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ABSTRACT

The increasing integration of renewable energy sources
(RESs), such as wind turbines and photovoltaic (PV)
arrays, introduces low-inertia characteristics that
negatively affect the dynamic stability of modern power
systems. To address this challenge, this study proposes
an Adaptive Neuro-Fuzzy Damping Controller
(ANFDC) based on a high-voltage direct current
(HVDC) link to enhance system damping and stability.
The controller employs a fuzzy linguistic rule to tune its
parameters, converting dynamic input signals into
linguistic variables during an offline training phase. A
hybrid microgrid system combining offshore and
onshore wind turbines, PV units, and small-scale
synchronous generators (SSSGs) is used to train and
validate the controller. During real-time operation, the
ANFDC adaptively adjusts control signals to mitigate

oscillations without relying on an explicit system model.

The proposed method effectively integrates the
strengths of neural networks and fuzzy logic to achieve
fast, robust, and adaptive damping control. Simulation
results on a grid-connected hybrid microgrid under
various short-circuit faults demonstrate that the
ANFDC significantly improves damping performance
and maintains high stability margins compared with
conventional control approaches.

INDEX TERMS: Lowinertia resources (LIRs), high
voltage direct current (HVDC), microgrid, wind
turbines (WT), photovoltaic arrays (PV), small-scale
synchronous generators (SSSGs), adaptive neuro-fuzzy-
based damping controller (ANFDC).

L. INTRODUCTION

The increasing integration of renewable energy sources
(RESs) such as wind turbines (WTs), photovoltaic (PV)
systems, and small-scale synchronous generators (SSSGs)
within modern power systems has led to the rapid
development of microgrids. These microgrids offer
environmentally friendly and sustainable alternatives to
conventional fossil-fuel-based power plants. However, the

proliferation of inverter-based low inertia resources (LIRs)
introduces significant challenges to the dynamic stability of
power systems. The reduced system inertia due to these
renewable units often results in poor damping characteristics,
increased oscillations, and vulnerability to transient
disturbances. Countries with access to abundant offshore and
oceanic resources, including the United States, United
Kingdom, Denmark, and Ireland, are increasingly utilizing
offshore wind farms (OWFs) and wave energy farms (WEFs)
for large-scale power generation. The integration of such
variable and geographically distributed renewable sources
through high-voltage direct current (HVDC) transmission
systems has become an effective solution for reliable grid
interconnection. Nevertheless, these HVDC-linked systems
require advanced control strategies to ensure -effective
damping of low-frequency oscillations and to preserve
system stability under varying operating conditions and fault
scenarios.

To address these issues, the development of adaptive and
intelligent damping controllers has gained attention. Among
various intelligent control approaches, the combination of
neural networks and fuzzy logic—referred to as adaptive
neuro-fuzzy inference systems (ANFIS)—offers a promising
solution. These systems are capable of handling
nonlinearities, uncertainties, and dynamic changes in the grid,
thereby improving overall damping performance and stability
margins. This study focuses on the design of an adaptive
neuro-fuzzy damping controller (ANFDC) integrated with an
HVDC link for a grid-connected hybrid microgrid consisting
of wind, solar, and synchronous resources.

II. LITERATURE REVIEW

Recent research has extensively explored various control
strategies to mitigate oscillations and improve the stability of
renewable-based power systems. Conventional proportional—
integral-derivative (PID) controllers have been widely
implemented due to their simplicity and ease of tuning.
However, their performance deteriorates under nonlinear and
time-varying operating conditions. Studies have shown that
PID controllers are limited by high sensitivity to parameter
variations, delayed responses, and the need for model-based
adjustments, which make them less effective for systems with
high renewable penetration. To overcome these challenges,
several intelligent control methods have been proposed.
Neuro-fuzzy controllers and ANFIS-based approaches have
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been successfully applied in different power system
applications, offering enhanced adaptability and robustness.
For example, ANFIS-based controllers have been utilized to
improve voltage regulation, load frequency control, and inter-
area oscillation damping in systems integrated with wind
farms and PV units. Furthermore, the application of fuzzy
logic controllers in conjunction with HVDC links has
demonstrated improved damping performance under
uncertain and dynamic conditions. Despite these
advancements, existing approaches often rely heavily on
system models and require extensive tuning efforts.
Moreover, few studies have investigated the implementation
of adaptive neuro-fuzzy-based damping controllers within
HVDC-linked hybrid microgrids that combine multiple
renewable sources such as PV systems, OWFs, WEFs, and
SSSGs. Therefore, there is a research gap in developing a
non-model-based, adaptive, and real-time damping control
framework capable of effectively handling the nonlinearities
and uncertainties of multi-source renewable microgrids. The
proposed ANFDC in this study addresses this gap by
integrating fuzzy linguistic rules and neural network learning
capabilities to enhance system damping through online
adaptive control.

III. DETAILED STRUCTURE OF THE DEVELOPED
TEST SYSTEM

The developed test system is a grid-connected microgrid that
integrates multiple renewable energy resources (RESs),
including offshore wind farms (OWFs), wave energy farms
(WEFs), photovoltaic (PV) arrays, and small-scale
synchronous generators (SSSGs). These units are
interconnected through a high-voltage direct current (HVDC)
link that facilitates efficient power transfer and provides
controllability over dynamic behaviors within the microgrid.
The overall configuration of the test system is illustrated
schematically in Fig. 1 of the paper.

Each RES in the system possesses an individual dynamic
model designed to represent its electromechanical and power-
electronic characteristics. The following subsections describe
the key components and their associated mathematical
models.

A. Wind Turbine Model

The offshore wind farm consists of variable-speed wind
turbines equipped with permanent magnet synchronous
generators (PMSGs). The mechanical power extracted from
the wind is expressed as a function of air density, rotor area,
wind speed, and the turbine’s power coefficient. The power
coefficient Cp(A,p)C_p(\lambda, \beta)Cp(A,f) depends on
the tip speed ratio and the pitch angle of the blades. The wind
turbine operates within defined speed limits—cut-in at 4 m/s,
rated at 15 m/s, and cut-off at 25 m/s. The mathematical
relations describe the aerodynamic conversion process and
serve as the basis for analyzing turbine dynamics under
different wind conditions.

B. Wave Energy Turbine Model

The WEF utilizes underwater induction generators driven by
ocean wave turbines through gearboxes. The mechanical
power generated is defined by the water density, turbine area,
and wave velocity. Similar to wind energy conversion, the
turbine’s efficiency is characterized by a power coefficient
dependent on the wave speed ratio and pitch angle. The
model is evaluated using cut-in, rated, and cut-off speeds of 1
m/s, 2.5 m/s, and 5 m/s, respectively.

C. Permanent Magnet Synchronous Generator (PMSG)
Model

The electrical characteristics of the PMSG used in the wind
turbine are modeled in the d—q reference frame using Park’s
transformation. The stator voltage equations include both
stator resistance and flux linkages in the d—q axes, while the
flux components are defined in terms of the magnetizing and
leakage reactances. The converter—inverter structure is
controlled to regulate both reactive power and rotor speed.
The HVDC voltage source converter (VSC) associated with
the PMSG adjusts its output based on DC-link voltage and
modulation indices to ensure smooth power injection into the
grid.

D. Induction Generator Model for Wave Turbine

The induction generator dynamics for the wave energy
system are formulated using d—q axis equations representing
stator and rotor voltage and current relationships. The model
includes stator and rotor resistances, leakage reactances, and
magnetizing reactance. The electromagnetic torque is derived
from the interaction of stator and rotor currents, providing a
detailed representation of electromechanical energy
conversion in the WEF subsystem.

E. HVDC-Link Model

The HVDC link serves as the central coupling mechanism
between the various RESs and the main grid. It comprises
three major components: the AC/DC converter, the DC
transmission line, and the DC/AC inverter. The HVDC
system is designed to maintain constant DC parameters while
ensuring efficient power conversion between AC and DC
domains. Control of the converter and inverter sides is
achieved using either a PID or ANFIS-based damping
controller, which regulates the DC current and voltage
according to system dynamics. The governing equations
describe converter firing angles and damping control signals
that stabilize power flow during transient events.

F. Photovoltaic (PV) System Model

The PV subsystem is composed of a large array of BP272UU
solar panels, each rated at 80 W with a nominal voltage of 19
V and a current of 4.4 A. To achieve higher output voltage
and power, panels are connected in both series and parallel
configurations, producing approximately 6.5 MW total output
power. The PV array model incorporates diode characteristics,
shunt resistance, and temperature-dependent current
equations. A DC-AC inverter and DC-link capacitor regulate
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the PV output voltage and interface it with the grid via the
HVDC system. Differential equations describe -current,

voltage, and energy storage behavior within the PV inverter
circuit.

G. Small-Scale Synchronous Generator (SSSG) Model
The microgrid also includes small synchronous generators
modeled using a third-order differential representation in the
d—q frame. Each generator is equipped with an IEEE Type
DCI1A excitation system that regulates the internal voltage
and maintains steady operation under varying load and fault
conditions. The model considers both transient and sub-
transient dynamics to capture accurate generator behavior
during disturbances.

H. Summary of Test System Configuration

In the developed hybrid microgrid, the OWF, WEF, PV, and
SSSG units are connected to a common AC bus, and their
power is transmitted to the main grid through a coordinated
HVDC link. This configuration enables high controllability,
flexible operation, and enhanced dynamic performance. The
comprehensive mathematical models of each subsystem are
formulated primarily in per-unit (p.u.) values, while angular
frequencies are represented in radians per second. These
models collectively form the foundation for analyzing the
system’s dynamic response and for designing the proposed
adaptive neuro-fuzzy damping controller in subsequent
sections.

fsfinite

Micregral

Fig 1 Single line diagram of test system consists of PV, WEF,
OWF and SSSG sources connected within HVDC link.

IV. MODELING THE PROPOSED DAMPING
CONTROLLER

This section presents the modeling, structure, and operating
mechanism of the proposed Adaptive Neuro-Fuzzy Damping
Controller (ANFDC) developed to enhance the dynamic stability of
a grid-connected hybrid microgrid system. The hybrid system
integrates multiple renewable energy sources (RESs) through a
high-voltage direct current (HVDC) link. To verify the effectiveness
of the proposed ANFDC, a conventional proportional-integral—
derivative (PID) damping controller is also designed and analyzed
for comparison. Both controllers are implemented within the HVDC
link to generate a corrective damping signal that mitigates power
oscillations and stabilizes system dynamics during disturbances and
transient conditions. The overall concept of the proposed ANFIS-

based damping controller is illustrated in the system block diagram
provided in the paper. The controller operates by processing
dynamic input signals obtained from the microgrid, such as the
speed deviation of the small-scale synchronous generators
(A0SSSG) and the active power variations of the renewable sources.
These input signals are analyzed to identify critical low-frequency
oscillatory modes. The controller then generates an adaptive
damping signal in real time, which is injected into the HVDC
inverter to counteract and suppress the detected oscillations.

A. Modeling of PID Controller through the HVDC Link

The PID damping controller is implemented on the inverter side of
the HVDC link, where its main objective is to regulate the DC
current and enhance damping by controlling the inverter extinction
angle. The speed deviation of the synchronous generator (AoSSSG)
is used as the input signal, while the generated HVDC damping
signal (IC) serves as the output control variable. The damping signal
is added to the reference current to modulate the inverter’s operation
and improve overall system stability.

To design and tune the PID controller parameters, modal analysis is
carried out at different operating points, corresponding to wind
speeds of 13 m/s and 3 m/s, and photovoltaic (PV) output current
under solar radiation of 1000 W/m2. The eigenvalue analysis
identifies several oscillatory modes, among which A40—41 and A45—
46 are recognized as critical low-frequency modes with poor
damping ratios. The PID controller is designed to shift these
eigenvalues toward the left-hand side of the complex plane, thus
improving the system’s dynamic response and stability margins.

The transfer function of the PID controller is expressed as:
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where TW is the washout time constant, and KP, KI, and KD denote
the proportional, integral, and derivative gains, respectively. The
washout filter ensures that only oscillatory components are passed to
the controller, thereby eliminating steady-state bias and high-
frequency noise. The PID parameters are adjusted iteratively based
on closed-loop modal analysis until the optimal damping ratio is
achieved. Simulation results demonstrate that the inclusion of the
PID controller significantly enhances damping performance,
improving the system’s stability index from approximately —0.01 to
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more than —1.6, thereby reducing oscillatory amplitude and settling
time during fault events.

B. Modeling of ANFIS-Based Damping Controller

The proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) is
designed as an advanced intelligent damping controller that
combines the self-learning capability of neural networks with the
decision-making flexibility of fuzzy logic systems. This hybrid
approach enables the controller to handle nonlinearities, parameter
uncertainties, and time-varying operating conditions that are typical
in renewable energy-based microgrids. Unlike conventional model-
dependent controllers, the ANFIS structure operates in a non-model-
based framework, relying on data-driven learning to optimize its
parameters both offline and online.

The ANFIS architecture follows the Sugeno-type fuzzy inference
model, which consists of five computational layers: fuzzification,
rule evaluation, normalization, defuzzification, and output
aggregation. The controller receives four dynamic input signals—
namely, the speed deviation of the synchronous generator
(AwSSSG), the active power deviation of the offshore wind farm
(APOWF), the active power deviation of the wave energy farm

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53335 |  Page3


https://ijsrem.com/

Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

(APWEF), and the active power deviation of the photovoltaic array
(APPV). These inputs provide comprehensive real-time information
about the system’s dynamic behavior under disturbances. The
ANFIS processes these signals to produce an adaptive damping
output signal (IC), which is applied to the HVDC inverter to
regulate power flow and suppress oscillations.

Each input signal is represented using seven linguistic membership
functions: Negative Big (NB), Negative Medium (NM), Negative
Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM),
and Positive Big (PB). Similarly, the output signal is mapped using
seven membership functions: Decrease Big (DB), Decrease Medium
(DM), Decrease Small (DS), Hold (H), Increase Small (IS), Increase
Medium (IM), and Increase Big (IB). The fuzzy rule base is
constructed using a set of linguistic IF-THEN rules, which describe
the relationship between the input dynamic variables and the output
damping signal.

C. ANFIS Training and Optimization Process

The training process of the ANFIS controller is carried out using
simulation data generated from time-domain analyses of the
microgrid under various fault conditions, including three-phase
short-circuit faults. The collected input—output data pairs are used to
establish the mapping between system dynamics and the desired
damping response. The controller is trained offline using a hybrid
learning algorithm that combines back-propagation gradient descent
for nonlinear parameter adjustment and least-squares estimation for
linear parameter optimization. This combined training approach
ensures rapid convergence and high accuracy in learning the fuzzy
rules and membership function parameters.

To extract initial fuzzy rules and membership functions, the
subtractive clustering technique is used to identify the distribution of
data clusters in the input space. The generated rules are
subsequently refined using the hybrid learning algorithm until the
prediction error reaches a predefined minimum. The trained ANFIS
model consists of 345 fuzzy rules, 81 nodes, and 130 adaptive
parameters. Validation through a tenfold cross-validation process
yields an average prediction error of approximately 1.4%,
confirming that the trained ANFIS exhibits strong generalization

capability and reliable performance under varying system conditions.

D. Implementation and Performance Evaluation

During online operation, the ANFIS controller continuously updates
its control signal based on the real-time system measurements
provided by the phasor measurement units (PMUs). The controller
detects oscillatory modes and generates an adaptive damping current
signal that is injected into the HVDC inverter in phase opposition to
the system oscillations. This mechanism effectively enhances the
damping of low-frequency oscillations, stabilizes system voltage
and current, and improves transient performance under severe
disturbances.

Simulation results show that the ANFIS controller achieves faster
damping, higher stability margins, and better adaptability compared
with the conventional PID controller. While the PID controller
requires precise tuning and depends heavily on accurate system
modeling, the ANFIS controller operates autonomously, adapting to
changes in operating points and nonlinear conditions without
requiring parameter retuning. Consequently, the proposed ANFIS-
based damping controller provides a superior and more robust
solution for maintaining dynamic stability in HVDC-linked hybrid
microgrids.

gy
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Figure 2: Controlling block diagram of the HVDC current
converter.

FIGURE 3. Controlling block diagram of the HVDC current
inverter including (a) PID controller and (b) ANFIS
controller

V. SIMULATION STUDIES

This section presents the simulation studies and performance
evaluations of the proposed Adaptive Neuro-Fuzzy Damping
Controller (ANFDC) in comparison with a conventional PID
damping controller. The simulations are performed on the
developed hybrid microgrid model described earlier, which
integrates offshore wind farms (OWFs), wave energy farms
(WEFs), photovoltaic (PV) arrays, and small-scale
synchronous generators (SSSGs) through a unified high-
voltage direct current (HVDC) link. The objective of the
study is to assess the ability of both controllers to enhance
damping, mitigate oscillations, and improve dynamic stability
under various disturbance and operating conditions.system
parameters are illustrated in table 1

Component / Symbol / Unit Value / Description
Parameter
System - Grid-connected
Configuration hybrid microgrid
integrating OWF,

WEF, PV, and SSSG
via HVDC link

Rated System Sbase 100 MVA (per-unit

Power system)

Nominal f 50 Hz

Frequency

Simulation — MATLAB/Simulink
Platform

Offshore Wind | — -
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Farm (OWF) Excitation - IEEE Type DCIA
Rated Power POWF 6.5 MW System
Output Base Frequency | f 50 Hz
Cut-in/ Rated / | VW(min/rated/m | 4 m/s, 15 m/s, 25 m/s Inertia Constant | H Variable (based on
Cut-off Wind ax) SSSG rating)
Speed HVDC - -
Air Density pw 1.225 kg/m? Transmission
Generator Type | — Permanent Magnet Link
Synchronous Converter Type | — Line-Commutated
Generator (PMSG) Converter (LCC)
Power Cp(A.B) Function of tip speed Converter - AC/DC Converter,
Coefficient ratio and pitch angle Components DC Transmission
Gear Ratio G 1:1 (direct-drive Line, DC/AC Inverter
configuration) Control aR, yI Rectifier firing angle,
Wave Energy | — - Variables inverter extinction
Farm (WEF) angle
Rated Power PWEF 45 MW (total) Reference IRef DC current reference
Output Current for damping control
Cut-in / Rated / | Vw(min/rated/ma | 1 m/s, 2.5 m/s, 5 m/s Damping IC Controller output
Cut-off Wave X) Signal current signal
Speed Washout Filter | TW Used in damping
Water Density pWEF 1025 kg/m? Time Constant transfer function
Generator Type | — Induction Generator Converter/Inver | KR, KI Current and voltage
(IG) driven by ocean ter Gains control gains
turbine PID Damping | - -
Photovoltaic - - Controller
(PV) System Control HPID(s) (\Mrac{sT W}{1+sT
PV Module - BP272UU Transfer W} (K P+
Type Monocrystalline Function \frac{K I} {s} +
Rated Power PPV 8OW(19V,44A) sK D))
per Panel Controller AwSSSG/1C Speed deviation /
Open Circuit voC 215V Inputs / Outputs damping signal
Voltage Controller - Modal analysis and
Short Circuit ISC 4.6 A Tuning eigenvalue placement
Current Washout ™ Optimized per
Nominal Vnom / Inom 19V/44 A Constant operating mode
Operating Adaptive - -
Voltage / Neuro-Fuzzy
Current Damping
Total PV PPV total = 6.5 MW Controller
Output Power (ANFDC)
Reverse Diode | ID 9.5x 10" A Controller Type | — Sugeno-Type ANFIS
Current (Neuro-Fuzzy
Solar Irradiance | G 1000 W/m? Hybrid)
PV Link CDC-PV /LDC- | DC-link filter Number of Nin 4 (AwSSSG, APOWF,
Capacitance / PV parameters Inputs APWEF, APPV)
Inductance Output Variable | Nout 1 (Damping signal
Small-Scale - - 10)
Synchronous Membership - 7 (NB, NM, NS, Z,
Generator Functions per PS, PM, PB)
(SSSG) Input
Generator Type | — Salient-Pole Output - 7 (DB, DM, DS, H,
Synchronous Linguistic IS, IM, IB)
Generator Terms
Model Type - Third-order d—q axis Total Fuzzy Nr 345
model Rules
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Total Nodes Nn 81
Learning Np 130
Parameters

Fault Resilience | — Higher with ANFIS

controller

Training Data

21,060 samples

Training Error

Points

Training - Hybrid (Back-

Algorithm Propagation + Least
Squares)

Average - 1.4% (10-fold cross-

validation)

Data Source

Time-domain
simulations under
fault scenarios

Fault and
Operating
Conditions

Fault Type

Three-phase short-
circuit fault

Fault Location

Infinite bus of main

A. Simulation Setup

The hybrid microgrid is simulated under steady-state and
transient conditions using MATLAB/Simulink. The system
parameters correspond to the specifications provided in Table
5 of the paper. The microgrid operates with two
representative wind speeds of 13 m/s and 3 m/s, and the PV
system generates power under solar radiation of 1000 W/m?
with a diode reverse current of 9.5x10—119.5 \times 10"{-
11}9.5x10—11 A. The HVDC link connects the renewable
energy subsystems to the main grid through converters and
inverters that are equipped with either the PID or ANFIS
damping controller.

The primary disturbance used for analysis is a three-phase
short-circuit fault applied at the infinite bus at t = 1.0 s,
which is cleared at t = 1.2 s. This fault condition represents a

orid severe transient disturbance capable of exciting low-
Fault Inception | ¢ fault/t_clear 10s/12s frequency oscillatory modes within the system. The post-fault
/ Clearance responses are analyzed to evaluate the performance of both
Time controllers in suppressing these oscillations and restoring
Simulation ¢ sim 0-5s system stability.as shows in Figure 4
Duration B. System Dynamic Response
Operating ~ Wind speeds 313 The dynamic response of the hybrid microgrid is examined in
Conditions m/s; PV irradiance terms of several key performance indicators, including the
1000 W/m? rotor speed deviation (A@SSSG), active and reactive power
Simulation - - outputs of the synchronous generator (PSSSG, QSSSG),
Environment voltage at the point of common coupling (VPCC), HVDC
and inverter and rectifier currents (IINV, IREC), and HVDC DC
Performance voltage (VINV). Additionally, the active power and voltage
Metrics responses of the offshore wind farm (POWF, VOWF), wave
Simulation — MATLAB/Simulink energy farm (PWEF, VWEF), and photovoltaic system (VPV)
Tool with Fuzzy Logic and are monitored as shown in Figure 5.
ANN Toolbox The simulation results demonstrate that, in the absence of a
Step Size - 50 s dan'lpin'g controller, the sys'tem experic?nc?s ’sustained
Evaluation - Overshoot (OSH) oscillations following the disturbance, indicating poor
] ’ damping performance. When the PID controller is applied,
Metrics Und?rShO(.)t (USH), the oscillations are reduced, but the system still exhibits
]S)?imiiTgn? delayed settling time and moderate overshoot in the power
- ping 2ato and frequency responses. In contrast, the proposed ANFIS-
Comparison B PID vs ANFIS based damping controller achieves rapid attenuation of
Controllers oscillations and faster restoration of steady-state conditions.
Performance B B The frequency deviations and voltage fluctuations are
Summary minimized significantly, and the microgrid reaches a stable
Overshoot h >50% improvement operating state within a shorter duration after fault clearance.
Reduction using ANFIS
Settling Time - Approximately 30%
Improvement faster than PID
Damping Ratio | — Significant C. Comparative Performance Analysis
Enhancement improvement (from — To quantify the damping performance, two time-domain
0.01to-1.6) indices are defined: the overshoot percentage (OSH) and
Adaptability - Fixed (PID) vs undershoot percentage (USH) of the output power and
Adaptive (ANFIS) frequency signals. These indices are used to compare the
Real-Time - Excellent with ANFIS responses obtained with the PID and ANFIS controllers. The
Operation due to online learning results are summarized in Table 3 of the paper. It is observed
© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53335 | Page 6
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that the ANFIS controller reduces the overshoot and

undershoot magnitudes by more than 50% compared to the N KA A
PID controller across all renewable subsystems. Moreover, A A

the settling time of the system is reduced by approximately ‘
30%, demonstrating the superior damping capability of the

proposed adaptive controller. 0 ‘ -
The frequency-domain analysis further supports these —:
findings. The ANFIS controller achieves higher damping NARAAL ; ’
ratios and shifts critical eigenvalues farther into the left half

of the complex plane, indicating enhanced system stability.

The adaptive structure of the ANFIS allows it to dynamically '

tune its control parameters in real time based on system ’ : J R
conditions, whereas the PID controller relies on fixed gains (A 7ave-p gcaon oz g
that may not be optimal under changing operating scenarios.

As a result, the ANFIS controller maintains consistent

performance under a wide range of disturbances, fault

durations, and renewable resource variations. . L

Figure 5 The system RESs dynamic oscillation with respect
to short circuit fault event occurred at infinite bus location

D. Comparison with Recent Techniques

A comparison is conducted between the proposed ANFIS-
21— based damping controller and other recently published
=7 control strategies reported in the literature. Table 4 in the
= =) paper summarizes the performance characteristics of several
methods, including conventional fuzzy logic, proportional-
integral-derivative (PID), adaptive PID, and model-based
damping controllers. The proposed ANFIS controller
- outperforms all these methods in terms of damping efficiency,
5 robustness, and implementation simplicity. Unlike model-
dependent schemes that require precise system parameters
and repeated tuning, the ANFIS controller offers a non-
model-based and data-driven approach that ensures reliable

operation in diverse microgrid configurations.
The controller also demonstrates reduced computational
burden and improved adaptability compared to multi-loop
and optimization-based approaches. Its hybrid neuro-fuzzy
framework combines fast online learning with interpretability,
enabling practical real-time deployment in HVDC-connected

Figure 4: Simuliation Implementation

renewable microgrids.

E. Discussion of Results

The simulation results confirm that the integration of
renewable sources such as WTs, PVs, and SSSGs through
HVDC links can introduce complex dynamic interactions that
degrade system damping and stability. The proposed ANFIS
damping controller effectively mitigates these issues by
adaptively modifying control signals in response to real-time
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changes in system dynamics. It provides superior resilience
against large disturbances and parameter uncertainties,
ensuring that oscillations are suppressed even under severe
fault events.

The results further indicate that while the conventional PID
controller can stabilize the system under mild conditions, its
performance deteriorates under nonlinear and rapidly
changing environments. The adaptive learning mechanism in
the ANFIS controller allows it to continuously adjust its
fuzzy rules and membership functions based on feedback
signals, maintaining high damping ratios and stable transient
responses. Consequently, the proposed control approach
enhances both the reliability and the security of the hybrid
microgrid system.

CONCLUSION

This paper presented the design, modeling, and performance
evaluation of an Adaptive Neuro-Fuzzy Damping Controller
(ANFDC) for a grid-connected hybrid microgrid system
integrating multiple renewable energy resources through a
high-voltage direct current (HVDC) transmission link. The
developed test system incorporated offshore wind farms,
wave energy farms, photovoltaic (PV) arrays, and small-scale
synchronous generators (SSSGs), all interacting dynamically
under variable operating conditions and fault disturbances.
The proposed controller was developed to enhance system
damping, suppress low-frequency oscillations, and improve
overall dynamic stability in the presence of high renewable
energy penetration. The proposed ANFDC combines the
learning capability of artificial neural networks with the
reasoning efficiency of fuzzy logic systems in a Sugeno-type
hybrid inference model. It operates as a non-model-based
adaptive controller, capable of self-tuning in real time based
on system measurements. Simulation results obtained under
different fault and operating scenarios demonstrated that the
ANFDC significantly outperformed the conventional PID
damping controller in terms of damping ratio, overshoot
reduction, and settling time improvement. The ANFDC
reduced oscillatory amplitude by more than 50%, shortened
the settling time by approximately 30%, and improved
system stability margins under severe three-phase fault
conditions. Unlike the PID controller, which requires
extensive tuning and depends on precise system parameters,
the ANFDC provided robust and adaptive control without
requiring explicit modeling of the system dynamics.

The study also revealed that the proposed controller offers
superior resilience against parameter variations, resource
intermittency, and nonlinearities introduced by inverter-based
renewable sources. Its ability to continuously adapt to
changing grid conditions ensures reliable and stable operation
of hybrid AC/DC microgrids connected through HVDC links.
Furthermore, the controller’s flexible architecture and data-
driven learning mechanism make it suitable for integration
with modern wide-area monitoring and control systems.
Future research will focus on extending the proposed
approach to multi-terminal HVDC (MT-HVDC) systems and
large-scale distributed microgrids. Additional work will

involve hardware-in-the-loop (HIL) experimental validation
and real-time testing to verify the controller’s effectiveness
under practical conditions, including communication delays,
sensor noise, and grid uncertainties. Incorporating energy
storage systems (ESSs) and wide-area measurement systems
(WAMS) with the adaptive neuro-fuzzy framework is also
recommended to further enhance damping performance and
system resilience.
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