

Design & Development of Bluetooth Controlled Forklift

Prof. Gaurav Nagdev¹, Rupesh V. Sinha², Rajshri D. Patil³, Rohit V. Bendekar⁴

¹Asst. Professor, Department of Mechanical Engineering, Tulsiramji Gaikwad Patil College of Engineering & Technology, Nagpur, Maharashtra, India

²³⁴Students, Department of Mechanical Engineering, Tulsiramji Gaikwad Patil College of Engineering & Technology, Nagpur, Maharashtra, India

Abstract— In the modern era of automation and smart industrial systems, the integration of wireless communication into traditional machinery offers significant improvements in efficiency, safety, and remote operability. This paper presents the design and development of a Bluetooth-controlled forklift system intended for use in warehouses, factories, and logistics hubs. The primary goal is to enable wireless control over material handling operations using readily available mobile technology. The system is powered by a microcontroller unit (such as Arduino Uno or Raspberry Pi) interfaced with a Bluetooth module (e.g., HC-05), which facilitates communication with an Android-based mobile application. The user can issue real-time commands via the app to maneuver the forklift in multiple directions—forward, backward, left, and right—as well as control the lifting mechanism to raise or lower loads. The drive system consists of DC motors connected through a motor driver (such as L298N), while the fork-lifting action is managed by either servo motors or linear actuators, depending on the load requirement.

Keywords— *Bluetooth controlled, Forklift system, wireless communication, Automation, Arduino Uno, Raspberry Pi, HC-05 module, DC motor, Motor driver (L298N), Servo motor.*

I. INTRODUCTION

The demand for automation in industrial and warehouse operations has seen a significant rise in recent years, driven by the need for increased productivity, operational efficiency, and workplace safety. Material handling, which traditionally relies on manual labor and conventional machinery, is one of the key areas where automation can bring transformative benefits. Forklifts are essential in such environments for transporting heavy loads and stacking goods, but manual operation poses risks, especially in hazardous or hard-to-reach areas.

With the evolution of wireless communication technologies, particularly Bluetooth, it is now possible to remotely control machinery with precision and minimal latency. Bluetooth technology offers a reliable and low-power solution for short-range wireless communication, making it ideal for indoor industrial applications. This project explores the application of Bluetooth communication in designing a wireless-controlled forklift, aiming to reduce manual intervention and enhance operator safety.

The Bluetooth Controlled Forklift system utilizes a microcontroller platform (such as Arduino or Raspberry Pi) interfaced with a Bluetooth module to receive commands from a smartphone or tablet. A mobile application serves as a control interface, enabling users to operate the forklift remotely. The forklift's movement is powered by DC motors, while the lifting mechanism is driven by servos or actuators, depending on the design specifications.

By integrating wireless control, the forklift can be maneuvered with ease and precision in complex warehouse layouts. This not only minimizes the risk of accidents but also allows for better space utilization. Additionally, the use of readily available components makes this system cost-effective and scalable, providing a practical solution for small- and medium-scale industries looking to adopt smart automation practices. Furthermore, the vehicle is equipped with a temperature sensor to monitor the battery's temperature and prevent overheating. In the event of high battery temperature, the system automatically activates a cooling mechanism, preventing thermal runaway and enhancing system reliability. The combination of safety, automation, and energy management makes this smart car a comprehensive model for next-generation automotive systems.

The control unit of the system — the Arduino Uno — processes data from various sensors and makes real-time decisions regarding navigation, safety alerts, and system control. Supporting components such as DC motors, motor drivers (L298N), LCD display, and buzzer provide motion control, visual feedback, and alert notifications. The LCD displays real-time parameters such as obstacle distance and height parameters for the object status, while the buzzer provides immediate audible alerts in hazardous situations.

This project serves as a stepping stone toward the development of more advanced automated material handling systems, with potential for integration into broader Industrial IOT and smart factory frameworks and model for safer, smarter, and more sustainable transportation in the future.

II. PROBLEM IDENTIFICATION

- In traditional material handling systems, forklifts are operated manually, requiring constant human presence and physical effort.
- This not only limits operational efficiency but also increases the risk of accidents in congested or hazardous industrial environments.
- Absence of real-time decision-making algorithms for smooth navigation and immediate response to safety hazards.
- Limited affordability and scalability of advanced autonomous safety systems for use in developing regions.
- Manual control also makes it difficult to achieve precision in handling delicate or high-value materials.
- The lack of automation and remote-control capabilities results in reduced productivity, higher labor costs, and limited accessibility for operators in restricted or unsafe zones.
- Lack of awareness and implementation of intelligent safety technologies in small-scale and educational applications.

III. LITERATURE REVIEWS

A) *Literature Survey:*

Automation in industrial logistics and material handling has been a focus of numerous research efforts over the past two decades. Forklifts, being central to warehouse and factory operations, have traditionally been operated manually, but the integration of wireless technologies has opened up new possibilities for remote and autonomous control systems. This literature review explores relevant research and developments in the fields of wireless control systems, Bluetooth-based automation, and smart forklifts.

1. Wireless Control in Industrial Applications: Wireless communication has been widely adopted in industrial environments to replace wired systems, which are often inflexible and prone to wear and damage. According to [Singh et al., 2018], wireless technologies such as Bluetooth, Wi-Fi, and Zig-bee have been successfully implemented in various robotic and remote-control systems to enhance flexibility and safety in operations. Among these, Bluetooth is highlighted for its ease of integration, low power consumption, and suitability for short-range communication in controlled environments.

2. Bluetooth-based Robotic Systems: Numerous studies have demonstrated the successful implementation of Bluetooth modules (such as HC-05 and HC-06) in robotic systems. For example, [Kumar and Shah, 2019] developed a Bluetooth-controlled robot using an Arduino microcontroller and a mobile app interface, proving that such systems can be both reliable and cost-effective. The ability to send real-time commands wirelessly enables responsive and accurate control of movement, which is directly applicable to forklift mechanisms.

3. Smart Forklift Systems: Modern smart forklifts incorporate sensors, automation, and wireless communication to improve navigation and safety. Research by [Lee et al., 2020] on semi-autonomous forklifts emphasizes the benefits of integrating IoT and wireless control in reducing labor costs and improving material handling efficiency. While many commercial smart forklifts use complex systems with LiDAR and GPS, simpler approaches using Bluetooth can be adopted for basic remote-control functions in confined spaces.

4. Arduino and Mobile App Integration: A growing body of literature supports the use of microcontrollers such as Arduino and Raspberry Pi in DIY and educational automation projects. [Patel et al., 2021] showcased a Bluetooth-controlled car using Arduino and Android-based applications, demonstrating a smooth user interface for directional control. These principles are readily transferable to forklift designs.

5. Sensors, autonomy and safety considerations
While simple Bluetooth projects focus on manual remote control, literature on industrial AGVs and autonomous forklifts emphasizes the need for sensors (ultrasonic, LiDAR, cameras), obstacle detection, and safety interlocks for operation around humans. Standards and guidelines for AGV/forklift safety are emerging; recent reviews discuss safety criteria, human-robot coexistence, and regulatory considerations for deployment in real warehouses. For real deployments, adding safety sensors and fail-safe behaviors is essential.

6. Existing gaps and opportunities for improvement

Scalability & networking: Many Bluetooth prototypes are point-to-point and lack fleet management, diagnostics, and logging — areas where Wi-Fi/IoT approaches add value. [ResearchGate](#)

Safety & standards compliance: Academic prototypes seldom address full safety certification, collision avoidance, or industrial training requirements — necessary for commercial adoption. [hb.diva-portal.org+1](#)

Payload & mechanical robustness: Hobby projects often use servos/cheap actuators unsuitable for real warehouse loads; there's room for mechanical optimization (frame design, load distribution, gearbox selection). [E3S Conferences](#)

Human factors & UI: Few papers evaluate operator ergonomics, latency tolerances, or UI design for real-world busy environments.

7. Representative implementations (for reference / citation in your report)

Low-cost smartphone-controlled forklift / eco-friendly forklift design and simulations (recent journal articles and conference papers). [Frontiers+1](#)

Prototype forklift and AGV systems using Arduino/HC-05 for remote control (multiple conference and student project reports). [IJIRT+1](#)

ESP32 + MQTT IoT approach to forklift control for remote monitoring and networked control. [ResearchGate](#)

B) Literature Summary

- From the review of existing research and prototype projects, it is observed that automation in material handling systems has gained significant attention due to its potential to improve efficiency, safety, and productivity. Many studies have focused on developing **wirelessly controlled vehicles** using microcontrollers such as **Arduino** or **Raspberry Pi**, integrated with **Bluetooth modules** (e.g., **HC-05**) for short-range wireless communication.
- Most existing Bluetooth-controlled models successfully demonstrate **remote operation** for basic movement (forward, backward, left, right) and **lifting mechanisms** using **DC motors, servo motors, or linear actuators**. These systems are compact, cost-effective, and ideal for educational and small-scale industrial applications.
- Various alcohol detection systems using MQ-3 sensors, breath analyzers, and biosensors have been developed to reduce drunk driving accidents.
- However, the literature also identifies several limitations in current designs, such as **limited communication range, lack of safety sensors, and low load-carrying capacity**, which restrict their use in real industrial environments. Some researchers suggest integrating **IoT-based technologies** or **Wi-Fi modules (ESP32, NodeMCU)** to overcome these issues and enable long-range monitoring and control.
- Overall, previous work provides a strong foundation for developing an improved **Bluetooth-controlled forklift system**. The proposed project aims to build on these concepts by enhancing **mobility control, lifting efficiency, and user-friendly mobile operation**, making it suitable for **warehouse and factory applications**.

C) Research Gap

- From the review of existing literature and previous prototype developments, it is evident that most Bluetooth-controlled forklift or robotic vehicle systems focus primarily on **basic motion control and lifting operations** using low-cost microcontrollers such as **Arduino** and **Bluetooth modules (HC-05/HC-06)**. While these designs successfully demonstrate wireless control, several limitations and unexplored areas remain. Limited research on real-time decision-making for autonomous safety intervention under varying environmental conditions.
- Limited Range and Connectivity:** Most existing systems rely on short-range Bluetooth communication, restricting operational distance and limiting use in large industrial spaces such as warehouses or logistics hubs..
- Lack of Safety and Feedback Mechanisms:** Few studies incorporate sensors (such as ultrasonic, IR, or proximity sensors) for obstacle detection, load stability, or safety monitoring—features essential for real-world material handling.
- Insufficient Load Capacity and Structural Design:** Many prototypes are small-scale or educational models that cannot handle industrial-level loads. There is a gap in research on mechanical design optimization for strength, balance, and lifting efficiency.

• Absence of Automation and Data Integration:

Current systems generally depend on manual control through mobile applications, with minimal automation or feedback. Integration of IoT or AI for monitoring, data logging, or semi-autonomous operation remains underdeveloped.

• Energy Efficiency and Power Management:

Few studies address the optimization of power consumption and battery management for longer operational life, which is crucial for continuous industrial use.

IV. RESEARCH METHODOLOGY

A. Proposed System

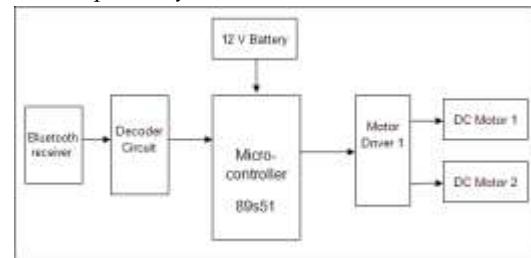


Fig. 1. Block Diagram

Working:

The proposed Bluetooth-controlled forklift system operates based on wireless communication between a **mobile application** and a **microcontroller-based control unit** mounted on the forklift. The system architecture integrates electronic control, wireless communication, and mechanical actuation to achieve remote maneuvering and load-lifting operations.

The system consists of the following key components:

Microcontroller Unit (MCU): Arduino Uno or Raspberry Pi serves as the central processing unit that interprets commands received from the Bluetooth module and controls the actuators accordingly.

Bluetooth Module (HC-05): Facilitates wireless serial communication between the mobile device and the MCU using Bluetooth protocol.

Motor Driver (L298N): Interfaces the low-power control signals from the MCU to drive the high-power DC motors used for vehicle motion.

DC Motors: Provide propulsion for the forward, reverse, left, and right movement of the forklift.

Servo Motor / Linear Actuator: Used to operate the forklifting mechanism, enabling vertical movement for raising and lowering loads.

Power Supply: A rechargeable DC battery powers the entire system.

vehicle is built, using an Arduino uno. An ultrasonic sensor is used to detect any obstacle ahead of it and sends a command to the Arduino. In today's world robotics is a fast growing and interesting field. It has sufficient intelligence to cover the maximum area of provided space. Automated Bluetooth controlled forklift are robots that can perform desired tasks in unstructured environments without continuous human guidance. Obstacle detection is primary requirement of this autonomous Smart object.

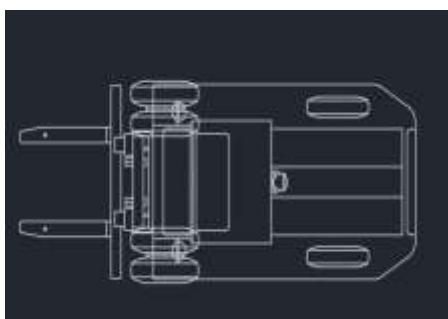
Calculation

1. Selection of electric motor

- A) 30 RPM DC motor SPEED = 30
- B) RPM VOLTAGE = 12 VOLT C)
- WATTS = 18 WATT

2. Torque of the motor

- A) Torque = $(P \times 60) / (2 \times 3.14 \times N)$
- B) Torque = $(18 \times 60) / (2 \times 3.14 \times 30)$
- C) Torque = 5.72 Nm Torque = 5.72×10^3 N-m
- D) The shaft is made of MS and its allowable shear stress = 42 MPa
- E) Torque = $3.14 \times f_s \times d^3 / 16$ $5.72 \times 10^3 = 3.14 \times 42 \times d^3 / 16$ D = 8.85 mm
- F) The nearest standard size is d = 9 mm.


3. Electrical (electric) power equation

- A) Power P = $I \times V$ Where V = 12 W = 18 I=18/12=1.5
- B) A H.P = .02414

4. Battery calculation

- A) BAH /CI = 8 ah/420ma = 19 hrs
- B) To find the Current Watt = 18 w C)
- Volt = 12v Current =?
- P= V x I 18 =12 x I I = 18/12 = 1.5
- D) AMPS battery usage with 1.5 AMPS BAH /I 8/1.5 = 5.3 hrs.

Fig.1. CAD model

APPLICATIONS

- Used in **warehouses and logistics hubs** for wireless material handling.
- Suitable for **factories and manufacturing units** to transport small loads safely.
- Can be implemented in **educational and research laboratories** for automation studies.
- Applicable in **restricted or hazardous areas** where human presence is unsafe..
- Serves as a **prototype for advanced IoT or autonomous forklift systems**.

V. ADVANTAGES

- Enables **wireless and remote operation**.
- Reduces **human effort** and increases safety.
- **Low-cost and easy to implement** using available components.
- **Compact and portable** design is suitable for small-scale use.
- Can be **upgraded for automation or IoT integration**.

VI. LIMITATIONS

- Limited Bluetooth range.
- **Not suitable for heavy industrial loads** due to mechanical constraints.
- **No obstacle detection or safety sensors** in basic design.
- **Manual control only** — lacks full automation or feedback system.
- **Manual control only** — lacks full automation or feedback system.

VII. RESULT

The fabricated Bluetooth-controlled forklift was successfully developed and tested. The system effectively responded to commands sent from the Android mobile application via the HC-05 Bluetooth module. The forklift performed **forward, reverse, left, and right movements** smoothly, and the **lifting mechanism** operated reliably to raise and lower light loads. The results confirm that the system provides **stable wireless control, low power consumption, and accurate motion response** within the Bluetooth communication range.

Remote Operation: The forklift can be operated wirelessly using a smartphone or Bluetooth-enabled controller, providing convenient control over movement and lifting functions.

Accuracy and Precision: The forklift showed smooth forward, backward, left, and right movements with precise control over the lifting and lowering of loads.

Load Handling: The forklift was able to lift and carry loads within the specified weight limit (as designed for the project) without any instability.

Response Time: Minimal delay was observed in response to the Bluetooth commands, ensuring real-time operation.

Safety & Efficiency: The system reduced the need for manual handling, improving operational safety and efficiency in material handling tasks.

Reliability: Continuous operation tests confirmed the

stability and reliability of the system for short-term usage in a controlled environment.

VIII. CONCLUSION

The development of a Bluetooth-controlled forklift offers a practical and innovative solution for modernizing material handling in warehouses and industrial environments. By integrating Bluetooth communication with a microcontroller-based control system, the forklift can be operated remotely with precision and ease using a smartphone. This not only enhances operator safety by minimizing direct contact with heavy machinery but also increases overall efficiency and flexibility in confined or hazardous spaces.

The project successfully demonstrates how affordable and accessible components—such as Arduino, Bluetooth modules, and motor drivers—can be used to create a functional prototype capable of basic movement and load lifting tasks. The wireless interface simplifies operation and allows for intuitive control, making the system user-friendly

even for non-technical personnel.

In conclusion, this project highlights the potential of wireless technologies in industrial automation and sets the foundation for future enhancements such as obstacle detection, GPS navigation, and IOT integration. With further refinement and scalability, the Bluetooth-controlled forklift can serve as a valuable asset in smart logistics and automated warehousing solutions.

IX. FUTURE WORKS

The Bluetooth-controlled forklift can be enhanced with longer-range wireless communication, autonomous navigation using sensors, load monitoring, improved battery life, and advanced safety features for industrial applications.

REFERENCES

1. R. K. Singh and P. Kumar, “*Design and Implementation of Bluetooth Controlled Robotic Vehicle*,” International Journal of Engineering Research & Technology, vol. 6, no. 5, pp. 345–350, May 2017.
2. S. P. Patil and A. B. Kulkarni, “*Wireless Controlled Industrial Robot using Bluetooth Technology*,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 7, pp. 6123–6128, July 2015.
3. A. K. Sharma, “*Bluetooth Based Wireless Control System for Material Handling*,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 8, no. 3, pp. 1562–1567, March 2019.
4. J. H. Lee and M. S. Kim, “*Automation of Forklift Trucks with Wireless Control System*,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3221–3228, April 2018.
5. B. R. Patil, “*Microcontroller Based Bluetooth Controlled Robotic Applications*,” International Journal of Computer Applications, vol. 97, no. 12, pp. 23–28, June 2014.