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Abstract: 

Floating plastic debris on water surfaces poses both immediate and long-term threats to the environment. Therefore, identifying and 
monitoring plastic pollution is crucial for understanding its location and scale. This article presents a framework for detecting and 
tracking floating plastic debris in inland waters using optical satellite image time series, leveraging the advantages of multitemporal 
Earth observation data. The detection process begins with a rule-based approach that analyzes variations in signal intensity, temporal 
patterns, spectral characteristics, and information fusion to identify potential plastic candidates. Once sensitive areas are detected, 
they can be continuously monitored, and the extent of plastic coverage at a subpixel level is estimated using spectral unmixing. The 
method requires only a specified time frame and area of interest as input parameters, eliminating the need for manually selecting 
specific images or outlining regions of interest. Several case studies demonstrate the successful application of this workflow, 
developed as a Google Earth Engine application, to identify highly affected areas in full Sentinel-2 scenes. These examples span 
different continents and environmental contexts, capturing floating plastic debris of varying types and dynamics. 

2. Introduction: 

Plastic debris pollution has become a critical environmental 
challenge worldwide, particularly affecting aquatic 
ecosystems. The extensive use of plastic in daily life, its 
economic importance, inadequate waste management, and its 
long-lasting durability have all contributed to the continuous 
release and persistence of vast amounts of plastic in the 
environment [1] [2] [3]. This pollution is transported through 
atmospheric processes, surface runoff, and water bodies, 
leading to widespread accumulation in various ecosystems. 
Plastic debris has been documented in freshwater systems, 
coastal areas, floating garbage patches in ocean gyres, and 
even deep-sea environments [6] [7]. Significant accumulations 
have been recorded and studied across major water bodies, 
including the Atlantic Ocean, the Indian Ocean, and even the 
Antarctic region[12]. 

The environmental threats associated with plastic pollution 
include risks to marine and terrestrial organisms through 
ingestion and entanglement, bioaccumulation of toxic 
substances in the food chain, leakage of harmful additives, and 
disruptions to ecosystem services. Research by Lebreton et al. 
estimated that between 1.15 and 2.41 million metric tons of 
plastic enter the ocean from rivers annually, with 67% of these 
emissions originating from just 20 major rivers—15 of which 
are located in Asia. Meijer et al. later refined these estimates, 
suggesting that emissions from smaller rivers had been 
significantly underestimated, and that over 1,600 rivers 
contribute to 80% of global riverine plastic pollution, totaling 
between 0.8 and 2.7 million metric tons.[5] [6] Additionally, 
Van Calcar and van Emmerink found that rivers in Asia 
transport up to 30 times more plastic than their European 
counterparts, with much of this plastic retained within river 
catchments until extreme hydrological events trigger its 
release into the ocean[12]. 

Detecting and monitoring plastic debris in these ecosystems is 

crucial for developing effective mitigation strategies. 

Understanding the volume of plastic accumulation and the 

extent of plastic washed away by floodwaters is essential for 

informed decision-making. Advances in remote sensing  

  technology, combined with the increasing availability of open 

satellite data and enhanced big-data processing capabilities, 
offer significant potential for comprehensive and continuous 
monitoring of plastic pollution through Earth observation 
(EO)[15]. Furthermore, highlighting the visibility of floating 
plastic debris from space can help raise public awareness of 
the severity of plastic pollution[16], potentially driving 
mitigation efforts. 

This article presents a framework for detecting and monitoring 
plastic debris in inland waters using time-series data from 
open remote sensing sources and information fusion 
techniques[22] [23]. The study explores the opportunities and 
challenges associated with monitoring floating debris using 
current spaceborne missions, which vary in spectral and 
spatial resolution, revisit frequencies, and data accessibility. 
High-resolution EO imagery clearly captures the presence of 
plastic debris, as demonstrated in case studies across three 
continents: Guatemala, Bosnia, and Egypt. In each of these 
locations, plastic accumulation is linked to dams regulating 
inland water flow. This study aims to detect and monitor 
floating plastic debris in such cases using lower spatial 
resolution data while leveraging the higher temporal 
resolution provided by open-data satellite programs, such as 
the Copernicus initiative[18]. 

 

3. Related Works: 

Various methods are available for monitoring plastic pollution 
in rivers and freshwater systems[21]. Traditional approaches 
typically focus on localized monitoring, including tracking 
plastic debris using GPS devices, active sampling with nets, 
passive sampling through floating booms or garbage 
collectors, visual counting from bridges or vessels[24] and 
using installed cameras or autonomous aerial vehicles (AAV) 
for airborne surveys[19]. While these methods offer valuable 
insights, they are often limited in spatial coverage and 
scalability. In contrast, satellite-based Earth Observation (EO) 
technologies provide a more extensive geographic reach, 
faster revisit times—such as approximately one week with 
Sentinel-2 data—and the ability to monitor aquatic 
environments on a larger scale. Detailed reviews of these 
methodologies are provided by Topouzelis et al. and Waqas. 

Effective satellite-based monitoring of marine and coastal 

 plastic debris requires distinguishing between shoreline and 
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in-water detection, as the latter presents challenges due to 
infrared signal attenuation and temporal variability. Research 
suggests quantifying the signal-to-noise ratio for accurate 
detection of both submerged and floating debris. Optical 
Sentinel-2 satellite data has been widely used for identifying 
floating plastic debris in marine and coastal environments 
[27]. One of the most commonly applied spectral indices for 
detecting macroplastic is the Floating Debris Index (FDI), 
designed to identify plastic accumulation on clear water 
surfaces[30]. 

Hu explored the capabilities and limitations of Sentinel-2 data 
for remote sensing of marine debris, concluding that while 
large debris patches can be detected effectively due to 
Sentinel-2’s balance between resolution and coverage, 
interpreting the data requires caution due to variations in 
spatial resolution across different spectral bands. Additionally, 
researchers working on the MARIDA dataset found that 
relying solely on spectral features limits plastic detection from 
space. To improve classification performance, they integrated 
spatial information, including textural features. 

Sentinel-2 imagery enables inland and coastal water analysis 
at a ground sampling distance (GSD) of 20 meters, or 10 
meters when using three visible bands and band 8 in the near- 
infrared range. However, extracting spatial features from 
affected areas remains constrained at this resolution. Ruburm 
et al. applied U-NET and U-NET++ deep learning 
architectures trained on MARIDA and the Floating Objects 
database to detect nearshore marine debris in Sentinel-2 
images, demonstrating improved performance over a random 
forest (RF) baseline model[7],[8]. 

Hu also highlighted that while Sentinel-2 is widely used for 
marine debris detection, mixed band resolutions and subpixel 
debris coverage necessitate careful spectral data interpretation 
to minimize misclassifications. The study emphasized the 
importance of pixel averaging and subtraction techniques in 
designing effective detection algorithms. 

The Plastic Litter Project investigated remote sensing of 
floating plastic debris using both unmanned aerial systems 
(UAS) and Sentinel-2 satellite imagery[3],[7]. Findings 
demonstrated that high-resolution UAS imagery enhances the 
geospatial accuracy of satellite observations and that artificial 
plastic targets can serve as useful references for calibrating 
and validating remote sensing algorithms[16],[17]. The study 
confirmed that floating plastic debris can be detected with 
Sentinel-2 under specific conditions, taking into account 
plastic type, coverage fraction, biofouling, and submersion 
effects. 

Furthermore, Taggio et al. demonstrated a combined approach 
for detecting floating plastic debris using a mix of 
unsupervised (K-means) and supervised (light gradient 
boosting model) classification applied to pan-sharpened 
hyperspectral PRISMA data. This approach further highlights 
the potential of integrating different classification techniques 
for improving plastic debris detection from space. 

4. Methodology: 

This section outlines the workflow used to analyze 
multitemporal optical satellite data over a specified period. 
The process is divided into time steps to identify potential 
plastic accumulation areas based on spectral variations. The 
detection of floating debris relies on changes in spectral 
intensity when plastic appears on water surfaces. Key factors 
considered include: 

• The initial presence of water, 

• Increased signal intensity when plastic is present, 
particularly in the infrared spectral range, 

• Filtering out false positives from clouds and urban 
areas, 

• Ensuring a sufficient spatial extent to detect plastic 
accumulation over time at the given Ground 
Sampling Distance (GSD). 

The initial identification of plastic candidate regions enables 
further detailed monitoring, allowing for refined analysis of 
plastic accumulation dynamics through subpixel-level 
evaluation.[4] This approach is particularly valuable for 
studying plastic debris in narrow water channels. Additionally, 
it facilitates large-scale screening for less prominent plastic 
accumulations on water surfaces. 

A. Image Time-Series Selection 

The process begins with filtering the Sentinel-2 image archive 
within a specified time frame, selecting a point of interest, and 
determining the number of images required. Case study 
examples (see Section III) illustrate this selection process. 

1. Sorting by Cloud Cover: 

o The available images are sorted based on 
cloud cover percentage. 

o The image with the least cloud coverage is 
selected. 

2. Avoiding Consecutive Acquisitions: 

o A 15-day time window is applied around the 
chosen acquisition date to prevent selecting 
images too close in time. 

o This threshold is based on global testing and 
serves as a balance between minimizing 
cloud cover and maintaining an adequate 
temporal sampling rate. 

3. Iteration: 

o The algorithm repeats this selection process 
until the required number of image tiles is 
obtained. 

B. Water Masking 

Since the goal is to detect floating plastic, the analysis is 
restricted to water surfaces where plastic debris is assumed to 
be absent in at least one image from the time series. 

Based on the Normalized Difference Water Index (NDWI) but 
modified using the NIR-Green band combination, which 
improves water body detection and vegetation differentiation. 
Sentinel-2 bands 8 (NIR) and 3 (Green) are used due to their 
high spatial resolution[31]. 

To enhance reliability, a composite image is created by taking 
the minimum intensity values for each pixel across the time 
series. A pixel is classified as water[31]. 

• 0.06 for large water bodies (dams, lakes, and wide 
rivers), as suggested by previous studies. 

• 0.3 for small water channels, where mixed water-land 
pixels are common. 

For specific contexts, the threshold can be manually adjusted to 

optimize accuracy. 

C. Spectral Characteristics of Plastic 

Plastic debris exhibits distinct spectral properties, appearing 

more prominently in the infrared range compared to shorter 
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wavelengths. To enhance detection, an additional spectral 

check is applied: 

• The NIR band (Sentinel-2 Band 8) must have a 
higher intensity than Bands 4–7 (red and red-edge 
channels). 

• Bands 5–7 (20m resolution) are also considered for 
refining classification. 

The resulting binary masks are summed across all time steps 
to produce the final spectral- based detection mask. This 
methodology integrates spectral, temporal, and spatial analysis 
to improve floating plastic debris detection, particularly in 
inland waterways. By combining water masking, intensity 
change detection, and spectral validation, it ensures robust 
identification of plastic accumulation while minimizing false 
positive. 

 

5. Existing System: 

The detection and monitoring of Floating Marine Macro 
Litter (FMML) are vital for protecting marine biodiversity 
and maintaining healthy ecosystems. Existing systems 
primarily rely on a combination of manual surveys, aerial 
and satellite imagery, and underwater video footage to 
identify and track marine litter.[11] These systems typically 
involve the following components: 

1. Data Acquisition: 

Data is collected from various sources, including: 

o Aerial imagery using drones or aircraft. 

o Satellite images capturing wide-range ocean 
surfaces. 

o Underwater cameras mounted on buoys, 
remotely operated vehicles (ROVs), or 
autonomous underwater vehicles (AUVs). 

2. Annotation and Labeling:  The collected visual data 
is manually annotated by experts to label marine 
litter. This process is often labor-intensive and time-
consuming, especially when large datasets are 
involved[14]. These annotations are later used for 
training machine learning or deep learning models. 

3. Traditional Image Processing: Conventional image 
processing techniques such as thresholding, edge 
detection, color-based segmentation, and contour 
analysis are applied to detect visible litter. While 
these methods are relatively simple and 
computationally light, they lack the ability to adapt to 
complex underwater and surface conditions[13]. 

4. Manual Inspection and Reporting: In many 
scenarios, trained personnel manually review 
images and videos to identify floating debris. The 
results are then compiled into reports for further 

analysis or action[10]. This process is not only 
time- consuming but also subject to human 
error and fatigue. 

5. Challenges in the Existing System 

o Environmental Variability: Varying 
lighting conditions (e.g., glare on water, 
cloud cover) and water clarity (e.g., 
turbidity, reflection) affect image quality, 
making detection less reliable. 

o False Positives/Negatives: Marine litter 
often resembles natural objects like 

seaweed, driftwood, or marine fauna, 
leading to misclassification. 

o Lack of Real-Time Detection: Most 
systems operate offline, with data analyzed 
post-collection, resulting in delays in 
response and intervention. 

o Scalability Issues: Manual surveys and 
image labeling are not scalable for large- 
scale or long-term monitoring efforts. 

o Cost and Resource Intensive: High- 
resolution satellite data and underwater 
monitoring equipment are costly to deploy 
and maintain, especially in remote or deep- 
sea locations. 

Due to these limitations, there is a growing need for 
automated, accurate, and real-time FMML detection 
systems that leverage advancements in AI, deep learning, 
and remote sensing to enhance the efficiency and 
effectiveness of marine litter monitoring and management. 

 

6. Proposed System: 

To overcome the limitations of existing methods, the proposed 
system introduces a deep learning-based approach for the 
detection and classification of Floating Marine Macro Litter 
(FMML)[8]. The system leverages the powerful capabilities of 
Convolutional Neural Networks (CNNs) to automatically 
identify and categorize plastic debris present in marine 
environments, significantly improving accuracy and efficiency 
compared to traditional techniques. 

This approach is designed to handle a wide variety of plastic 
litter types under diverse environmental conditions such as 
varying light levels, water clarity, and background 
interference[24]. The system aims to function in real-time or 
near-real-time, making it more practical for deployment in 
active monitoring and response systems. 

Key Components of the Proposed System 

A. Data Collection and Preprocessing 

The system will be trained on a comprehensive FMML dataset 
that includes images of various plastic items (e.g., bottles, 
bags, fishing nets) collected from aerial, satellite, and 
underwater sources. 

Data preprocessing steps include: 

1. Resizing and normalization of images to standard 
dimensions and pixel value ranges. 

2. Data augmentation techniques (rotation, flipping, brightness 
adjustment, etc.) to increase dataset diversity and improve 
model generalization. 

3. Noise reduction and filtering to enhance image clarity. 

B. Dataset Splitting 

The dataset will be split into three subsets: 

1. Training set: Used to train the CNN model. 

2. Validation set: Used during training to tune 
hyperparameters and prevent overfitting. 

3. Testing set : Used to evaluate the final model’s 
performance. 

4. This split ensures robust and unbiased performance 
evaluation. 

C. Deep Learning Model Construction 

1. A Convolutional Neural Network (CNN) architecture will be 
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designed or selected based on its effectiveness in image 
classification tasks. 

2. Depending on the complexity, pre-trained models like 
ResNet, VGG16, or MobileNet may be used and fine-tuned 
using transfer learning. 

The model will be tailored to: 

1. Extract spatial and contextual features of plastic debris. 

2. Differentiate between litter and natural elements (e.g., 
seaweed, rocks). 

D. Model Training 

1. The CNN model will be trained using backpropagation and 
an optimizer such as Adam or SGD. 

2. Loss functions like categorical cross-entropy will be used 
for multi-class classification. 

3. Training will involve multiple epochs, and metrics such as 
accuracy, precision, recall, and F1-score will be monitored. 

E. Model Evaluation 

1. Once trained, the model will be evaluated on the test dataset. 

2.Performance will be assessed using: 

a. Confusion matrix to visualize true vs. predicted 
classifications. 

b. Precision and recall to measure the model’s ability to detect 
litter accurately. 

c. ROC-AUC curves (if applicable) for classification 
confidence. 

3. The goal is to achieve high accuracy with minimal false 
positives and false negatives, ensuring reliable FMML 
detection in diverse scenarios. 

Advantages of the Proposed System 

• Automation: Eliminates the need for manual 
inspection and annotation. 

• Scalability: Can be deployed over large areas and on 

different platforms (drones, satellites, buoys). 

• Adaptability: Works under a wide range of 
environmental conditions due to robust training. 

• Efficiency: Provides faster and more consistent 
results compared to human observers or traditional 
methods. 

 

7. Result and discussion: 

 

Fig 7.1: Detection and Monitoring Modules 

In the Fig 7.1 These modules are used to detect and monitor 
marine litter, especially FMML. They are often focused on 
identifying and tracking pollution sources, floating debris, 
and the movement of litter in the ocean. 

 

 

Fig 7.2: Accuracy 

In Fig 7.2 The accuracy level can be shown .It can be 
predicted as 80% of the detection 

 

Fig:7.2 original image 
 

Fig:7.3 resized image 

In Fig 7.2 and 7.3 It can be detecting the plastic by using 
https://universe.roboflow.com/search?q=plastic%2520waste. 

It can be detected at the accuracy level of 80%. 

http://www.ijsrem.com/
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Fig 7.4: plastic in water 

 

Conclusion: 

Marine plastic pollution has emerged as a critical threat to the 

health of our oceans, marine biodiversity, and global 

ecosystems. Floating Marine Macro Litter (FMML), which 

includes large plastic items drifting on the ocean surface, 

poses serious environmental hazards and demands timely and 

accurate detection mechanisms for effective mitigation. 

Traditional methods of FMML detection—often relying on 

manual surveys or basic image processing techniques—have 

proven to be limited by their dependence on human effort, 

susceptibility to environmental variations, and lack of 

scalability. 

In this project, we have proposed and developed plastocean, 

an intelligent system that utilizes deep learning models, 

particularly Convolutional Neural Networks (CNNs), for the 

detection and classification of FMML from oceanic image 

data. The project involved multiple crucial phases including 

data acquisition, preprocessing, model training and evaluation, 

and visualization of detection results. Through rigorous 

experimentation and the use of a well-curated dataset 

containing various types of floating litter under diverse 

oceanic conditions, we were able to train a model that 

significantly improves upon the limitations of existing systems 

in terms of accuracy, consistency, and adaptability. 

The results demonstrate that deep learning-based models can 

effectively identify and classify FMML with high precision, 

even under challenging scenarios such as low lighting, water 

disturbances, or the presence of visually similar objects. Our 

system is not only capable of detection but also scalable for 

integration with UAVs, satellite imaging, or ship-mounted 

camera systems, making it a promising solution for large- 

scale, automated marine litter surveillance[14]. 

Beyond detection, the project also contributes to the larger 

vision of environmental conservation and sustainable marine 

resource management. By enabling faster and more reliable 

monitoring of plastic waste in oceans, PlastOcean can assist 

policymakers, environmentalists, and cleanup organizations in 

making informed decisions and deploying timely action plans. 

Overall, this project establishes a robust technological 

foundation for intelligent FMML detection. It paves the way 

for further research in real-time marine pollution tracking and 

reinforces t h e  critical  role  of  artificial  intelligence  in 

environmental protection initiatives. With future 

enhancements like the incorporation of video-based detection, 

hybrid deep learning architectures, and real-time processing 

capabilities, this system can evolve into a comprehensive 

platform for global marine litter management. 

Future Enhancement: 

While the current implementation of the PlastOcean system 

marks a significant step forward in the automated detection of 

floating marine ment. These future improvements can help 

make the system more robust, real-time, and globally scalable. 

The following are key directions for future enhancement: 

1. Integration of Multiple Data Sources 

To improve the comprehensiveness and accuracy of FMML 

detection, future versions of the system can incorporate data 

from diverse platforms such as: 

• Satellite Imagery: Offers wide-area surveillance of 

ocean surfaces, useful for detecting large-scale litter 

patterns and pollution hotspots across vast regions. 

• UAV (Drone) Data: Provides high-resolution, 

low-altitude imagery for more localized monitoring, 

especially near coastlines or in remote oceanic areas. 

• Ship-Mounted Camera Systems: Enable 

continuous monitoring during marine voyages and 

can feed real-time data directly into the detection 

system. 

By fusing data from these varied sources, the model can 

develop a holistic understanding of marine litter distribution 

and movement, improving both spatial and temporal coverage. 

2. Advancing Deep Learning Models with Modern 

Architectures 

The current model primarily uses CNNs for image 

classification and detection. Future enhancements can explore: 

• Attention Mechanisms: These help the model 

focus on specific regions of the image that are most 

likely to contain FMML, thereby improving precision 

and reducing false positives. 

• Transformers: Originally designed for natural 

language processing, transformers are now 

revolutionizing computer vision as well (e.g., Vision 

Transformers or ViTs), offering superior 

performance in image recognition tasks. 

• Hybrid Architectures: Combining CNNs with 

transformers or other models like Recurrent Neural 

Networks (RNNs) can leverage the strengths of 

multiple techniques, leading to more robust detection 

under variable environmental conditions. 

Such architectural improvements will make the system more 

adaptable to diverse marine scenarios, including different 

lighting conditions, wave patterns, and cluttered scenes. 

3. Real-Time Detection and Tracking 

A major step forward would be enabling real-time processing 

of video feeds or continuous image streams: 

• This can be particularly useful for onboard systems in 

ships or deployed drones where timely detection can 

trigger immediate action—such as deploying clean- 

up devices or alerting authorities. 

http://www.ijsrem.com/
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• Real-time tracking will also allow for continuous 

observation of litter movement, aiding in predictive 

modelling and better understanding of how litter 

disperses across ocean currents. 

Implementing lightweight and efficient models (e.g., using 

Tensor RT or ONNX for deployment on edge devices) will be 

essential to support real-time applications in resource- 

constrained environments. 

4. Use of Sequential and Temporal Data 

Current systems often rely on static image frames. Future 

developments should focus on: 

• Sequential Frame Analysis: Using video data 

can help the model understand temporal continuity— 

identifying whether an object persists across multiple 

frames, thereby reducing false positives caused by 

transient elements like waves or reflections. 

• Motion-Based Detection: Analyzing movement 

patterns helps in distinguishing actual floating litter 

from still ocean surface features. This is particularly 

beneficial in dynamic marine environments. 

Incorporating temporal information through models like 

RNNs or 3D CNNs can drastically improve detection 

consistency over time. 
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