
 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

[© 2019, IRJEMS | www.irjems.com] Page 1

DETECT AND PREVENT CODE INJECTION FLAWS USING SCANCIF TOOL

Kanchan Jundare, Suraj Deshmukh, Shweta Patade

Assistant Professor Mr. Swapnil Waghmare

Mahatma education society, Pillai HOC College of Engineering, Rasayani

kanchanjundare7@gmail.com

Mahatma education society, Pillai HOC College of Engineering, Rasayani

surajdeshmukh034@gmail.com

Mahatma education society, Pillai HOC College of Engineering, Rasayani

shwezzpatade10@gmail.com

Abstract: In HTML5-based apps, attackers can deploy attacks. The previous approaches aimed at analysis the data flow to detect sensitive
information flows from such call back functions. Besides, analyzing information flows in JavaScript is challenging. We found that the previous

approaches are not able to analyze various contexts of callback functions. In this paper, we developed a static analysis tool called SCANCIF to scan

code injection flaws. SCANCIF identifies the sensitive callback functions or sensitive keywords and present the report to the users and prevent it by

disabling the code from execution.

Keywords: Code injection attacks, HTML5-based website, and data flow analysis.

APIs to unsafe rendering APIs. By presenting a new text box
I. INTRODUCTION

For HTML5-based Web apps, adversaries can take advantage of inject

malicious code. When the malicious message is displayed on HTML5-based app

the malicious JavaScript code can get executed on a browser. To solve this

problem we introduce an automated analysis tool called SCANCIF (SCAN Code

Injection Flaws) to detect code injection flaws by scanning sensitive information

flows [3]. First, SCANCIF identifies sensitive keywords or callback functions.

We picked up possible code injection tags, including verbs, nouns, synonyms and

abbreviations to identify sensitive keywords. Moreover, we did not aim at

proposing a new approach to data flow analysis to analyze sensitive information

flows in JavaScript [1].

Once the sensitive keywords or callback functions are

detected it can be prevented from execution.

II. LITREATURE SURVEY

injection channel and introducing an automatic approach called

Droid CIA to scan code injection faults [5]. Droid CIA applied

the depth first search (DFS) algorithm to slice sensitive data

flow from the text box

Injection channel to sensitive sinks. The existing approaches detected

code injection faults based on modelling exactly known sensitive plug-in

APIs implemented for code injection channels. Developers can write

different plug-in APIs, so their approaches can miss unknown sensitive

plug-in APIs. In addition, analyzing data flow in JavaScript is

challenging. We manually analyzed source code of HTML5-based

mobile apps in and we found that the previous approaches were not

able to detect various contexts of call-back functions. PhoneGap could

be a framework that's supported the open standards of HTML5 and

permits developers to use common internet technologies (HTML, CSS,

and JavaScript) to build applications for multiple mobile platforms

from a single code base Wang Ruilong [2].

Cross-Site Scripting (XSS) and SQL injection are the highest

The existing automatic detection tools for code injection flaws vulnerabilities found in internet applications. Attacks to these

in HTML5-based mobile apps presented sensitive plug-in APIs vulnerabilities could have been minimized through placing a good

implemented for code injection channels such as Contact, SMS, filter before the web application processes the malicious strings.

and Camera. Subsequently, they developed an automatic tool to Anyway, enemies could make minor departure from the assault

detect dangerous information flows from such sensitive plug-in strings so as to not get separated. Checking through all of the

mailto:shwezzpatade10@gmail.com

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

[© 2019, IRJEMS | www.irjems.com] Page 2

potential attack strings was tedious and causes the online application

performance to degrade. In this paper, we implement the use of a hash map as a

data structure to address the issue [3].

HTML5-based websites are designed by victimization customary

internet technologies like HTML5, JavaScript and CSS Because of

their cross-platform support, HTML5-based versatile applications are

getting increasingly prevalent. However, kind of like ancient internet

apps, they're usually liable to script-injection attacks. It ends up in

new threats to code integrity and information privacy. Compared to

ancient internet apps, HTML5-based mobile apps have a lot of

attainable channels to inject code, e.g., contacts, SMS, files, NFC, and

cameras. Even worse, the injected scripts could gain rather more

powerful privileges from the mobile apps than those within the ancient

internet apps in this paper, we propose a way to deal with distinguish

injected practices in HTML5-based Android applications [6].

Our methodology screens the execution of applications, and

creates conduct state machines to portray the applications'

runtime practices dependent on the execution settings of

applications.

When code injection occurs, the injected practices will be

recognized dependent on deviation from the conduct state machine

of the first application. We prototyped our approach and

evaluated its effectiveness mistreatment existing code injection

examples. The result demonstrates that the proposed method is

effective in code injection detection for real-world HTML5-based

Android apps [7].

Realizing that JavaScript is liable to code injection assaults, we have directed a

precise report on HTML5-based portable applications, endeavoring to assess

whether it is sheltered to depend on the web technologies for mobile app

development. Our discoveries are quite surprising. We got wind that if HTML5-

based mobile apps become popular–it looks to travel that direction supported

this projection–many of the items that we have a tendency to unremarkably do

nowadays could become dangerous, including reading from 2D barcodes,

scanning Wi-Fi access points, playing MP4 videos, pairing with Bluetooth

devices, etc. This paper describes however HTML5-based apps will become

vulnerable, however attackers will exploit their vulnerabilities through a spread

of channels, and what injury may be achieved by the attackers. In addition to

demonstrating the attacks through example apps, we have studied 186

PhoneGap plugins, used by apps to achieve a variety of functionalities, and

we found that 11 are vulnerable. We also found two real

HTML5-based apps that are vulnerable to the attacks [8].

III. IMPLEMENTED SYSTEM

Our system aims at introducing an automated analysis tool called

SCANCIF (SCAN Code Injection Flaws) to detect code injection

flaws by scanning sensitive information flows from website. We

manually selected the code injection tags from code injection

channels that the previous work reported. In addition, SCANCIF is

able to analyze various contexts of call-back functions are passed in

function.

IV. SYSTEM ARCHITECTURE

Fig1: Flow of Detection and Prevention of Code Injection Flaws.

Architecture Flow:

Login to the web site.

Run SCANCIF tool.

SCANCIF tool scans the website in order to find tag

that is already saved in the dataset.

SCANCIF tool also scans the callback function which

can be vulnerable.

Once the vulnerable tags and callback functions are found

in order to prevent code injection, the vulnerable tags and

callback functions are sliced out.

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

[© 2019, IRJEMS | www.irjems.com] Page 3

v. CONCLUSION AND FUTURE SCOPE

SCANCIF identifies sensitive plugin APIs based on code

injection tags and we manually select the code injection tags

from code injection channels which is further been sliced out.

The verification of code injection faults in vulnerable apps is

executed by human analysis. In future we can make this tool for

various websites where functions can be automated.

REFERENCE
[1] M. Georgiev, S. Jana, V. Shmatikov, “Breaking and fixing

origin-based access control in hybrid web/mobile application

frameworks,” In Network and Distributed System Security

Symposium (NDSS), 2014.

[2] PhoneGap: Build amazing mobile apps powered by open

web tech. https://phonegap.com.2017.

[3] HTML code injection and cross-site scripting:

Understand the cause and effect of XSS.

http://www.technicalinfo.net/papers/CSS.html.2014.

[4] A. Charland, B. Leroux, “Mobile application

development: web vs. native,” In Communications of the

ACM, 54(5), 2011, pp. 49-53.

[5] X. Jin, L. Wang, T. Luo, W. Du, “Fine-grained access

control for HTML5-based mobile web applications in

Android,” In Proceedings of16th Information Security

Conference (ISC), 2015, pp. 309-318.

[6] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, G. N. Peri, M. Young,

“Code injection attacks on HTML5-based mobile apps:

characterization, detection, mitigation,” In Proceedings of the

ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2014, pp. 66-77.

[7] X. Jin, T. Luo, D. G. Tsui, W. Du, “Code injection

attacks on HTML5- based mobile apps,” In arXiv preprint

arXiv:1410.7756, 2014.

[8] J. Mao, R. Wang, Y. Chen, Y. JIA, “Detecting injected

behaviors in HTML5-based Android applications,” In

Journal of High Speed

Networks, 2016, 22(1), pp. 15-34.

 International Research Journal of Engineering and Management Studies (IRJEMS)

 Volume: 03 Issue: 04 | April -2019 ISSN: 1847-9790 || p-ISSN: 2395-0126

[© 2019, IRJEMS | www.irjems.com] Page 4

