
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

Design Verification of Configurable SPI

 1Aayushi Dey,
2
Bhavini Kumawat

1
Research Scholar, Department of Electrical and Electronics Engineering, Oriental University, Indore, MP,

India
2
Assistant Professor, Department of Electrical and Electronics Engineering, Oriental University, Indore,

MP, India
---***--

Abstract— Synchronous serial interfaces are frequently

utilized to provide cost-effective board-level interfaces

between various devices such microcontrollers, DACs,

and ADCs. Components compatible with SPI and

Microwire/plus are available from a variety of IC vendors.

With some added functionality, the SPI Master core is

compatible with both protocols as master. The core works

as an APB compliant slave device on the hosts' side.

Serial interface, clock generator, and APB interface are

the three sections of the SPI master core. Using the APB

compatible interface, the SPI core includes five 32-bit

registers. Slave select lines, serial clock lines, and input

and output data lines are all part of the serial interface. All

transfers are full duplex with a customizable bit rate (64

bits). There are eight slave select lines, but only one is

active at any given moment. We use System Verilog to

create the SPI, and we use QuestaSim to verify our

design.

Keywords—UVM (Universal Verification Methodology);

SPI (Serial Peripheral Interface); DUT (Design Under

Test); APB; Coverage.

1. INTRODUCTION

Almost every system nowadays incorporates some form of

intelligent control, most commonly a Microcontroller Core.

LCD drivers, remote I/0 ports, RAM, EEPROM, and data

converters are examples of general-purpose circuits.

Communication interfaces and/or computation-intensive

tasks require application-oriented circuits. As a result,

communication between these components is critical. In this

regard, reuse of intellectual property (IP) macro-cells is

becoming the center of gravity for design productivity and

the key to producing functional chips. All integrated

components must be connected to one another, and each

SoC must be linked in a fashion that allows for quick and

error-free communication. Communication between SoCs is

critical for achieving high performance; the most common

approach for interconnecting SoCs is a serial bus, which

offers significant cost savings. One of the advantages of

SystemVerilog is the functional coverage model [1]. System

Verilog allows doing functional coverage-driven

verification. To do that we need to code the technical

documentation into a set of cover points and creates the

coverage model. The coverage model will determine which

features have been tested by the environment and which

have not. These help in understanding the verification holes

and, cover them to assure in a completely verified product.

Other than the Coverage model SystemVerilog has the

object-oriented programming (OOP) concepts integrated

inside. That allows separating the verification environment

into smaller parts. Those smaller parts are the base of the

verification methodology. In general, the components are

generators, for generating certain packets, drivers to send

those packets, receivers to receive, monitors to monitor the

interfaces, and a scoreboard to check the correctness of the

operation. There are other components, but these are the

widely used ones [2]. This paper concentrates on developing

a verification environment for configurable SPI interfaces.

In upcoming chapters, the SPI interface overview is given to

have a general idea of the interface. Also, the test

environment architectures are described, and everything is

concluded with the functional coverage results.

APB bus protocol, I2C bus protocol, ARM bus protocol,

and others are currently extensively used protocols that

allow hardware devices to connect by assigning rules and

matching time for the purpose of transmitting data. SPI is a

serial interface protocol that, when compared to [3] other

protocols, offers the advantages of high transmission speed,

ease of use, and few pins. At the very least, the four

interfaces are required by the standard SPI protocol. For

data transmission, devices that use the SPI protocol are

usually separated into master and slave devices. When the

data exchange is completed, the master-device generates the

chip choose signal and the clock signal. As a result, the

master device must be equipped with when controlling

numerous slave devices, the master device must have

multiple chips select interfaces for slave devices. This will

no longer comply with the SPI protocol. The standard SPI

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

communication is a single-master communication, which

means that there is only one master device for all

communications [4]. As a result, both factors limit devices

that use the SPI standard. This design (adopts the

parameterization approach, automatically recognizes the

master/slave devices, and uses TSM (Time Sharing

Multiplex) technology to control the same slave device at

the same time) is used to target the faults. The design fully

complies with the four standard SPI protocol interfaces.

2. Overview of SPI

Motorola developed the Serial Peripheral Interface (SPI)

module in the mid-1980s, which permits synchronous, serial,

and full duplex communication between a microcontroller

and peripheral devices. The structural link between the

master and slave cores is depicted in Figure 1. The SPI bus is

typically used to send and receive data between

microcontrollers and other tiny peripherals such as shift

registers, sensors, SD cards, and other similar devices [5].

When compared to other protocols, the SPI protocol has the

advantages of a relatively fast transmission speed, ease of

usage, and a limited number of signal pins. For transmitting

and receiving data, the protocol typically separates devices

into master and slave. A master device generates distinct

clock and data signal lines, as well as a chip-select line that

selects the slave device for which communication is

required. If there are several slave devices, the master device

will need multiple chips select interfaces to control them.

Figure 1 Master and Slave Connection

 Data Transmission - The SPI bus interface

consists of four logic signals lines namely

MOSI, MISO, Serial Clock (SCLK) and

Slave Select (SS).

 Figure 2 SPI Shift Register

 MOSI - The MOSI is a transversal signal line that can be

used as both an output and an input signal line in a master and

slave device. It oversees data transfer from master to slave in

one direction.

 MISO – The MISO is a unidirectional signal line that can

be used as an input in a master device and as an output in a

slave device. It oversees data transmission from slave to

master in one direction. The MISO line will be in a high

impedance state if a specific slave is not selected.

 Slave Select (SS) - The slave select signal is used as a

chip-select line to select the slave device. It is an active low

signal and must stay low for the duration of the transaction.

 Serial Clock (SCLK) - The serial clock line is used to

synchronize data transfer between both output MOSI and

input MISO signal lines. Based on the number of bytes of

transactions between the Master and Slave devices, required

number of bit clock cycles are generated by the master device

and received as input on a slave device [6].

2.1 Hardware Architecture

The designed SPI is compatible with the SPI protocol and

bus principle. At the host side, the design is equivalent to the

slave devices of AMBA bus specification. The overall

structure of the AMBA complaint SPI Master core device can

be divided into three functional units: Clock generator, Serial

Interface and AMBA Interface [7].

2.2 Design of Clock Generation module

(spi_clk_gen)

The clk_gen oversees generating the clock signal from the

external system clock wb_clk_i, according to the clock

register's varied frequency factors, and producing the output

signal s_clk_o. The clk_gen module can produce reliable

serial clock transmission with odd or even frequency

division in the register to assure timing reliability [8]. By

dividing the wb_clk_i, the core creates the s_clk_o; altering

the value of the divider allows for arbitrary clock output

frequency. fsclk = fwbclk/(DIVIDER + 1) x 2 is the

expression for s_clk_o and wb_clk_i.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

Figure 3 Clock Generation Module

2.3 Serial data transfer module design

(spi_shift)

The data transfer core module is made up of serial data

transfer modules. It's in charge of converting parallel

input data into serial output data for MOSI transmission

and MISO serial data into parallel out. The flip flops in

the Receive and Transmit registers are the same [9]. If

no write access to the transmit register was done

between the transfers, the data received from the input

data line in one data transfer will be communicated on

the output line in the next data transfer. The benefit is

that it consumes less electricity because it uses less

hardware resources. SPI on the host side receives input

data and broadcasts output data in real time as the

master device.

2.4 Top-level module (spi)

The top-level module's job is to ensure that the basic

framework of high-speed reusable SPI bus sub-

components functions properly. As a result, the SPI

module's top-level controls the clock generator and

serial data transmission modules' operational phase.

3. Verification Architecture

The verification process is like the design creation process. A

designer examines a block's hardware specification,

understands the human language description, and writes the

appropriate logic in a machine-readable format, commonly

RTL code written in Verilog or VHDL. To do so, the user

must first grasp the input format, transformation function,

and output format. This interpretation is always ambiguous,

either due to ambiguities in the original material, missing

details, or contradictory descriptions. In comparison to

Verilog, the System Verilog language offers three significant

advantages. Design verification is the most significant part of

the product development process, accounting for up to 80%

of the overall time spent on the project. The goal is to make

that the design meets all the system's needs and

specifications [10].

Logic simulation/emulation and circuit simulation are

approaches to design

 Verification in which detailed functionality and

timing of the design are checked using simulation or

emulation

 Functional verification, in which functional models

describing the functionality of the design are

developed to check against the behavioral

specification of the design without detailed timing

simulation, and

 Formal verification, in which the functionality is

checked using formal methods. Property checking (or

model checking), in which the design's properties are

checked against some assumed "properties" specified

in the functional or behavioral model (e.g., a finite-

state machine should not enter a certain state), and

equivalence checking, in which the functionality is

checked against a "golden" model, are also part of

formal verification. Although equivalence checking

can be used to evaluate synthesis outputs at lower

levels of the EDA cycle, property checking is

required for the initial design capture.

4. UVM Introduction

As digital systems grow in complexity, verification

methodologies get progressively more essential. While in the

early beginnings, digital designs were verified by looking at

waveforms and performing manual checks, the complexity

we have today don’t allow for that kind of verification

anymore and, as a result, designers have been trying to find

the best way to automate this process. The System Verilog

language came to aid many verification engineers. The

language featured some mechanisms, like classes, cover

groups and constraints, that eased some aspects of verifying

a digital design and then, verification methodologies started

to appear [11]. UVM is one of the methodologies that were

created from the need to automate verification. The

Universal Verification Methodology is a collection of API

and proven verification guidelines written for System

Verilog that help an engineer to create an efficient

verification environment. It’s an open-source standard

maintained by Accellera and can be freely acquired in their

website. By mandating a universal convention in verification

techniques, engineers started to develop generic verification

components that were portable from one project to another,

this promoted the cooperation and the sharing of techniques

among the user base. It also encouraged the development of

verification components generic enough to be easily

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

extended and improved without modifying the original code.

All these aspects contributed for a reduced effort in

developing new verification environments, as designers can

just reuse test benches from previous projects and easily

modify the components to their needs [12].

We create a road map for achieving the goal in the test

plan, which is a live document. Introduction, assumptions, a

list of test cases, a list of features to be tested, approach,

deliverables, resources, risks and timing, and entrance and

exit criteria are all included in the test plan. The test strategy

aids the verification engineer in comprehending how the

verification should be carried out. A test plan can be in the

form of a spreadsheet, a paper, or even a plain text file.

Sometimes, the test plan is just in the engineer's head, which

is risky because the process cannot be accurately measured

and controlled. The test plan also includes descriptions of the

Test Bench architecture as well as each component's

functionality.

Figure 4 Representation of UVM Environment

4.1 Defining the Verification Environment

Before understanding UVM, we need to understand

verification. Right now, we have a DUT, and we will have to

interact with it to test its functionality, so we need to

stimulate it. To achieve this, we will need a block that

generates sequences of bits to be transmitted to the DUT, this

block is going to be named sequencer. Usually, sequencers

are unaware of the communication bus, they are responsible

for generating generic sequences of data and they pass that

data to another block that takes care of the communication

with the DUT. This block will be the driver. While the driver

maintains activity with the DUT by feeding it data generated

from the sequencers, it doesn’t do any validation of the

responses to the stimuli. We need another block that listens

to the communication between the driver and the DUT and

evaluates the responses from the DUT. This block is the

monitor. Monitors sample the inputs and the outputs of the

DUT, they try to make a prediction of the expected result

and send the prediction and result of the DUT to another

block, the scoreboard, to be compared and evaluated. All

these blocks constitute a typical system used for verification

and it’s the same structure used for UVM test benches.

Usually, sequencers, drivers and monitors compose an agent.

An agent and a scoreboard Compose an environment. All

these blocks are controlled by a greater block denominated

of test. The test block controls all the blocks and sub blocks

of the test bench. This means that just by changing a few

lines of code, we could add, remove, and override blocks in

our test bench and build different environments without

rewriting the whole test. To illustrate the advantage of this

feature, let’s imagine a situation where we are testing a

another DUT that uses SPI for communication. If, by any

chance, we want to test a similar DUT but with I2C instead,

we would just need to add a monitor and a driver for I2C and

override the existing SPI blocks, the sequencer and the

scoreboard could reuse just fine [13].

4.2 Components of UVM Test Bench

A UVM Test bench is composed of reusable universal

verification components (UVCs). A UVM-UVC is and

encapsulated, ready to use and configurable verification

environment intended for an interface protocol, a design sub-

module or even for software verification. Each UVC follows

a consistent architecture and contains a complete set of

elements for sending stimulus, as well as checking and

collecting coverage information for a specific protocol or

design. The interface UVC is applied to the Device under

test (DUT) to verify implementation of the design protocol

logic or as a means of program the DUT. Module UVCs

contain internal verification logic for a subsystem or a

module and enable the subsystem verification in a larger

system. UVM-UVCs speedup the process of creating

efficient testbench for the DUT, and are structured to work

with any hardware description language (HDL) and a high-

level verification language (HVL) including Verilog, VHDL,

e, System Verilog, and System C. The UVCs can be reused

for multiple verification environments. The verification

environment also contains a multi-channel sequence

mechanism i.e., a virtual sequencer that synchronizes the

timing and the data between the different interfaces and

allows fine control of the test environment for a particular

test. The main components and detailed explanation about

each universal verification component is as follows:

4.3 Data Items

Data items represent stimulus transactions that are input to

the DUT. Examples of data items are networking packets,

bus transactions and instructions. The fields and attributes of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 5

a data item are derived from data item’s specification. In a

typical test, many data items are generated and sent to the

DUT. By randomizing data items using System Verilog

constraints, it helps to create many meaningful tests and

maximum coverage. As Driver deals with signal activities at

bit level, it does not make sense to keep this level of

abstraction in DUT. So, concept of transaction was created.

A transaction is a class object usually extended from

uvm_transaction or uvm_sequence_item classes, which

includes information needed to model the communication

between two or more components. Transactions are the

smallest data transfers that can be executed in a verification

model. They can include variables, constraints and even

methods for operating themselves. Due to their higher

abstraction level, they are not aware of communication

protocol between components so they can be reused and

extended for different kind of tests if correctly programmed

[14]. The transaction could include two variables; the

address of the device and the data to be transmitted to that

device. The transaction would randomize these two variables

and verification environment would make sure that the

variables would assume all possible and valid values to cover

all combinations. To drive stimulus to DUT, a driver

component converts transactions into pin wiggles. Sequences

are ordered collection of transactions; they shape

transactions to our needs and generates as many as need.

Sequence is extended from uvm_sequence and their main job

is generating multiple transactions. After generating

transactions, sequencer takes them to driver.

4.4 Top Block

There are mainly two components that connects DUT with

Test bench in UVM.

 Top block of Test bench,

 A Virtual Interface

The top block will create instances of the DUT and of the

Test bench and the virtual interface will act as a bridge

between them. Interface is a module that holds all signals of

DUT. The monitor, the driver and the DUT are all going to

be connected to this module. The top block is responsible

for:

 Connecting DUT to test class using interface,

 Generating clock for DUT,

 Registering the interface in the UVM factory.

This is necessary to pass this interface to all

other classes that will be instantiated in the test

bench,

 Running Test

4.5 Sequencer

A sequencer is an advanced stimulus generator that controls

the items provided to the driver for execution. By default, a

sequencer behaves similarly to a simple stimulus generator

and returns a random data item upon request from the driver.

This default behavior allows you to add constraints to the

data item class to control distribution of randomized values.

4.6 Driver

A driver is an active entity which emulates logic that drives

the DUT.A typical driver repeatedly pulls data items

generated by a sequencer and drives it to the DUT by

sampling and driving the DUT signals.

4.7 Monitor

The monitor is a self-contained passive entity that observes

the communication of the DUT with the testbench by

converting pin wiggles into transactions. Monitor observes

the outputs of the design and incase of not respecting

protocol rules, the monitor must return an error. The monitor

is a passive component, it does not drive any signals into the

DUT its purpose is to extract signal information and translate

it into meaningful information to be evaluated by other

components. A verification environment is not limited to just

one monitor, it can have multiple of them. Monitors collects

transactions from virtual interface and use the analysis ports

to send those transactions to the score board.

4.8 Agent

Sequencers, drivers and monitors can be reused

independently, but this requires the environment integrator to

learn the names, roles, configuration, and hookup of each of

these entities. To reduce the amount of work and knowledge

required by test writer, Agent is used. Agent is basically a

container. Some agents are proactive and initiate transactions

to the DUT, while other agents react to transaction requests.

Agents should be configurable so that they can be either

active or passive. In active mode it drives the signal to the

DUT. So, driver and sequencer are instantiated in active

mode. In passive mode it just samples the DUT signals does

not drive them. So only monitor is instantiated in passive

mode.

4.9 Scoreboard

Scoreboard is a crucial element in a self-checking

environment, it verifies the proper operation of a design at

functional level. This component is the most difficult one to

write, it varies from design to design and from designer to

designer.

4.10 Environment

Environment is at the top of the test bench architecture; it

will contain one or more agents depend on design. The

environment contains configuration properties that enable

you to customize the topology and behavior to make it

reusable. For example, active agents can be changed into

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 6

passive agents when the verification environments are reused

for system verification. The environment class (uvm_env) is

designed to provide a flexible, reusable, and extendable

verification component. The main function of the

environment class is to model behavior by generating

constrained-random traffic, monitoring DUT responses,

checking the validity of the protocol activity and collecting

coverage.

4.11 Interface

Interface is the bridge between the design-under-test and the

verification environment. The interface encapsulates all the

pin-level connections that are made to the DUT. An interface

is a bundle of nets or variables.

5. Conclusion and Results

My design is subjected to automated test-case generation

and application. The SPI Protocol's functionality was tested.

Using UVM, creating Verification IP for any design (DUT)

becomes a breeze. The Universal Verification Methodology

checks the design in the most efficient way possible. The

basic functioning and operation of SPI is described, as well

as the descriptions of registers, signals, and pins. It explains

how to set up a serial communication environment between

the master and the slave device of choice [15]. SPI

functional verification describes the verification platform

that uses System Verilog to test the design under test

(DUT), which is SPI. We designed the verification

environment to test the functionality and operation of

configurable intellectual property SPI in compliance with

the design requirements. The VIP built for the SPI Protocol

was reusable, and it could be used to effectively verify

designs. It is possible to get 100% functional and assertion

coverage with this verification environment.

Figure 5 DMA issues read operation to SPI Master

Figure 6 SPI Master issues read transactions to slave-1

 Figure 7 Slave-1 gives read data to Master

 Figure 8 Master issues write operation

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 12 | Dec - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 7

 Figure 9 Operation Completed

REFERENCES

[1] Tianxiang Liu ”IP Design of Universal Multiple Devices

SPI Interface” IEEE.978-1-61284-632-3, 2011.

[2] Freescale Semiconductor, Freescale SPI Block Guide

V04.01, October 14).2008.

[3]AccelleraOrganization,“UniversalVerificationMethodolo

gy (UVM) 1.1 Class Reference”, June 2011.

[4] IEEE Computer Society “IEEE Standard Verilog®

Hardware Description Language”, IEEE Std 1364™- 2005,

07 April 2006.

[5] http://www.testbench.in.

[6] IP Design of Universal Multiple Devices SPI Interface

Tianxiang Liu1, Yunfeng Wang1 * Department of

Electronic Engineering, Xiamen University,2011 IEEE.

[7] www.Colorlesscube.com.

[8] http://www.systemverilog.in/systemverilog.php

[9] M.Sandya1, K.Rajasekhar, “Design and Verification of

Serial Peripheral Interface”, International Journal of

Engineering Trends and Technology- Volume3Issue4- 2012

[10] Juan Francesconi, J. Agustin Rodriguez, Pedro M.

Julian, 2014. UVM Based Testbench Architecture for Unit

Verification. ISBN: 978-987-1907-86-1 IEEE Catalog

Number CFP1454E-CDR.

[11] Alexander W. Rath, Volkan Esen and Wolfgang Ecker,

2014.ATransaction-OrientedUVM-BasedLibraryfor Verifi-

cation of Analog Behavior, IEEE- 978-1-4799- 2816-3, pp

806-811.

[12]http://www.low-

powerdesign.com/article_CadenceUVM.

[13] An Accellera Organization, June 2011. Universal

Verification Methodology (UVM) 1.1 Class Reference.

[14] http://www.totalphase.com/support/articles.

[15] Clifford E. Cummings, Tom Fitzpatrick, “OVM &

UVM Techniques for Terminating Tests” DVCon 2011.

http://www.ijsrem.com/
http://www.testbench.in/
http://www.systemverilog.in/systemverilog.php
http://www.low-powerdesign.com/article_CadenceUVM
http://www.low-powerdesign.com/article_CadenceUVM

	1. INTRODUCTION
	2. Overview of SPI
	Motorola developed the Serial Peripheral Interface (SPI) module in the mid-1980s, which permits synchronous, serial, and full duplex communication between a microcontroller and peripheral devices. The structural link between the master and slave cores...
	Figure 1 Master and Slave Connection
	 Data Transmission - The SPI bus interface consists of four logic signals lines namely MOSI, MISO, Serial Clock (SCLK) and Slave Select (SS).
	2.1 Hardware Architecture
	The designed SPI is compatible with the SPI protocol and bus principle. At the host side, the design is equivalent to the slave devices of AMBA bus specification. The overall structure of the AMBA complaint SPI Master core device can be divided into t...
	2.2 Design of Clock Generation module (spi_clk_gen)
	The clk_gen oversees generating the clock signal from the external system clock wb_clk_i, according to the clock register's varied frequency factors, and producing the output signal s_clk_o. The clk_gen module can produce reliable serial clock transmi...
	2.3 Serial data transfer module design (spi_shift)
	The data transfer core module is made up of serial data transfer modules. It's in charge of converting parallel input data into serial output data for MOSI transmission and MISO serial data into parallel out. The flip flops in the Receive and Transmit...
	2.4 Top-level module (spi)
	The top-level module's job is to ensure that the basic framework of high-speed reusable SPI bus sub-components functions properly. As a result, the SPI module's top-level controls the clock generator and serial data transmission modules' operational p...

	3. Verification Architecture
	4. UVM Introduction
	5. Conclusion and Results
	My design is subjected to automated test-case generation and application. The SPI Protocol's functionality was tested. Using UVM, creating Verification IP for any design (DUT) becomes a breeze. The Universal Verification Methodology checks the design ...
	REFERENCES

