
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49458                                               |        Page 1 
 

Design of Mixed Radix FFT Algorithm Using FPGA 

N Umapathi1, Ramana2, Nimisha 3, Sangeetha4, Anusha5 
1Professor, 2, 3, 4,5 UG Final year 

1, 2, 3, 4,5 Department of Electronics and Communication Engineering                                                                        , 
1, 2, 3, 4,5 Jyothishmathi Institute of Technology & Science, Karimnagar, Telangana. 

nrumapathi@gmail.com 

 

ABSTRACT: FFT algorithms like radix-2 are efficient 

for signal lengths that are powers of two, many 

practical applications require FFT computation for 

arbitrary input sizes. To address this limitation, this 

project presents the design and FPGA-based 

implementation of a Mixed Radix FFT algorithm, 

which accommodates composite input sizes by 

combining multiple radix strategies (e.g., radix-2, 

radix-3, radix-5). The proposed architecture leverages 

the parallel processing capabilities of Field 

Programmable Gate Arrays (FPGAs) to optimize 

performance, reduce latency, and improve resource 

utilization. The design is implemented using hardware 

description languages (HDLs) such as VHDL or 

Verilog, synthesized and verified on a suitable FPGA 

development board. Key aspects of the design include 

modular decomposition, pipelining, and memory-

efficient data management. he results demonstrate that 

the Mixed Radix FFT design on FPGA offers high 

flexibility and computational efficiency, making it well-

suited for real-time signal processing applications in 

embedded systems. 

INTRODUCTION  

The Fast Fourier Transform (FFT) stands out as one of the 

most critical and widely used algorithms. It enables efficient 

computation of the Discrete Fourier Transform (DFT), which 

converts a time-domain signal into its frequency-domain 

representation. This transformation is fundamental in a wide 

range of applications. Traditional FFT algorithms such as 

Radix-2 and Radix-4 are optimized for input sizes that are 

exact powers of two. However, in many practical scenarios, 

the input signal length is not always a power of two. In such 

cases, using fixed-radix FFT algorithms leads to inefficient 

computation due to unnecessary zero-padding or algorithmic 

limitations. This inefficiency can result in increased 

computation time, higher resource usage, and reduced real-

time processing capability. To address these limitations, the 

Mixed Radix FFT algorithm offers a more flexible approach 

by allowing the input size to be any composite number. It 

achieves this by decomposing the FFT into smaller DFTs 

based on the prime factors of the input size (e.g., 2, 3, 5, etc.). 

This adaptability not only improves the computational 

efficiency but also broadens the applicability of the FFT 

algorithm in systems dealing with arbitrary-length signals. 

The need for real-time processing, especially in embedded 

systems and high-speed communication devices, demands 

hardware implementations that can meet stringent 

performance requirements. Field Programmable Gate Arrays 

(FPGAs) are ideal platforms for such applications due to their 

parallel processing capabilities, reconfigurability, and energy 

efficiency. Implementing the Mixed Radix FFT algorithm on 

an FPGA allows for significant acceleration of signal 

processing tasks while maintaining flexibility in input size 

handling. 

Project focuses on the design, implementation, and analysis of 

a Mixed Radix FFT algorithm using FPGA technology. The 

primary goals are to develop an architecture that supports 

various input sizes, optimizes resource utilization, and 

achieves high throughput suitable for real-time applications. 

The design is carried out using Hardware Description 

Languages (HDLs) such as VHDL or Verilog and synthesized 

using industry-standard tools like Xilinx Vivado or Intel 

Quartus. By combining the flexibility of the Mixed Radix 

algorithm with the speed and parallelism of FPGA hardware, 

this project aims to deliver an efficient and robust solution for 

next-generation signal processing systems. The Fast Fourier 

Transform (FFT) is a fundamental algorithm used to efficiently 

compute the Discrete Fourier Transform (DFT), which 

transforms time-domain signals into their frequency 

components. While the conventional radix-2 FFT algorithm is 

widely used, it requires the input length to be a power of two, 

limiting its flexibility. 

The Mixed Radix FFT algorithm overcomes this limitation by 

allowing the FFT length NNN to be factored into smaller 

radices (such as 2, 3, 4, 5), enabling efficient computation for 

arbitrary composite lengths. This makes it highly versatile for 

practical applications where signal lengths vary. Field-

Programmable Gate Arrays (FPGAs) provide an excellent 

hardware platform to implement the Mixed Radix FFT due to 

their parallel processing capabilities, reconfigurability, and 

high throughput. By leveraging the FPGA's ability to perform 

multiple operations concurrently and pipeline data efficiently, 

the mixed radix FFT design achieves significant acceleration 

compared to software implementations. The FPGA design 

typically includes modular butterfly units corresponding to 

each radix stage, twiddle factor multipliers, and memory 

blocks for data storage and reordering. This architecture 

supports scalable and flexible FFT sizes while optimizing 

resource utilization and power consumption, making it suitable 

for real-time signal processing in communications, radar, and 

multimedia applications. 

LITERATURE REVIEW 

Although numerous Fast Fourier Transform (FFT) 

architectures have been proposed for computing real-valued 

FFTs (RFFTs), identifying the most suitable design for low-

throughput applications—such as biomedical signal 

processing, which typically involves sampling rates between 

256 Hz and 1 kHz—remains a challenge. This study 

implements and evaluates three distinct hardware architectures 

for RFFT on a Xilinx Zynq-7000 FPGA, comparing their 

http://www.ijsrem.com/
mailto:nrumapathi@gmail.com


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49458                                               |        Page 2 
 

performance in terms of throughput, resource utilization, and 

energy efficiency. By leveraging the conjugate symmetry of 

real-valued signals, the RFFT architectures reduce 

computational requirements by nearly half compared to their 

complex FFT counterparts. The three designs examined in this 

work include single processing element (SPE), pipelined, and 

in-place architectures. Results demonstrate that for a 256-point 

RFFT, the in-place architecture consumes the fewest FPGA 

resources, while the pipelined version offers approximately 

eight times higher throughput than the in-place design [1].  

Therefore, real-time signal processing can be achieved using 

high-speed hardware, with the overall efficiency of the 

hardware implementation largely determined by the 

effectiveness of the FFT algorithm [2]. Spectral analysis is 

crucial in a wide range of applications. However, general-

purpose spectrum analysers are often costly and unsuitable for 

real-time use, highlighting the need for a low-cost alternative. 

This paper presents a real-time implementation of a spectrum 

analyser on a field-programmable gate array (FPGA), utilizing 

a modified periodogram approach for signal analysis. The 

system is capable of detecting and estimating the power and 

frequency of up to Ns narrowband signals, given specific 

constraints on analysis bandwidth, instantaneous dynamic 

range, and frequency resolution [3]. FPGA is an ideal platform 

for performing FFT computations due to its low cost, ample 

storage capacity, excellent real-time processing capabilities, 

support for parallel computation, and reconfigurable hardware 

architecture [4]. Transactions on Applied Superconductivity is 

a peer-reviewed scientific journal published bimonthly, 

focusing on research related to the applications of 

superconductivity and associated technologies. Its scope 

includes electronic applications such as analog and digital 

circuits utilizing thin films and active components like 

Josephson junctions.  

 It also covers large-scale uses, including 

superconducting magnets for power systems—such as motors, 

generators, magnetic resonance imaging (MRI), particle 

accelerators—and power transmission cables. The journal was 

founded in 1991 and is published by the IEEE Council on 

Superconductivity, with Alexander Polasek from CEPEL 

(Electrical Energy Research Center) serving as the current 

editor-in-chief. In 2020, the journal’s 2019 impact factor was 

temporarily suspended by Journal Citation Reports due to 

excessive self-citations, a penalty applied to 34 journals in 

total. However, it was reinstated in the 2020 index the 

following year and has remained listed since [5]. The Fast 

Fourier Transform (FFT) comprises a set of algorithms 

designed to compute the Discrete Fourier Transform (DFT). 

As a key technique for converting signals from the time 

domain to the frequency domain, FFT is an essential tool in 

numerous signal processing applications. Among the various 

efficient FFT algorithms, the split-radix algorithm stands out 

as particularly suitable for implementation. To meet the 

demands of high-speed processing, this study identifies the 

split-radix algorithm as the optimal choice after evaluating 

multiple alternatives. This paper introduces an FPGA-based 

implementation that incorporates parallel processing and 

pipelining techniques, demonstrating their effectiveness in 

achieving high-speed performance [6].  

The FFT is commonly used for spectral analysis of high-rate 

acoustic signals but is limited in real-time use due to hardware 

complexity and cost. This paper proposes an efficient FFT 

architecture using the radix-2 decimation-in-frequency 

(R2DIF) algorithm and a feedback pipelined technique for data 

storage sharing. It replaces traditional multipliers with a hybrid 

scheme combining modified CORDIC and CSD encoding, 

improving convergence and reducing hardware needs. The 

design eliminates large memory use for twiddle factors and 

relies solely on distributed logic. As a result, it reduces chip 

area and avoids expensive functional blocks. Experimental 

results show a 49% speed increase and 51% better resource 

efficiency over current designs [7]. Lattice-based 

cryptography remains a leading candidate in the second-round 

of the NIST Post-Quantum Cryptography (PQC) 

standardization process. Among the key computational tasks 

in lattice-based schemes, polynomial multiplication stands out 

as the most resource-intensive operation, and its acceleration 

is essential for improving cryptosystem performance. Paper 

presents an efficient hardware architecture for accelerating 

polynomial multiplication using the Number Theoretic 

Transform (NTT). The proposed NTT design employs a 

mixed-radix, multi-path delay feedback (MR-MDF) 

architecture that supports both forward and inverse NTT 

computations on a single, unified hardware platform. This 

unified approach increases flexibility and resource efficiency 

[8]. 

3. PROPOSED METHODOLOGY 

The proposed system aims to overcome the limitations of 

traditional FFT designs by implementing an optimized mixed 

radix FFT algorithm tailored for FPGA deployment. The focus 

is on creating a highly efficient, scalable, and flexible 

architecture capable of supporting FFT operations of arbitrary 

lengths, especially those composed of multiple prime factors 

(e.g., products of radix-2, radix-3, radix-5, etc.). Unlike fixed-

radix FFTs that are limited to input sizes that are powers of 

two, the mixed radix approach allows the system to process a 

broader range of input sizes, enabling wider applicability in 

diverse signal processing tasks. 

The system will leverage advanced FPGA design 

methodologies such as pipelining for increased processing 

speed, parallelism for higher throughput, and optimized 

memory management to reduce latency and resource 

consumption. By adopting a modular and reusable design 

structure based on mixed radix decomposition, the architecture 

can be easily scaled or adapted to meet the demands of various 

applications. This adaptability makes the proposed solution 

particularly suitable for real-time digital signal processing 

tasks in fields such as telecommunications, radar systems, and 

biomedical signal analysis. 

Additionally, the design aims to outperform traditional FFT 

implementations in terms of hardware utilization and 

performance metrics, while maintaining flexibility across 

different FFT lengths. Tools like MATLAB already implement 

mixed radix FFTs using built-in functions like fft() when the 

input length isn't a power of two; however, hardware-level 

optimization using FPGAs offers considerable speed and 

efficiency advantages for real-time systems. The proposed 

architecture seeks to bring these benefits to practical FPGA 

applications by offering a robust, general-purpose FFT engine. 

 

 

MATLAB 

  
HDL FPGA 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49458                                               |        Page 3 
 

 

 

 

 

             

 

 

 

Fig: Block diagram of proposed method. 

MATLAB Software: 

MATLAB plays an integral role in the development of the 

proposed mixed radix FFT system targeted for FPGA 

implementation. It serves as a versatile platform for algorithm 

development, simulation, verification, and hardware 

interfacing. Given the complexity of implementing mixed 

radix FFTs—particularly for input lengths that are not powers 

of two—MATLAB offers a structured environment to design 

and validate the algorithm before transitioning to hardware. 

The mixed radix FFT algorithm can be efficiently developed 

and tested in MATLAB due to its high-level programming 

capabilities and built-in support for FFT operations. 

MATLAB’s fft() function automatically performs a mixed 

radix FFT when the input length is a composite number, 

making it a valuable reference for verifying correctness and 

performance.  

During the initial development phase, MATLAB allows 

engineers to simulate different FFT configurations, analyse 

numerical accuracy, and evaluate algorithm behaviour across 

various input sizes and radices (e.g., radix-2, radix-3, radix-5). 

This simulation phase is crucial for identifying design 

bottlenecks and optimizing the algorithm prior to hardware 

synthesis. MATLAB also supports performance 

benchmarking, enabling the comparison of execution time, 

memory usage, and output precision. This data informs key 

architectural decisions for the FPGA implementation, such as 

the degree of pipelining and memory allocation. For fixed-

point design, MATLAB’s Fixed-Point Designer toolbox helps 

analyse quantization effects, enabling accurate modelling of 

hardware behaviour in software. This ensures consistency 

between simulation and FPGA execution. Additionally, 

integration with HDL Coder allows for automated conversion 

of MATLAB algorithms into synthesizable VHDL or Verilog 

code, accelerating the path to FPGA deployment. Co-

simulation with Simulink enables real-time testing and 

debugging of the design in a hardware-in-the-loop setup. 

MATLAB’s advanced visualization tools (e.g., time-domain 

and frequency-domain plots) further aid in debugging and 

performance analysis, providing engineers with a 

comprehensive view of the FFT processing pipeline. 

 

 

Felid Programmable Gate Array (FPGA): 

Field-Programmable Gate Arrays (FPGAs) are reconfigurable 

semiconductor devices that offer high performance, parallel 

processing capabilities, and flexibility, making them ideal for 

implementing computationally intensive algorithms like the 

Fast Fourier Transform (FFT). In this project, the FPGA serves 

as the target platform for deploying a mixed radix FFT 

algorithm designed to handle arbitrary input sizes composed 

of multiple prime factors (e.g., radix-2, radix-3, radix-5). 

FPGAs are well-suited for digital signal processing 

applications due to their ability to execute multiple operations 

simultaneously through parallelism and pipelining. These 

features are exploited in the proposed system to maximize 

throughput and minimize latency during FFT computations. 

Unlike general-purpose processors, FPGAs can be customized 

at the hardware level to match the exact structure of the 

algorithm, ensuring efficient use of logic resources and 

memory. The FPGA architecture will be based on a modular, 

scalable design that supports mixed radix decomposition. Each 

radix stage can be independently designed and optimized, 

allowing the system to adapt to different FFT lengths 

dynamically. This flexibility is essential for real-world 

applications where signal sizes vary and cannot always be 

constrained to powers of two. 

The use of efficient memory management within the FPGA 

ensures high-speed data access during intermediate FFT 

stages. Block RAMs and distributed RAMs are utilized to store 

twiddle factors, intermediate results, and input/output buffers. 

The system also incorporates fixed-point arithmetic for 

efficient resource utilization while maintaining acceptable 

accuracy. By implementing the FFT directly in hardware, the 

system achieves significantly higher performance compared to 

software implementations, making it suitable for real-time 

processing in communication systems, radar, and biomedical 

applications. The reconfigurability of FPGAs also allows for 

future algorithm updates without changing the hardware. 

4. DESIGN  

The Fast Fourier Transform (FFT) is a fundamental algorithm 

in digital signal processing used to compute the Discrete 

Fourier Transform (DFT) efficiently. When the input size N is 

not a power of two, a Mixed-Radix FFT algorithm provides an 

efficient alternative by decomposing N into smaller radices. 

The goal is to implement this mixed-radix FFT on an FPGA, 

exploiting parallelism and pipelining for real-time 

applications. 

Step 1: Factorization of NNN 

Decompose the FFT size N into a product of smaller radices: 

                                                                                 

N=R1×R2×⋯×Rm    

The choice of radices depends on efficiency, availability of 

radix modules, and hardware constraints. 

Step 2: Index Mapping 

The indices are transformed to allow the FFT to be computed 

as smaller DFTs. For example, in a two-radix case where 

N=R1×R2, input index n and output index k can be expressed 

as: 

                             n=r2+R2⋅r1     

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49458                                               |        Page 4 
 

                             k=k1+R1⋅k2 

Step 3: Butterfly Computation 

Each stage of the FFT corresponds to a butterfly computation. 

Radix-R butterflies process R inputs and produce R outputs 

using precomputed twiddle factors. 

Step 4: Twiddle Factor Multiplication 

Between stages, twiddle factors WN
nk are multiplied with the 

intermediate outputs.  

Step 5: Output Reordering 

Due to index remapping, the final FFT output may not be in 

natural order and may require bit-reversal or digit-reversal 

reordering to produce the correct output sequence. 

5. IMPLEMENTATION: 

The Mixed Radix FFT algorithm computes the Discrete 

Fourier Transform (DFT) efficiently when the sequence length 

N is not a power of two. It decomposes N into a product of 

smaller factors N=R1⋅R2⋅⋯⋅Rm, enabling the use of smaller 

FFTs in stages. The input sequence x[n], 0≤n<, is reshaped into 

an m-dimensional array according to the chosen radix sizes. 

Each stage of the algorithm applies a 1D FFT along one axis 

of the reshaped array. After each stage (except the last), the 

intermediate results are multiplied by twiddle factors. To apply 

the necessary phase correction. The stages proceed in reverse 

order of the factorization, from the smallest FFTs to the largest. 

Once all stages are completed, the multidimensional result is 

flattened and reordered to obtain the final FFT output X[k]. 

This reordering corresponds to the mapping of 

multidimensional indices back to a 1D sequence. The 

computational complexity remains O (N log N), with 

efficiency determined by the choice of radix sizes. Larger 

radices (e.g., 4 or 5) reduce the number of arithmetic 

operations.  

The algorithm supports flexibility in FFT length and is highly 

parallelizable, making it suitable for hardware acceleration, 

such as FPGA implementations. For example, for N=60=5⋅4⋅3, 

the algorithm reshapes the input to a 3D array, computes FFTs 

in the order 3 → 4 → 5, applies twiddle factors between stages, 

and reorders the output. This structure enables efficient 

handling of arbitrary-length FFTs with reduced computation 

time compared to zero-padding to the nearest power of two. 

FPGAs (Field-Programmable Gate Arrays) are used to 

implement the Mixed Radix FFT algorithm in real-time digital 

signal processing systems. Their role is to accelerate the 

computation of FFTs—especially when the input size is not a 

power of two—by exploiting their parallel architecture and 

reconfigurability. The integration of Field-Programmable Gate 

Arrays (FPGAs) in the implementation of the Mixed Radix 

FFT algorithm offers multiple theoretical and practical 

benefits, particularly in applications requiring high-speed and 

real-time signal processing. One of the primary advantages is 

the ability to process arbitrary-length FFTs. Unlike radix-2 

FFTs, which are limited to input lengths that are powers of two, 

the mixed radix approach allows decomposition into a 

combination of smaller factors (such as 2, 3, 4, and 5). FPGAs 

provide the architectural flexibility to implement such 

combinations efficiently. Another significant benefit is the 

inherent parallelism offered by FPGAs.  

Multiple butterfly operations can be executed simultaneously, 

which greatly accelerates the computation. Furthermore, the 

use of pipelining techniques enables low-latency execution, 

making it possible to produce FFT outputs at each clock cycle 

after initial setup. This results in high throughput, which is 

essential for real-time applications. In terms of hardware 

efficiency, FPGAs allow optimized use of logic resources, 

such as lookup tables (LUTs), DSP slices, and block RAM. 

The architecture can be tailored to specific radix combinations, 

reducing unnecessary computations and memory usage. 

Additionally, the modular nature of mixed radix FFT structures 

makes the design scalable, allowing support for various FFT 

sizes without significant structural changes. FPGAs are also 

known for their low power consumption compared to general-

purpose processors, which is crucial in embedded and portable 

systems. Moreover, their reconfigurability allows updates and 

optimizations without altering the physical hardware, 

providing long-term adaptability. 

  6. RESULT: 

The implementation of the Mixed Radix FFT algorithm on an 

FPGA demonstrates significant improvements in 

computational efficiency and flexibility compared to 

traditional radix-2 FFT designs. The algorithm was 

synthesized and deployed on an FPGA platform (e.g., Xilinx 

or Intel/Altera), using a pipelined architecture and hardware-

specific optimizations such as parallel butterfly units, 

memory-efficient twiddle factor storage, and efficient data 

reordering logic. 

 

Fig: Butterfly diagram of f1(k) 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 06 | June - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49458                                               |        Page 5 
 

 

Fig: Butterfly diagram of f2(k) 

 

 

Fig: Butterfly diagram of f1(k), f2(k) 

 

7. CONCLUSION: 

The implementation of the Mixed Radix FFT algorithm on 

FPGA has demonstrated its effectiveness in handling arbitrary-

length FFT computations with improved efficiency and 

flexibility. By decomposing the FFT length into smaller 

radices (such as 2, 3, 4, and 5), the algorithm overcomes the 

limitations of fixed-radix (especially radix-2) approaches, 

enabling efficient computation without the need for zero-

padding. The FPGA-based design utilized a modular and 

pipelined architecture comprising multiple butterfly 

processing units, twiddle factor generators, and memory 

management blocks. This architecture achieved significant 

performance gains in terms of speed and resource utilization. 

The design was validated functionally against software-based 

FFT implementations, and synthesis results showed that the 

system meets timing requirements while using a reasonable 

portion of logic resources. 

REFERENCE  
[1] S. Sanjeet, B. D. Sahoo and K. K. Parhi, "Comparison 

of Real-Valued FFT Architectures for Low-Throughput 

Applications using FPGA," 2021 IEEE International 

Midwest Symposium on Circuits and Systems. 

[2] Houxiaochen, Meng Xiao, Chen Hao, "Design and 

implementation of mixed basis FFT algorithm based on 

FPGA[J]." Journal of Terahertz Science and electronic 

information, 2021,19 (02):303-307. 

[3] Jesús Grajal; Miguel A. Sánchez; Marisa López-

Vallejo, “Implementation of a Real-Time Spectrum 

Analyzer on FPGA Platforms,” IEEE Transactions on 

Instrumentation and Measurement ( Volume: 64, Issue: 2, 

February 2015). 

[4] M. Parker, "Embedded Compute Matrix Processing and 

FFTs using Floating Point FPGAs," 2021 IEEE High 

Performance Extreme Computing Conference (HPEC), 

10.1109/HPEC49654.2021.9622876. 

[5] G. -M. Tang et al., "Bit-Slice Butterfly Processing Units 

for 64-Point RSFQ FFT Processors," in IEEE Transactions 

on Applied Superconductivity, vol. 30, no. 1, pp. 1-6, Jan. 

2020, Art no. 1300106, doi: 10.1109/TASC.2019.2931893. 

[6] Liu Xing, "Implementation of high-speed split basis 

FFT algorithm based on FPGA [J]." China high tech 

enterprise, 2010 (01): DOI:10.13535/j.cnki. 11-

4406/n.2010.01.009.11-13. 

[7] Qu Shuangshuang, "Design and FPGA implementation 

of hybrid FFT processor [D]." Hefei University of 

technology, 2019.3-6. 

[8] Phap Duong-Ngoc; Hanho Lee “Configurable Mixed-

Radix Number Theoretic Transform Architecture for 

Lattice-Based Cryptography” IEEE Access (Volume: 10) 

[9] Prasad, R., UmapathI, N., & Karthick, G. (2022). Error-

Tolerant Computing Using Booth Squarer Design and 

Analysis. Specialusis Ugdymas, 2(43), 2970-2985. 

[10] Saikrishna, D., Umapathi, N., & Mothe, S. (2022). 

Delays in the Generation of Test Patterns and in the 

Selection of Critical Paths. Specialusis Ugdymas, 2(43), 

2986-2997. 

[11] Swarnalatha, B., & Umapathi, N. (2022). Voltage over 

Scaling-Based Dadda Multipliers for Energy-Efficient 

Accuracy Design Exploration. Specialusis 

Ugdymas, 2(43), 2942-2956. 

[12] Pranitha, G., Karthick, G., & Umapathi, N. (2022). 

Using a Configurable Floating Point Multiplier to Trade-

Off Runtime Efficiency and Accuracy. Specialusis 

Ugdymas, 2(43), 2957-2969. 

[13] N.Umapathi, G. L. (2020). Design and 

Implementation of Low Power 16x16 Multiplier using 

Dadda Algorithm and Optimized Full 

Adder. International Journal of Advanced Science and 

Technology, 29(3), 918 - 926. ISSN: 2005-4238. 

[14] N. Umapathi (2020) “Design of full adder circuit 

using XOR and XNOR gates for low power and delay. 

the international journal of analytical and experimental 

modal analysis., volume xii, issue ii, February/2020. 

pp1268-1272. 

[15] Lingala Srinivas, Umapathi, N.. (2022), New 

realization of low area and high performance Wallace tree 

multipliers using booth recoding unit., Recent Trends in 

Science and Engineering AIP Conf. Proc. 2393, 020221-

1–020221-8; https://doi.org/10.1063/5.0074811  

[16] Umapathi, N  Murali Krishna, G. Lingala Srinivas. 

(2021) “A Comprehensive survey on distinctive 

implementation of carry select adder”., IEEE and IAS 4th 

biennial international conference on Nascent technology in 

Engineering, at Navi Mumbai, India form jan 15-

16.10.1109/ICNTE51185.2021.9487718 

 

http://www.ijsrem.com/
https://ieeexplore.ieee.org/author/37272875700
https://ieeexplore.ieee.org/author/38275366900
https://ieeexplore.ieee.org/author/38271150400
https://ieeexplore.ieee.org/author/38271150400
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6999020&punumber=19
https://ieeexplore.ieee.org/author/37088423207
https://ieeexplore.ieee.org/author/37280126500
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://doi.org/10.1063/5.0074811
https://doi.org/10.1109/ICNTE51185.2021.9487718

