M. Jamieson, N. Brown, and R. Jesus, ”Test-driving
RISC- V Vector Hardware for HPC,” arXiv preprint arXiv:2304.10319,
2023.

[10] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L.
Benini, ”Design and Evaluation of SmallFloat SIMD Extensions to the
RISC-V ISA,” in Proc. Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 654-657.

[11] S. Abed, ”Implementation of an Edge Detection Algorithm
Using FPGA Reconfigurable Hardware,” Journal of Engineering
Research, vol. 8, no. 1, pp. 179–197, 2020.

[12] A. Bettaieb, N. Filali, T. Filali, and H. B. Aissia, ”GPU
Acceleration of Edge Detection Algorithm Based on Local Variance
and Integral Image: Application to Air Bubbles Boundaries Extraction,”
Computer Optics, vol. 43, no. 3, pp. 446–454, 2019.

[13] B. Ja¨hne, Digital Image Processing: Concepts, Algorithms,
and Scientific Applications, Springer, 1991.

[14] A. K. Jain, Fundamentals of Digital Image Processing,
Prentice Hall, 1989.

[15] D. Marr and E. Hildreth, ”Theory of Edge Detection,”
Proceedings of the Royal Society of London. Series B, Biological
Sciences, vol. 207, no. 1167, pp. 187–217, 1980.

[16] RISC-V International, ”The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, Version 20190608-Priv-
MSU-Ratified,” 2019.

[17] S. Halder and A. Sinha, ”High Performance and Energy
Efficient Sobel Edge Detection,” Microprocessors and Microsystems,
vol. 56, pp. 84–91, 2018.

[18] M. Schaffner, F. Zaruba, and L. Benini, ”ARA: A 1 GHz+
Scalable and Energy-Efficient RISC-V Vector Processor,” in Proc.
IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020.

[19] RISC-V International, ”RISC-V ’P’ Extension: Packed
SIMD/DSP Ex- tension, Version 0.9.7,” 2021.

[20] M. Zgheib, O. Potin, P. Rigaud, and D. Dutertre,
”Extending a RISC- V Core with an AES Hardware Accelerator to
Meet IoT Constraints,” in Proc. IEEE Latin American Symposium on

Circuits and Systems (LASCAS), Arequipa, Peru, 2021, pp. 1-4.

[21] “RISC-V Packed SIMD Extension,” Accessed: Oct. 16, 2022.
[Online]. Available: https://github.com/riscv/riscv-p-spec.

[22] L. Gautier, R. Mangeol, F. Pe´trot, and T. Moreau, “Accelerating
OpenCV Kernels with RISC-V Vector Intrinsics,” Proc. of the
International Workshop on RISC-V Research Activities, 2023.
[23] S. R. Gupta and M. Perica`s, “Challenges and
Opportunities in the Co-design of Convolutions and RISC-V
Vector Processors,” arXiv preprint, arXiv:2311.05284, Nov. 2023.
[Online]. Available: https://arxiv.org/abs/2311.05284.
[24] C. Wang, C. Fang, X. Wu, et al., “SPEED: A Scalable RISC-
V Vector Processor Enabling Efficient Multi-Precision DNN Infer-
ence,” arXiv preprint, arXiv:2401.16872, Jan. 2024. [Online]. Available:
https://arxiv.org/abs/2401.16872.
[25] . D. Volokitin, E. P. Vasiliev, E. A. Kozinov, et al.,
“Im- proved Vectorization of OpenCV Algorithms for RISC-V CPUs,”
arXiv preprint, arXiv:2311.12808, Sept. 2023. [Online]. Available:
https://arxiv.org/abs/2311.12808,

http://www.ijsrem.com/
https://github.com/riscv/riscv-p-spec

