
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49955 | Page 1

Developing a Secure and Accessible Local Online Coding Environment

Prof. Priyanka R. Balge1, Amit Potghan2, Prathmesh Shelar3, Mayur Saibane4, Sami Shaikh5, Datta

Kale6

1Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune
2Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune
3Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune
4Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune
5Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune
6Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune

---***---

Abstract - This research refers to an implementation of a

high performance, scalable and secure online judge system for

automated code executing and programming exams. Our

principal goal is to provide a highly configurable environment

which can accept any amount of concurrent submissions while

ensuring the strictest isolation from other submissions and

outside interference. For this study, we utilized a microservices

architecture coordinated by Kubernetes which is supported by

dockerized runtime environments and utilises Judge0 as the

code evaluation engine. We used PostgreSQL coupled with

Prisma ORM for efficient data handling, and made use of

advanced containment to remove vulnerabilities. As discussed

in the results, we created a system that provides high

performance through scalable deployments, and highly

configurable security against known vulnerabilities. This study

serves to provide all users with a flexible framework that

provides a resilient, highly efficient and secure online judge

system capable of supporting educational programming exams

and competitive programming.

Key Words: Online Judge, Kubernetes, Docker, Code

Execution, Security, Scalability, Microservices.

1. Introduction

This paper outlines a comprehensive architectural
design and implementation strategy for a next-generation
online coding and examination platform. Our solution is
based on a modern cloud microservices architecture,
leveraging mapped container execution environments
implemented with Kubernetes and delivered with
Docker, ensuring extreme security isolation and elastic
scalability. Judge0 is the high-performance code
execution engine, with PostgreSQL providing persistent
data storage and Prisma acting as the Object Relational
Mapping (ORM) layer. The purpose of this research was
to describe the design decisions, technological
integrations and security considerations in the
construction of a reliable, high-throughput and secure
platform. The role of container orchestration and
virtualization in the stability and adaptability of the
system as well as the ability to operate multiple
programming languages in parallel are also explored. The

following sections will explore the high-level
architecture, extensive security deep dives, scalability
methodologies, database design and comparative
analyses to show a complete approach in building an
innovative and contemporary online judge system.

2. Platform Architecture
The online code execution platform developed uses a

microservice architecture guided by Kubernetes (K8s) for

robustness, scalability and maintainability. The purpose of this

architecture is to develop and use modular services or

components. An architecture driven by microservice

architecture allows each service to be developed, deployed and

scaled independently. The essential design components of the

platform are an Application Programming Interface (API)

Gateway, A Submission Service, and the Judge0 Code

Execution Engine (an open-source project).

Fig-1: System Architecture

The system explores an architecture that utilizes kubernetes and

docker for distributed working and load balancing. Following

is an explanation for the working of our system architecture

with workflow for any request that the user might send towards

the server:

1. Browser (User Interface): This is where the user makes

actions like code submission, which is sent as a POST request

through http communication.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49955 | Page 2

2. NextJS (Enriches Code): This rectangular box is the Next.js

application, which serves as a central processing unit for the

user's submission. Next.js acts as backend architecture and has

several functions:

Enriches: This means we are taking the code that the user

submitted and prepping it for execution. We will be adding

boilerplate code or wrapping it how it needs to be to execute in

our execution environment.

Code Mount: This is referring to the process of mounting the

enriched code into the secure containers, or execution

sandboxes, that it will run in.

Mounts: The label on the diagram is a bit vague, but it probably

signifies that we are mounting additional resources or volumes

that are required for the execution of the code in isolated

environments.

Add Tests: The Next.js application will add test cases to code

and input them into the program. This automates the process of

individually testing each case individually.

Judge: The code when it it’s fully enriched and also has test

cases added, it then is sent to Judge0 for execution and test

against the output that is already stored in output.

3.Postgres DB (Database): This cylinder represents our

PostgreSQL database. This is where we keep all of the valuable

information we want to track, which will include the reality of

managing "Test Updates" since we are managing the case, and

will be making updates to our test cases.

4.Webhook Handler: A webhook handler in this project is a

specific endpoint (a URL) on your Local Online coding server

that is designed to receive automated notifications (webhooks)

from Judge0. When a user submits code for a problem on your

platform, your server sends that code to Judge0 for compilation

and execution. Once Judge0 finishes processing the

submission, it sends a webhook back to your defined webhook

handler. This handler then processes the results (e.g.,

"Accepted," "Wrong Answer," "Time Limit Exceeded") from

Judge0 and updates the user's submission status and relevant

data in your LeetCode clone's database. Essentially, it's the part

of your application that "listens" for and acts upon the results

provided by Judge0.

5.Test Case: This box, connected to our "Webhook Handler"

shows how we process, and then also respond with "Updates"s

back to our "Postgres DB". The connection we name "T1"

allows us to update or process test cases dynamically, since we

are reacting to something that has happened, which our

webhook triggered.

6.Judge0 API: This rectangular box represents the Judge0

Application Programming Interface that we talk to. We pass the

code that we need to judge directly from our Next.js application

to the Judge0 API.

7.Redis: We're using a Redis instance, represented by the

circle. We use Redis as a high-performance, in-memory data

store, and as a message broker or job queue. In the diagram, we

can see that Redis acts as a hub, creating jobs for "Worker 1"

"Worker 2" and "Worker 3". This inferential context suggests

that we are using Redis as a job queue for code execution

requests: our Judge0 API sends the jobs to Redis, and our

worker processes take those jobs from Redis for execution.

8.Worker 1, Worker 2, Worker 3: These rectangles represent

the multiple worker processes, or instances, we have running.

Each worker process is taking jobs from Redis, processing

them, indicating that the workers are the actual execution units

that are executing the user's code in isolation, and as Docker

containers, as explained in our project.

3. Security Deep Dive
Security considerations are paramount when executing

untrusted code as system vulnerabilities can be catastrophic and

result in systems being compromised via sandbox escapes and

host takeover, for example. This section focuses on some

security concerns associated with the Judge0 execution engine

and provides a non-exhaustive list of mitigations

.

A. Critical Judge0 Vulnerabilities

Recent security research has found a number of critical

common vulnerabilities and exposures (CVEs) in Judge0

versions which can lead to sandbox escape. For example, CVE-

2024-29021 displayed a command injection and server-side

request forgery (SSRF) which allows the attacker to tamper

with internal databases and execute arbitrary commands from

outside its intended sandbox. CVE-2024-28185 enabled

arbitrary file writes and CVE2024-28189 represented a patch

bypass of CVE-2024-28185 allowing for privilege escalation.

To address the types of vulnerabilities outlined above, it is very

important to use version 1.13.1 of Judge0 which includes

critical security patches. These vulnerabilities highlight the

need to actively patch and monitor third-party components.

Secure deployment and usage practices can be found

B. Sandboxing and Isolation

A multi-layered approach to security is needed beyond

software updates. Docker containers provide the first-line

isolation of processes; however, the isolation level needed for

executing untrusted code is often much more isolated than a

process isolation level. Technologies such as gVisor and Kata

Containers can provide stronger isolation with a user-space

kernel and lightweight virtual machines (VMs) as boundary

mechanisms. As mentioned in Sec. VI, the performance impact

for employing the above described isolation techniques was not

significant as compared to initial estimates and the increase in

security posture.

4. Scalability And Deployment
Scalability and mechanisms for deploying the platform to

accommodate varying numbers of users with some degree of

dynamic capacity are important elements for ensuring

availability and responsiveness.

A. Kubernetes Scaling Mechanisms

Kubernetes contains a number of sophisticated functions to

enable automatic scaling. For example, the Horizontal Pod

Autoscaler (*HPA) scales up or down the number of pod

replicas for a deployment based on observed values for CPU

utilization or custom metrics, and is ideally suited to manage

dynamic spikes in user activity. The Vertical Pod Autoscaler

(VPA*) takes into account previous and current resource

consumption metrics to recommend or set automatically

requests and limits for CPU and memory for pods, thereby

optimizing resources allocated to K8s. The Cluster Autoscaler

will create or delete worker nodes in the K8s cluster based on

the pending requirements of pods, so there is always available

infrastructure capacity. All of these scaling mechanisms

combine to provide elastic scalability for the platform.

B. Deployment Strategies

The notion of deploying software raises the question of how to

transition to the new version, and by implication, informs the

decision of deployment strategy. There will always be a need

to consider and implement the safest strategy that minimizes

http://www.ijsrem.com/
http://next.js/
http://next.js/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49955 | Page 3

downtime/risk when updating an application. Many

deployment strategies exist, and some common deployment

strategies include:

1)Rolling updates. A rolling update is the default deployment

method in K8s and updates application instances one at a time,

replacing the old version with the new version while keeping

the application up and running (minimally impacting new app

users), similar to a continuous update process. Downtime will

be minimal, but the risk of having a partial form of service

degradation from an actual outage is a concern (i.e., users may

get stuck in a version loop until the new upgrade is complete).

2)Blue/green deployment. A blue/green deployment model

means that both applications will be kept identical. The "green"

version will be updated while the "blue" version provides live

traffic (both environments exist simultaneously). The "green"

version will be tested or validated standalone. Upon successful

validation, the traffic routing switch will be moved from the

"blue" environment to corresponding "green" environment. If

any issues occur, this model allows for an instant rollback back

to “blue”. This approach claims zero downtime, but requires

double the application resource capacity or will have to incur

the expense.

3)Canary deployment. A canary deployment allows for

minimal risk and a small number of live instances to be

switched to the new version will route a small subset of user

traffic to. If no issues occur in the "canary" release after

validating for a minimal stated amount of time, the remaining

user traffic would be directed to the desired upgrade and the

"canary" would be scaled to absorb the remaining traffic -

canary deployments even allow for a type of A/B testing

depending on the normalization of brand elements and features.

Each of the three deployment strategies factors in are ideally

expressed in Fig. 1. Read [4] for more on modern deployment

pipelines.

5. DATABASE AND DATA FLOW
An underpinning component of the platform's operation is a

quality database that is architected to properly hold and track

important information about users, problems, submissions, and

the results of execution. PostgreSQL (2022) offers the

necessary consistency, reliability, support for transactional

operations (ACID compliance), extensibility, and known

community support so as to be selected for this role. There is

also an Object-Relational Mapping (ORM) layer, Prisma

(2022), that interacts with PostgreSQL to carry out various

CRUD and data management operations. This provides a more

fluid way of engaging with the database via Prisma, but also

affords type-safe interactions with the database which enables

more engagement with the database, better productivity, and a

reduction in developer errors.

A. Data Flow for User Submission

A user's code submission does have a defined data flow of its

own. The user makes a submission of code via the front-end

User Interface (UI) after a user sees the problem. Then, that

request traverses through the API Gateway, entering the

Submission Service. After validating user input, the

Submission Service creates a record for this submission in the

PostgreSQL database, calling the ORM, Prisma, in the process.

The code, along with the details for the problem are then sent

to an appropriate Judge0 execution instance. After execution

completes, Judge0 sends the process results - output, errors,

performance metrics and other similar things - back to the

Submission Service. Finally, the Submission Service then

updates the respective record in PostgreSQL with the execution

results so that it is retrievable via the UI by the user. It is a

systematic data flow, providing consistency through all aspects

of record and data generation.

6. Key Comparisons
Architectural decisions often involve trade-offs between

technologies or approaches. In this section, we identify key

comparisons relevant to the design of the online code execution

platform.

A. Containers vs. Virtual Machines

Choosing between containers (e.g., Docker) and traditional

virtual machines (VMs) is an important one for code execution

environments. Containers provide lightweight isolation, faster

startup, and more efficient resource usage by leveraging the

host operating system kernel. VMs are utilized to provide

isolation at the hardware level; therefore, every VM is a

separate guest operating system which may come with

additional resource overhead. VMs are also slower to start

when provisioning an isolated execution environment. For a

platform that must create isolated execution environments

quickly, containers are preferred; they are usually fast and

flexible. For some very sensitive workloads, enhanced

container runtimes, which we discuss in Section VI-B. that can

be run with VM-style isolation have been used.

B. Advanced Sandboxing Technologies

Traditional Docker containers provide process isolation, but

they share the host kernel. For untrusted code, advanced

sandboxing solutions provide an additional layer of security.

Examples include gVisor which takes the host Linux kernel and

replaces it with a kernel implemented by user-space, which

allows it to intercept every system call and provides more

isolation with a performance hit. Kata Containers provide

isolation through micro-VMs that package containers with a

VM so that it maintains VM-level security, but can start up

faster than traditional VMs. Firecracker is a micro-VM for

serverless workloads that is introduced to provide minimal

overhead. The decision will depend on the level of security

needed and how much performance impact is acceptable. See

Table I for a breakdown of isolation and performance

characteristics to compare.

7.PROJECT OUTCOMES AND IMPACT ON

STUDENTS

In conclusion, the focus of the project is to create a usable and

reliable web-based coding platform, which is based on existing

platforms such as LeetCode, with an incorporated test module.

This platform is itself a project outcome that highlights the

practical implementation of the architectural principles and

technologies discussed. Key capabilities include secure

submission and automated evaluation of user-generated code in

a range of programming languages, real-time feedback on code

correctness and performance, and a structure for timed coding

tests. The use of Judge0 as the code execution system and

Docker for contained environments, means that each

submission is handled efficiently and securely for each student.

The PostgreSQL database, using the Prisma ORM, is our

backend that stores problem statements and user data,

submission history, and test cases.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49955 | Page 4

A. Effects on Student Learning and Assessment

The platform is anticipated to positively affect students in a

variety of ways. Firstly, it provides the opportunity for students

to practice programming skills in a consistent, accessible way

where they can submit code, receive feedback promptly, check

their own submission history, and constantly develop a

manageable solution. The velocity to which students are able to

iterate their solution based on immediate feedback, should

reinforce their learning and identify areas of improvement, in

stark contrast to traditional manual assessments of their

artefacts. Secondly, there is an integrated examination platform

that will explore how we can replicate the experience of

programming examination as a means to assess student

progress and skills in a consistent and fair manner. The

practical benefits of this change, particularly of removing the

logistics of assessing assessments manually, is already

attractive to us as educators. In the future, we hope to offer the

same level of assurance with respect to the programming

language (in terms of version used in marking) and the

underlying operating system in which the problem posed in the

solution is executed. This will greatly contribute to establishing

a consistent and dependable assessment framework,

diminishing the number of external variables that could affect

a student's overall performance. Finally, the student has

interactive exposure to part of the technology stack utilized to

build this service, consequently interacting with industry

standard software development and cloud-native architectures.

The learning outcomes embedded in this model will provide a

greater understanding, theory, and experience in preparing

students for graduate roles in computer engineering and

software development.

Fig-2: Code Submission

8. CONCLUSIONS
This paper has proposed an architecture design and

implementation plan that can be used for performance,

scalable, and secure online code execution and examination

systems. Untrusted user-submitted code presents inherent

limitations, especially regarding isolation, performance and

resource management. The proposed platform meets these

challenges by utilising a modern micro services architecture

designed in Kubernetes, utilising docker for containerisation

and Judge0, the proposed execution engine. The proposed

platform achieves security through additional sandboxing and

resource management and performance flexibility through

dynamic scaling features, with Horizontal and Vertical Pod

Autoscaler.

Through our assessment of Judge0, as well as the presented

solutions to the identified vulnerabilities and covering security

through patching, multi-layer isolation and multi-layer

execution engines, highlights a clear need for sophisticated

security measures in these systems. The adoption of

PostgreSQL and Prisma, which are established data

management technologies, create a reliable and efficient layer

for storing, retrieving and processing data from the complex

interaction of code submission and submission outcomes. This

research provides a practical yet useful method of

implementing a useful, fast, flexible and secure system that

satisfies a range of educational and competitive programming

contexts, such as hosting competitions and training high school

curriculum and service programs.

Future work could include the integration of relevant machine

learning detection models to support plagiarism detection of

code submissions, integration of collaborative coding so that

multiple users can code at the same time, or extending

accommodation of desirable code submission support in

alternative hardware and server environments for unique

programming problems.

ACKNOWLEDGEMENT
The authors would like to offer their heartfelt thanks to the

open-source community for the tools and libraries that made

this project possible. In particular, the authors would like to

thank the developers of Kubernetes, Docker, Judge0,

PostgreSQL, and Prisma for their contributions to modern

software development. Without these technologies, the

development, and implementation of the platform would not

have been possible.

REFERENCES

1. A. J. Smith and B. K. Lee, “Scalable architectures

for automated programming assessment

systems,” in Proc. Int. Conf. Educ. Technol.

(ICET), 2021, pp. 112–119.

2. C. D. Chen, “Containerization for secure code

execution in multi-user environments,” Journal

of Software Security, vol. 15, no. 3, pp. 201–215,

2022.

3. D. E. Miller and F. G. Johnson, “Kubernetes for

dynamic resource allocation in cloud-native

applications,” IEEE Trans. Cloud Comput., vol.

9, no. 1, pp. 88–101, 2021.

4. G. H. Singh, “Microservices architecture patterns

for high-throughput online platforms,” in Proc.

ACM/IEEE Symp. Soft. Eng. (SSE), 2020, pp.

45–54.

5. I. J. Patel, “Automated vulnerability detection

and mitigation in online judge systems,”

International Journal of Cybersecurity &

Forensics, vol. 7, no. 2, pp. 78–92, 2023.

6. K. L. Wong and M. N. Devi, “Performance

evaluation of Judge0 in competitive

programming platforms,” in Proc. Global Conf.

Computer. Sci. (GCCS), 2023, pp. 233–240.

7. O. P. Sharma and Q. R. Kumar, “Implementing

gVisor for enhanced container isolation in

untrusted workloads,” Journal of Network and

Computer Applications, vol. 19, no. 4, pp. 312–

325, 2022.

8. R. S. Thomas and T. U. Victor, “Load balancing

and auto-scaling strategies in Kubernetes-based

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49955 | Page 5

microservices,” IEEE Access, vol. 10, pp.

56789–56801, 2022.

9. V. W. White and X. Y. Yang, Cloud Computing:

Principles and Paradigms, 3rd ed. New York,

NY, USA: Morgan Kaufmann, 2020.

10. Z. A. Khan, “Data modeling and schema design

for high-traffic relational databases,” Int. J. Inf.

Syst. Modeling and Design, vol. 16, no. 1, pp. 1–

18, 2021.

11. (2024) Judge0 official documentation. [Online].

Available: https://judge0.com/docs

12. (2024) Kubernetes project documentation.

[Online]. Available: https://kubernetes.io/docs

http://www.ijsrem.com/
https://judge0.com/docs
https://judge0.com/docs
https://kubernetes.io/docs
https://kubernetes.io/docs

