

SIIF Rating: 8.448

ISSN: 2582-3930

# Design of Flexible pavement using IITPAVE as per IRC-37-2018 and

minimize the pavement thickness by using Geogrid

# Hari Krishna Palla<sup>1</sup>, B. Raghu Ram<sup>2</sup>

<sup>1</sup>M.tech in Transportation Engineering, Department of Civil Engineering, Sanketika Institute of Technology and Management <sup>2</sup>Assistant Professor, Department of Civil Engineering, Sanketika Institute of Technology and Management

\_\_\_\_\_

**Abstract** – The main purpose of the designing the Flexible pavement with Geogrid is to reduce the thickness of pavement layer thicknesses by providing the geosynthetics on base or subbase courses. With this analysis using relevant Indian road congress (IRC) standards we may reduce the bituminous layer thickness or overall pavement thickness of roads and highways having high traffic volume compared to the conventional method as per IRC 37.

Key Words: Geogrid, IITPAVE, Flexible Pavement, Geosynthetics, IRC 37, Highways.

## **1.INTRODUCTION**

An important factor in a nation's overall development is its transportation system. Highways and roads serve as the main modes of transportation. Since flexible pavement can be gradually strengthened and enhanced to accommodate increasing traffic, it is preferred over cement concrete roadways. This report is to design the flexible pavement in conventional method and comparison of reduced thickness of flexible pavement by providing geogrid in base and/or subbase with the help of IRC guidelines IRC SP 59-2019 & IRC 37-2018 for major highways/expressways using IITPAVE software.

In recent times, as per the suggestions of NHAI (National Highways Authority of India) and MoRT&H (Ministry of Road Transport and Highways) officials, the major highway projects with high-capacity traffic volume in terms of commercial traffic has to be constructed for the maximum design speed for 120kmph for expressways and 100kmph for the National Highways by keeping the view of substantial growth of commercial vehicles, speed improvement and to reduce the travel time. The relevant Indian roads congress (IRC) special publications guidelines has to be followed for designing of the project, for example IRC SP 99-2013 for expressways design and IRC SP 87-2019 for six lane National Highways etc.

In this paper, I have provided the analysis and comparison between flexible pavement thicknesses without geogrid and the design of flexible pavement by providing the geogrid in base and subbase courses for the design traffic 130 MSA with design CBR 13%. The analysis of tensile strains of bituminous and vertical compressive subgrade strains has been evaluated by using IITPAVE software.

# 2. Literature Review

The subgrade soil strength and the traffic volume are two key factors that affect flexible pavement design. Rutting deformation, fatigue, cracking and are the main causes for failures of bitumen. Pavement design is also influenced by a number of other parameters, including wheel load, subgrade strength, climate, stress distribution, and material properties. In India, the pavement design is carried out in accordance with Indian road congress (IRC) regulations. An elastic multilayer structure is useful for flexible pavement. When calculating stresses and strains at crucial areas, a linear layered elastic model can be useful. Stress analysis software can be used to compile the tension and stress in the flexible pavement. IITPAVE is an enhanced version of FPAVE is called IITPAVE software. According to IRC 37 2018 recommendations, a multilayer analysis software is used for the analysis and design of flexible pavement.

The process of reinforcing various pavement layers is known as pavement reinforcement. Geosynthetics/Geogrid included to reinforce the subbase or/and base also to provide subgrade restraint during road construction over the weak condition of subgrade.

IRC SP:59 proposes the LCR (Layer coefficient ratio method) and MIF (Modulus Improvement Factors) method for granular layers reinforced with geosynthetic materials. These methods are to be used to evaluate the modulus value improvement in the granular layer owing to geosynthetic reinforcement. As mentioned in IRC SP:59, these values must be established through thorough field and laboratory experiments. It recommends estimating modulus values of unreinforced granular subbase and base layers independently. Then, obtain the moduli of the reinforced granular layers (subbase and base) by applying the applicable modification factors.

The indicative range of LCR values given below as per IRC:SP:59-2019

| Table-1 LCR Values | (Indicative Range) |
|--------------------|--------------------|
|--------------------|--------------------|

| S. No. | CBR Value | LCR* for geogrid (Indicative range) |  |
|--------|-----------|-------------------------------------|--|
| 1      | <3%       | 1.2-1.8                             |  |
| 2      | >3%       | 1.2-1.6                             |  |

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 05 | May - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

The indicative range of MIF values given below as per IRC:SP:59-2019

| S. No. | CBR Value | MIF* for geogrid (Indicative range) |  |
|--------|-----------|-------------------------------------|--|
| 1      | <3%       | 2-2.75                              |  |
| 2      | >3%       | 1.4-2.0                             |  |

IITPAVE software was created to examine the liner elastic layered pavement structures. The strains, stresses, and deflection that a uniformly distributed single load applied over a circular contact area at the pavements surface will cause different spots in the pavement can be calculated using the software.

The required pavement inputs are the thickness of all layer (except from the subgrade) and the elastic characteristics (elastic/resilient moduli and Poisson's ratio values) of all pavement layers. Pavements of up to 10 layers, including the subgrade, can be analysed using the current version of the software.

The inputs and analysis of Flexible pavement without Geogrid/Geosynthetics provided below Table-5 .

| Table-5 Flexible Pavement Design Analysis ReportWithout Geogrid                      |                                                                                         |                  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|
| S.No.                                                                                | Description                                                                             | Value            |
| 1                                                                                    | Design CBR in (%)                                                                       | 13               |
| 2                                                                                    | Thickness of Bituminous<br>Concrete (in mm)                                             | 80               |
| 3                                                                                    | Thickness of Dense Bituminous<br>Macadam (in mm)                                        | 110              |
| 4                                                                                    | Thickness of Bitumen Layer<br>(BC+DBM) (in mm)                                          | 190              |
| 5                                                                                    | Thickness of WMM Layer (in mm)                                                          | 250              |
| 6                                                                                    | Thickness of GSB Layer (in mm)                                                          | 200              |
| 7                                                                                    | Thickness of Granular Layer<br>(WMM+GSB) (h in mm)                                      | 450              |
| 8                                                                                    | Resilient Modulus for Subgrade (Mpa), $M_R = 17.6^*(CBR)^{0.64}$                        | 90.87            |
| 9                                                                                    | Resilient Modulus for Granular<br>Layer (Mpa) =<br>$0.20^{*}(h)^{0.45*}M_{R(Subgrade)}$ | 284.06           |
| 10                                                                                   | Pavement Temperature (°C)                                                               | 35°C             |
| 11                                                                                   | Binder (Since MSA More than 30)                                                         | VG 40<br>Bitumen |
| 12                                                                                   | Resilient Modulus of<br>Bituminous Mixes (Mpa)                                          | 3000             |
| Determination of Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue Model) |                                                                                         |                  |

| $N_f = 0.5161 * C * 10^{-04} * (1/\varepsilon_t)^{3.89} * (1/M_R)^{0.854}$ |                                                                                                                                |             |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Where, C=10 <sup>M</sup>                                                   |                                                                                                                                |             |  |
| M = 4.                                                                     | $M = 4.84 * \{ \ [V_b/(V_a + V_b)] - 0.69 \ \}$                                                                                |             |  |
| {for 90                                                                    | 0% Reliability}                                                                                                                |             |  |
| 13                                                                         | Fatigue life in number of<br>Standard Axles = Nf = 130.00<br>MSA                                                               | 130000000   |  |
| 14                                                                         | V <sub>a</sub> = Per cent Volume of Air<br>Voids (in %)                                                                        | 3.5         |  |
| 15                                                                         | V <sub>b</sub> = Per cent Volume of<br>bitumen in a given volume of<br>bituminous mix (in %)                                   | 10.75       |  |
| 16                                                                         | $\begin{array}{l} M = 4.84  \ast  \{  \left[ V_b / (V_a \! + \! V_b) \right] \! - \! 0.69 \\ \} \end{array}$                   | 0.31        |  |
| 17                                                                         | C=10 <sup>M</sup>                                                                                                              | 2.05        |  |
| 18                                                                         | Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue<br>Model) = $\varepsilon_t$                                       | 0.0001345   |  |
| 19                                                                         | Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue<br>Model) = $\mathcal{E}_t$ (in Micro Strain)                     | 134.52      |  |
| 20                                                                         | Horizontal Tensile Strain on<br>Bituminous Layer as per The<br>computed strains From IIT<br>PAVE software (in Micro<br>Strain) | 128.60      |  |
|                                                                            | Check                                                                                                                          | Hence, Safe |  |

Determination of Vertical Compressive Strain on the top of Subgrade (Rutting)

 $N = 1.4100*10^{-08}*(1/\varepsilon v)^{4.5337}$ 

{for 90% Reliability}

| 21 | Number of Standard Axles = Nf<br>= 130.00 MSA                                                                                  | 13000000    |
|----|--------------------------------------------------------------------------------------------------------------------------------|-------------|
| 22 | Vertical Subgrade Strain on the top of Subgrade (Rutting Model) = $\varepsilon_v$                                              | 0.000301061 |
| 23 | Vertical Subgrade Strain on the<br>top of Subgrade (Rutting<br>Model) = $\notin v$ (in Micro Strain)                           | 301.06      |
| 24 | Vertical Compressive Strain on<br>Subgrade Layer as per The<br>computed strains From IIT<br>PAVE software (in Micro<br>Strain) | 205.70      |
|    | Check                                                                                                                          | Hence, Safe |



SJIF Rating: 8.448

ISSN: 2582-3930

The inputs and analysis of Flexible pavement with Geogrid (Layer coefficient ratio, LCR method) provided below Table 4.

| Table -4 Flexible Pavement Design Analysis Report With         Geogrid (LCR Method) |                                                                                           |                  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|--|
| S.No.                                                                               | Description                                                                               | Value            |  |
| 1                                                                                   | Design CBR in (%)                                                                         | 13.000           |  |
| 2                                                                                   | Thickness of Bituminous Concrete<br>(in mm)                                               | 40               |  |
| 3                                                                                   | Thickness of Dense Bituminous<br>Macadam (in mm)                                          | 50               |  |
| 4                                                                                   | Thickness of Bitumen Layer<br>(BC+DBM) (in mm)                                            | 90               |  |
| 5                                                                                   | Thickness of WMM Layer (in mm)                                                            | 230              |  |
| 6                                                                                   | Thickness of GSB Layer (in mm)                                                            | 200              |  |
| 7                                                                                   | Thickness of Granular Layer<br>(WMM+GSB) (h in mm)                                        | 430              |  |
| 8                                                                                   | Resilient Modulus for Subgrade soil (Mpa), $M_R = 17.6^*(CBR)^{0.64}$                     | 90.873           |  |
| 9                                                                                   | Resilient Modulus for Granular<br>Layer (Mpa) =<br>$0.20*(h)^{0.45*}M_{R(Subgrade)}$      | 278.309          |  |
| 10                                                                                  | Pavement Temperature (°C)                                                                 | 35°C             |  |
| 11                                                                                  | Binder (Since MSA More than 30)                                                           | VG 40<br>Bitumen |  |
| 12                                                                                  | Resilient Modulus of Bituminous<br>Mixes (Mpa)                                            | 3000             |  |
|                                                                                     | ination of Tensile Strain at the Bottom<br>(Fatigue Model)                                | of Bituminous    |  |
| $N_f = 0.$                                                                          | $5161*C*10^{-04}*(1/\epsilon_t)^{3.89}*(1/M_R)^{0.854}$                                   |                  |  |
| Where                                                                               | Where, C=10 <sup>M</sup>                                                                  |                  |  |
| M = 4.                                                                              | $M = 4.84 * \{ [V_b/(V_a+V_b)]-0.69 \}$                                                   |                  |  |
| {for 90                                                                             | {for 90% Reliability}                                                                     |                  |  |
| 13                                                                                  | Fatigue life in number of Standard<br>Axles = $Nf = 130.00 MSA$                           | 130000000        |  |
| 14                                                                                  | V <sub>a</sub> = Per cent Volume of Air Voids<br>(in %)                                   | 3.500            |  |
| 15                                                                                  | $V_b$ = Per cent Volume of bitumen in<br>a given volume of bituminous mix<br>(in %)       | 10.750           |  |
| 16                                                                                  | $M = 4.84 * \{ [V_b/(V_a+V_b)]-0.69 \}$                                                   | 0.312            |  |
| 17                                                                                  | C=10 <sup>M</sup>                                                                         | 2.049            |  |
| 18                                                                                  | Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue Model)<br>$= \mathfrak{E}_t$ | 0.0001345        |  |

| 19                                                                               | Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue Model)                                                                                                 | 134.518     |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                  | $= \in_t$ (in Micro Strain)                                                                                                                                         | 10.0010     |
| Determination of Vertical Compressive Strain on the top of<br>Subgrade (Rutting) |                                                                                                                                                                     |             |
| N = 1.4                                                                          | $4100*10^{-08}*(1/\varepsilon v)^{4.5337}$                                                                                                                          |             |
| {for 90                                                                          | 0% Reliability }                                                                                                                                                    |             |
| 21                                                                               | Number of Standard Axles = Nf = 130.00 MSA                                                                                                                          | 130000000   |
| 22                                                                               | Vertical Subgrade Strain on the top<br>of Subgrade (Rutting Model) = $\varepsilon_v$                                                                                | 0.000301061 |
| 23                                                                               | Vertical Subgrade Strain on the top<br>of Subgrade (Rutting Model) = $\notin v$<br>(in Micro Strain)                                                                | 301.061     |
|                                                                                  | Layer Coefficient Ratio of Layers<br>(Layer coefficient for geogrid is<br>taken on the basis on the laboratory<br>tests/filed tests; or it can be                   |             |
|                                                                                  | provided by the manufacturer)                                                                                                                                       |             |
| 24                                                                               | Layer coefficient for ratio for base layer (LCR <sub>base</sub> )                                                                                                   | 1.200       |
| 25                                                                               | Layer coefficient ratio for subbase<br>layer (LCR subbase)                                                                                                          | 1.000       |
|                                                                                  | Subbase and base layer thickness values                                                                                                                             |             |
| 26                                                                               | Layer Thickness for Base (mm)                                                                                                                                       | 230         |
| 27                                                                               | Layer Thickness for Subbase (mm)                                                                                                                                    | 200         |
|                                                                                  | MR Values for Subgrade, base and sub base                                                                                                                           |             |
| 28                                                                               | Resilient Modulus of Subgrade soil<br>(Mpa), MR = 17.6*(CBR)0.64                                                                                                    | 90.873      |
| 29                                                                               | Resilient Modulus of subbase Layer<br>(MR_subbase, Mpa), $M_{R_GSB} = 0.2 \times h^{0.45} \times M_{R_subgrade}$ , (h= thickness<br>of granular sub-base layer, mm) | 197.210     |
| 30                                                                               | M <sub>R_GSB</sub> in Psi                                                                                                                                           | 28603.008   |
| 31                                                                               | Resilient Modulus of base Layer (<br>MR_base, Mpa)<br>$M_{R_GB} = 0.2 \times h^{0.45} \times M_{R_GSB}$ (h=<br>thickness of granular base layer,<br>mm)             | 455.761     |
| 32                                                                               | M <sub>R_GB</sub> in Psi                                                                                                                                            | 66102.705   |
|                                                                                  | Calculation of Effective Modulus of<br>Subgrade + Subbase                                                                                                           |             |
| 33                                                                               | Contact Pressure (p)                                                                                                                                                | 0.560       |
| 34                                                                               | Radius of circular contact area (a)                                                                                                                                 | 150.800     |
| 35                                                                               | Poisson's Ratio                                                                                                                                                     | 0.350       |
| 36                                                                               | Deflection in mm (From IITPAVE)                                                                                                                                     | 1.090       |
| 37                                                                               | Effective Modulus of Subgrade & Subbase, Eq. 6.3 of IRC 37-2018                                                                                                     | 135.969     |



SJIF Rating: 8.448

ISSN: 2582-3930

| 38 | Modified MR values for Base Layer<br>(Mpa), Eq. 7.1 of IRC 37-2018                                                                                                                                                             | 314.230   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 39 | Structural layer coefficient of each<br>layer (The equations<br>given in AASTHO 1993                                                                                                                                           |           |
| 40 | Layer coefficient for bituminous<br>layer (a <sub>1</sub> ) = 0.171 x (LN (MR))-<br>1.784<br>0.171 x (LN (435102))-1.784                                                                                                       | 0.436     |
| 41 | Layer coefficient of Base layer (a2)= $0.249 (log10 M^{1} R_{-GB}) - 0.977$                                                                                                                                                    | 0.223     |
| 42 | Layer coefficient of Subbase layer (a3)= $0.227 (log10 M^{1}_{R_{GSB}}) - 0.839$                                                                                                                                               | 0.173     |
|    | Modified layer thickness values for reinforced sections by IITPAVE                                                                                                                                                             |           |
| 43 | Modofied thickness of sub base layer                                                                                                                                                                                           | 200.000   |
| 44 | Modofied thickness of base layer                                                                                                                                                                                               | 230.000   |
| 45 | $\begin{array}{l} Modofied \mbox{ Resilient Modulus of} \\ subbase \mbox{ Layer ( MR_subbase, Mpa),} \\ M_{R_GSB} = 0.2 \times h^{0.45} \times M_{R_subgrade} \ , \ (h= thickness of granular sub-base layer, mm) \end{array}$ | 197.210   |
| 46 | Modofied M <sub>R_GSB</sub> in Psi                                                                                                                                                                                             | 28603.008 |
| 47 | $\begin{array}{l} \mbox{Modofied Resilient Modulus of base} \\ \mbox{Layer (MR_base, Mpa)} \\ \mbox{M}_{R\_GB} = 0.2 \times h^{0.45} \times M_{R\_GSB} \mbox{ (h= thickness of granular base layer, mm)} \end{array}$          | 455.761   |
| 48 | Modofied M <sub>R_GB</sub> in Psi                                                                                                                                                                                              | 66102.705 |
|    | <i>Modified Structural layer coefficient</i><br><i>of each layer</i> (The equations given<br>in AASTHO 1993                                                                                                                    |           |
| 49 | Layer coefficient for bituminous<br>layer $(a_1) = 0.171 \text{ x} (LN (MR))$ -<br>1.784<br>0.171 x (LN (435102))-1.784                                                                                                        | 0.436     |
| 50 | Layer coefficient of Base layer $(a_2)=$<br>0.249 $(\log 10 \text{ M}^1_{\text{R}_{-}\text{GB}}) - 0.977$                                                                                                                      | 0.223     |
| 51 | Layer coefficient of Subbase layer<br>( $a_3$ )= 0.227 (log10 M <sup>1</sup> <sub>R_GSB</sub> ) – 0.839                                                                                                                        | 0.173     |
| 52 | Modified Layer Coefficient for<br>Surface Layer (a'1)                                                                                                                                                                          | 0.436     |
| 53 | Modified Layer Coefficient for Base<br>Layer ( $a_{2}$ ) = LCR <sub>base</sub> × $a_{2}$                                                                                                                                       | 0.268     |
| 54 | Modified Layer Coefficient for<br>Subbase Layer $(a_3) = LCR_{Subbase} \times a_3$                                                                                                                                             | 0.173     |
| 55 | With the improved layer coefficients,<br>improved elastic modulus of<br>respective layers shall be back<br>calculated using below equations<br>for IIT Pave                                                                    |           |
|    | Modified elastic Moduli for Base                                                                                                                                                                                               |           |
| 56 | layer (MR_GB') in Psi = $10^{((a_2'+0.977)/0.249)}$                                                                                                                                                                            | 99890.485 |

| 58 | Modified elastic Modulii for<br>Subbase layer (MR_ $GSB$ ) in Psi = $10^{(a_2'+0.839)/0.227)$                                                                                                                                                                                                                                                                   | 28603.008              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 59 | MR_GSB' in Mpa (for IIT pave input)                                                                                                                                                                                                                                                                                                                             | 197.210                |
|    | Using above improved elastic<br>modulus corresponding improved<br>layer coefficients, reinforced layer<br>thickness shall be determined                                                                                                                                                                                                                         |                        |
| 60 | Surface layer (BC                                                                                                                                                                                                                                                                                                                                               | 40.00                  |
| 61 | Surface layer (DBM)                                                                                                                                                                                                                                                                                                                                             | 50.00                  |
| 62 | Reinforced base layer thickness<br>(WMM+Geogrid)                                                                                                                                                                                                                                                                                                                | 230.00                 |
| 63 | Reinforced subbase layer thickness (GSB)                                                                                                                                                                                                                                                                                                                        | 200.00                 |
|    |                                                                                                                                                                                                                                                                                                                                                                 |                        |
|    | Comparison of Revised Strains                                                                                                                                                                                                                                                                                                                                   |                        |
| 64 | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design                                                                                                                                                                                                                                                             | 134.518                |
| 64 | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design<br>traffic = $\notin$ t (in Micro Strain)<br>Maximum Induced tensile strain                                                                                                                                                                                 | 134.518<br>127.500     |
| 0. | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design<br>traffic = $\notin$ t (in Micro Strain)                                                                                                                                                                                                                   |                        |
|    | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design<br>traffic = $\notin$ t (in Micro Strain)<br>Maximum Induced tensile strain<br>(from IIT Pave)<br>Check Tensile Strain at the Bottom                                                                                                                        | 127.500                |
| 65 | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design<br>traffic = $\notin$ t (in Micro Strain)<br>Maximum Induced tensile strain<br>(from IIT Pave)<br>Check Tensile Strain at the Bottom<br>of Bituminous<br>Permissible Vertical Subgrade<br>Strain on the top of Subgrade<br>(Rutting Model) for given design | 127.500<br>Hence, Safe |

The inputs and analysis of Flexible pavement with Geogrid (Modulus improvement factor, MIF method) provided below in Table-6.

| Table -6 Flexible Pavement Design Report with Geogrid         (MIF method) |                                                    |        |
|----------------------------------------------------------------------------|----------------------------------------------------|--------|
| S.No.                                                                      | Description                                        | Value  |
| 1                                                                          | Design CBR in (%)                                  | 13.000 |
| 2                                                                          | Thickness of Bituminous Concrete<br>(in mm)        | 40     |
| 3                                                                          | Thickness of Dense Bituminous<br>Macadam (in mm)   | 50     |
| 4                                                                          | Thickness of Bitumen Layer<br>(BC+DBM) (in mm)     | 90     |
| 5                                                                          | Thickness of WMM Layer (in mm)                     | 250    |
| 6                                                                          | Thickness of GSB Layer (in mm)                     | 200    |
| 7                                                                          | Thickness of Granular Layer<br>(WMM+GSB) (h in mm) | 450    |



SJIF Rating: 8.448

ISSN: 2582-3930

| 8       | Resilient Modulus for Subgrade soil (Mpa), $M_R = 17.6^*(CBR)^{0.64}$                | 90.873           |
|---------|--------------------------------------------------------------------------------------|------------------|
|         | Resilient Modulus for Granular                                                       |                  |
| 9       | Layer (Mpa) =                                                                        | 284.061          |
|         | $0.20^{*}(h)^{0.45} M_{R(Subgrade)}$                                                 |                  |
| 10      | Pavement Temperature (°C)                                                            | 35°C             |
| 11      | Binder (Since MSA More than 30)                                                      | VG 40<br>Bitumen |
| 12      | Resilient Modulus of Bituminous<br>Mixes (Mpa)                                       | 3000             |
|         | ination of Tensile Strain at the Bottom of Fatigue Model)                            | of Bituminous    |
|         | $5161 C^{10-04} (1/\epsilon_t)^{3.89} (1/M_R)^{0.854}$                               |                  |
| Where,  | , C=10 <sup>M</sup>                                                                  |                  |
| M = 4.8 | 84 * {[ $V_b/(V_a+V_b)$ ]-0.69}                                                      |                  |
| {for 90 | % Reliability}                                                                       |                  |
| 13      | Fatigue life in number of Standard<br>Axles = Nf = 130.00 MSA                        | 130000000        |
| 14      | V <sub>a</sub> = Per cent Volume of Air Voids<br>(in %)                              | 3.500            |
| 15      | $V_b$ = Per cent Volume of bitumen in<br>a given volume of bituminous mix            | 10.750           |
| 16      | (in %)<br>$M = 4.84 * \{ [V_b/(V_a+V_b)] - 0.69 \}$                                  | 0.312            |
| -       | $C=10^{M}$                                                                           |                  |
| 17      |                                                                                      | 2.049            |
| 18      | Tensile Strain at the Bottom of<br>Bituminous Layer (Fatigue Model) =<br>$ \in_t $   | 0.0001345        |
|         | Tensile Strain at the Bottom of                                                      |                  |
| 19      | Bituminous Layer (Fatigue Model) = $\bigoplus_{t \in T} (in Micro Strain)$           | 134.518          |
|         | ination of Vertical Compressive Strain of de (Rutting)                               | on the top of    |
|         | 4100*10 <sup>-08</sup> *(1/€v) <sup>4.5337</sup>                                     |                  |
| {for 90 | % Reliability}                                                                       |                  |
| 21      | Number of Standard Axles = Nf = 130.00 MSA                                           | 130000000        |
| 22      | Vertical Subgrade Strain on the top<br>of Subgrade (Rutting Model) = $\varepsilon_v$ | 0.000301061      |
|         | Vertical Subgrade Strain on the top                                                  |                  |
| 23      | of Subgrade (Rutting Model) = €v<br>(in Micro Strain)                                | 301.061          |
|         |                                                                                      |                  |
|         | Modulus Improvement factor of                                                        |                  |
|         |                                                                                      |                  |
|         | Layers (The indicative range of MIF                                                  |                  |
|         | values for geogrid to be used in the                                                 |                  |
|         |                                                                                      |                  |

|    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                          |           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 25 | Modulus Improvement factor for subbase layer (MIF subbase)                                                                                                                                                     | 1.000     |
|    | Subbase and base layer thickness values                                                                                                                                                                        |           |
| 26 | Layer Thickness for Base (mm)                                                                                                                                                                                  | 250       |
| 27 | Layer Thickness for Subbase (mm)                                                                                                                                                                               | 200       |
|    | MR Values for Subgrage, base and sub base                                                                                                                                                                      |           |
| 28 | Resilient Modulus of Subgrade soil<br>(Mpa), MR = 17.6*(CBR)0.64                                                                                                                                               | 90.873    |
| 29 | Resilient Modulus of subbase Layer<br>(MR_subbase, Mpa),<br>$M_{R_{GSB}} = 0.2 \times h^{0.45} \times M_{R_{subgrade}}$ , (h=<br>thickness of granular sub-base layer,<br>mm)                                  | 197.210   |
| 30 | M <sub>R_GSB</sub> in Psi                                                                                                                                                                                      | 28603.008 |
| 31 | $\begin{array}{l} \mbox{Resilient Modulus of base Layer (} \\ \mbox{MR\_base, Mpa)} \\ \mbox{M}_{R\_GB} = 0.2 \times h^{0.45} \times M_{R\_GSB} \mbox{ (h= thickness of granular base layer, mm)} \end{array}$ | 473.187   |
| 32 | M <sub>R_GB</sub> in Psi                                                                                                                                                                                       | 68630.112 |
|    | Calculation of Effective Modulus of<br>Subgrade + Subbase                                                                                                                                                      |           |
| 33 | Contact Pressure (p)                                                                                                                                                                                           | 0.560     |
| 34 | Radius of circular contact area (a)                                                                                                                                                                            | 150.800   |
| 35 | Poisson's Ratio                                                                                                                                                                                                | 0.350     |
| 36 | Deflection in mm (From IITPAVE)                                                                                                                                                                                | 1.090     |
| 37 | Effective Modulus of Subgrade &<br>Subbase, Eq. 6.3 of IRC 37-2018                                                                                                                                             | 135.969   |
| 38 | Modified MR values for Base Layer<br>(Mpa), Eq. 7.1 of IRC 37-2018                                                                                                                                             | 326.244   |
| 39 | Structural layer coefficient of each<br>layer (The equations<br>given in AASTHO 1993                                                                                                                           |           |
| 40 | Layer coefficient for bituminous<br>layer (a <sub>1</sub> ) = 0.171 x (LN (MR))-<br>1.7840.171 x (LN (435102))-1.784                                                                                           | 0.436     |
| 41 | Layer coefficient of Base layer (a2)=<br>$0.249 (\log 10 \text{ M}^1_{\text{R}_G\text{B}}) - 0.977$                                                                                                            | 0.227     |
| 42 | Layer coefficient of Subbase layer<br>(a3)= $0.227$ (log10 M <sup>1</sup> <sub>R_GSB</sub> ) – $0.839$<br>Modified layer thickness values for                                                                  | 0.173     |
|    | reinforced sections by IIT PAVE                                                                                                                                                                                |           |
| 43 | Modofied thickness of sub base layer                                                                                                                                                                           | 200.000   |
| 44 | Modofied thickness of base layer                                                                                                                                                                               | 250.000   |
| 45 | Modofied Resilient Modulus of<br>subbase Layer (MR_subbase, Mpa),<br>$M_{R_GSB} = 0.2 \times h^{0.45} \times M_{R_subgrade}$ , (h=<br>thickness of granular sub-base layer,<br>mm)                             | 197.210   |
| 46 | Modofied M <sub>R_GSB</sub> in Psi                                                                                                                                                                             | 28603.008 |



SJIF Rating: 8.448

ISSN: 2582-3930

| 47 | Modofied Resilient Modulus of base<br>Layer (MR_base, Mpa)<br>$M_{R_GB} = 0.2 \times h^{0.45} \times M_{R_GSB}$ (h=<br>thickness of granular base layer,    | 473.187    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 48 | mm)<br>Modofied M <sub>R GB</sub> in Psi                                                                                                                    | 68630.112  |
|    | _                                                                                                                                                           |            |
|    | Modified Structural layer coefficient<br>of each layer (The equations<br>given in AASTHO 1993                                                               |            |
| 49 | Layer coefficient for bituminous<br>layer (a <sub>1</sub> ) = 0.171 x (LN (MR))-<br>1.784<br>0.171 x (LN (435102))-1.784                                    | 0.436      |
| 50 | Layer coefficient of Base layer ( $a_2$ )=<br>0.249 (log10 M <sup>1</sup> <sub>R_GB</sub> ) - 0.977                                                         | 0.227      |
| 51 | Layer coefficient of Subbase layer<br>(a <sub>3</sub> )= $0.227$ (log10 M <sup>1</sup> <sub>R_GSB</sub> ) – $0.839$                                         | 0.173      |
|    |                                                                                                                                                             |            |
| 52 | Modified Layer Coefficient for<br>Surface Layer (a' <sub>1</sub> )                                                                                          | 0.436      |
| 53 | Modified Layer Coefficient for Base                                                                                                                         | 0.273      |
| 54 | Layer ( $a_{2'}$ ) = LCR <sub>base</sub> × $a_2$<br>Modified Layer Coefficient for                                                                          | 0.173      |
| 54 | Subbase Layer $(a_{3'}) = LCR_{Subbase} \times a_3$                                                                                                         | 0.175      |
| 55 | With the improved layer coefficients,<br>improved elastic modulus of<br>respective layers shall be back<br>calculated using below equations for<br>IIT Pave |            |
| 56 | Modified elastic Modulii for Base<br>layer (MR_GB') in Psi =<br>$10^{((a_2'+0.977)/0.249)}$                                                                 | 104490.954 |
| 57 | $MR_{GB'}$ in Mpa (for IIT pave input)                                                                                                                      | 720.438    |
| 58 | Modified elastic Modulii for Subbase<br>layer (MR_GSB') in Psi =<br>$10^{((a_2'+0.839)/0.227)}$                                                             | 28603.008  |
| 59 | MR_GSB' in Mpa (for IIT pave input)                                                                                                                         | 197.210    |
|    | Using above improved elastic<br>modulus corresponding improved<br>layer coefficients, reinforced layer<br>thickness shall be determined                     |            |
| 60 | Surface layer (BC                                                                                                                                           | 40.00      |
| 61 | Surface layer (DBM)                                                                                                                                         | 90.00      |
| 62 | Reinforced base layer thickness<br>(WMM+Geogrid)                                                                                                            | 250.00     |
| 63 | Reinforced subbase layer thickness<br>(GSB)                                                                                                                 | 200.00     |
|    | Comparison of Revised Strains                                                                                                                               |            |
| 64 | Permissible Tensile Strain at the<br>Bottom of Bituminous Layer<br>(Fatigue Model) for given design<br>traffic = €t (in Micro Strain)                       | 134.518    |
| 65 | Maximum Induced tensile strain<br>(from IIT Pave)                                                                                                           | 121.100    |
|    | (nom mi ruve)                                                                                                                                               |            |

| 66 | on the top of Subgrade (Rutting<br>Model) for given design traffic = €v<br>(in Micro Strain)<br>Maximum induced vertical Strain | 301.061<br>244.400 |
|----|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 07 | (from IIT Pave)<br>Check of Vertical Subgrade Strain                                                                            | Hence, Safe        |

#### **3. CONCLUSIONS**

From the analysis of flexible pavement without Geogrid as per IRC-37-2018, the summary of pavement thickness below in given in Table-7

#### Table -7 Summary of pavement without Geogrid

| Description                         | Thickness<br>(mm) |
|-------------------------------------|-------------------|
| BC with modified bitumen (VG40)     | 80                |
| Dense Bituminous<br>Macadam (VG40)  | 110               |
| Granular Base Layer without Geogrid | 250               |
| Granular Subbase<br>Layer           | 200               |
| Subgrade                            | 500               |

From the analysis of flexible pavement with geogrid considering LCR factor 1.2 and MIF factor 1.4 the pavement thickness provided below in Table-8

Table -8 Summary of pavement witho Geogrid

| Description                        | Thickness<br>with LCR<br>Method<br>(mm) | Thickness<br>with MIF<br>Method<br>(mm) |
|------------------------------------|-----------------------------------------|-----------------------------------------|
| BC with modified bitumen (VG40)    | 40                                      | 40                                      |
| Dense Bituminous Macadam<br>(VG40) | 50                                      | 50                                      |
| Granular Base Layer with Geogrid   | 230                                     | 250                                     |
| Granular Subbase Layer             | 200                                     | 200                                     |
| Subgrade                           | 500                                     | 500                                     |

The Geogrid layer shall be provided over the compacted layer of subbase below the carriageway in this case.

After the results of pavement design analysis without using geogrid and with geogrid presented in summary table 7 & table 8, it is recommended to adopt the pavement layer thickness as per LCR method as summarized in Table 8.

## REFERENCES

- 1. IRC:37-2018 Guidelines for the Design of Flexible Pavements (Fourth Revision) published by Indian Roads Congress
- 2. IRC:SP:59-2019 Guidelines for use of Geosynthetics in Road Pavements and associated works published by Indian Roads Congress