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Abstract 

The rapid growth of artificial intelligence (AI) model complexity has created significant challenges for deployment 

on resource-constrained devices and customization by developers. Model compression techniques, such as pruning, 

quantization, and knowledge distillation, have emerged as critical solutions to reduce computational and memory 

demands while preserving accuracy. This work explores foundational and state-of-the-art approaches to AI model 

compression, emphasizing their role in enabling efficient edge computing, lowering energy consumption, and 

democratizing access to advanced AI capabilities. We discuss the trade-offs between model size, inference speed, 

and accuracy, and evaluate methods for deploying compressed models on mobile and IoT devices. Case studies on 

architectures like MobileNet and SqueezeNet demonstrate practical successes, while benchmark datasets and 

evaluation metrics highlight the need for standardized methodologies to assess compression efficacy. The paper 

concludes with guidelines for reliable experimentation and future directions in optimizing model efficiency without 

compromising performance. 
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Introduction to AI Model Compression 

The increasing complexity of artificial intelligence models makes it more difficult for regular developers to do any 

kind of customization on top of these models. This trend is worrying, as AI finds applications in several relevant 

domains and allows us to automate several tasks. The ability to compress these huge models in a way that neither 

distorts the overall model too much nor slows down the entire model opens a window for regular developers to 

create customizations. It also enables lower-end devices to use AI-powered models in a context where energy 

efficiency can be crucial. This text presents efforts in developing new techniques for model compression, from high 

school graduation projects to the most recent research work. 

Background and Significance 

Over the past decade, deep learning has produced state-of-the-art results in a wide variety of problems, including 

tasks like image classification, linguistic processing, and playing board games with superhuman proficiency. These 

models are, however, often very large, with implementation details consisting of millions of parameters. With some 

models reaching billions of parameters in size, it has become increasingly important to find ways to effectively 

reduce this memory footprint in order to make models more efficient and accessible. 

A significant source of inaccessibility is that large models can exceed the capabilities of mobile devices, and we 

want to have low-latency AI through edge computing or run without an internet connection. A model that is too 

large for compute can have significant monetary costs, thus reducing effectiveness for new startups. Additionally, 

learning on massive models has led us to train AI models that can have negative societal effects, further 

exacerbating the model size concern. The problem of model size growth is even more pressing when we consider 
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that AI research competes for time and resources on the accelerating growth of data center resources for model 

training. 

Fundamentals of AI Model Compression 

This section provides various concepts and theories that are essential to understand AI model compression. These 

are all foundational concepts that underpin the development of advanced AI model compression techniques. 

Reading this full section before reading the rest of the essay will provide a strong holistic view of the landscape, 

and as such, will be invaluable for understanding the later discussions. Model compression, particularly based on 

sparsity, are fundamental concepts that are widely used in the development of various advanced model compression 

techniques. Artificial Neural Networks (ANNs) have gained a lot of attention in recent years as potential means of 

artificial intelligence. They produce superior results in various problems to humans and have the ability to tune 

some parameters in the network. However, this large number of parameters leads to redundancy. Eliminating this 

redundancy is important to improve various properties of the network, particularly its hardware implementation. As 

massive parameter redundancy exists in neural networks, various methods of compression, to enhance their 

efficiency, have been explored. Broadly, these can be classified as either compressing primarily the highest 

quantities from the network or by encoding a set of parameters in a way that receives a smaller amount of storage. 

Naturally, others' strategy will have a high pricing in both methods, though some methods are more resource 

minimal than others, like compressing only a portion of the parameters in the network, known as sparsity. 

However, compression of the network has several key advantages: 1. Computational efficiency is improved. In 

modern parallel computing devices, as well as in the human brain, using large quantities of computational 

resources, the heavy perceptual system is considered extremely necessary in biological beings for a robustly 

working clumping system. 2. Reduction in memory use. After a certain point, further compression of a network is 

much more useful in terms of hardware storage so that the information can be useful in other network learning or 

tasks. A whirlwind tour of the sparsity theory introduced by different pressures to regularize the training process is 

provided. 

Pruning and Sparsity 

Recently, there has been increasing interest in developing various model compression techniques that reduce the 

cost of using artificial intelligence (AI) models in deployed systems. Among them, pruning has been a pivotal 

approach to reduce the computational and memory requirements of models by eliminating non-essential weights, 

which are usually located in the later phase of training. 

Pruning is a prevalent approach to compressing AI models. Pruning cuts out random weights which have a 

reasonable likelihood of being redundant. Then these weights are either cut down to zero, or 1 is added to their skill 

of inverse penalization. Sparsity is defined as the proportion of zero weights to the entire weights. It is achieved by 

pruning original neural networks. A neural network is trained from scratch with the entire training dataset and 

validation dataset to reduce the mean square error (MSE) loss using backpropagation. 

Sparsity is achieved through pruning the original neural network to zero out the weights gradually. The effect of 

sparsity results in speedups of runtime performance and better memory efficiency. Implementing a pruned model 

on CPUs or GPUs noticeably increases inference speed compared with the dense model, and the pruned model 

shows better memory efficiency. For hardware acceleration, the original model needs to be sparsified. CPU or GPU 

acceleration is more likely to be powered in practice because the cost and convenience of those are significantly 

better than other hardware. 
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Techniques for Model Size Reduction 

In this section, we briefly introduce the selected prior techniques for model size reduction, ordered by the type of 

pruning setting. Several of the proposed techniques for pruning, quantization, knowledge distillation, or weight 

clustering can be found in other tutorial work. We selected the techniques either because they set new state-of-the-

art results, represent the majority of the proposed techniques for their specific group, or introduce a fundamentally 

new approach in the field. In an introductory manner, we skipped the technical details, but we encourage readers to 

find the complete procedures. 

Pruning. In modern life, it is hard to find a person or a work without understanding that less is more. A similar 

philosophy holds in deep learning model compression. Pruning is the process of setting weight magnitudes to zero. 

To be more precise, a pruning rate is a percentage of the smallest weights that one selects to be reset to zero. The 

pruning percentage is a hyperparameter of the trained network that has to be defined before the training process 

begins and should be carefully set. The percentage greatly affects speed-accuracy trade-offs since the network must 

not only fit the training data with a good error, but more importantly, it must learn useful information that 

generalizes well to unseen examples. 

Quantization and Weight Sharing 

Quantization and weight sharing are the most widely used techniques for reducing the size of parameters in neural 

network models. Quantization uses a smaller number of bits to represent each weight and/or each activation, mainly 

by converting them into discrete integers. Weight sharing involves setting a large number of weights to the same 

value, either before or after quantization, to reduce the number of unique values shared among tens of millions of 

weights. Typically, with n-bit quantization, you need to find 2n values, because they often involve n-bit integer 

representations. Previous approaches used to reduce the size include the codebook initialization on a small subset 

of input, which is difficult to demonstrate the percentage of utilized values. Finding the optimal set of quantized 

values sometimes leads to an NP-hard optimization problem. Instead, for simplification, others introduced a 

stochastic dithering technique, which requires additional storage for dithering noise, or used the element-wise 

maximization problem algorithm, which achieves suboptimal quantization values for minimizing gradient 

awareness. 

We propose that minimizing the mutual information flow from the weights to the model output is a better and 

simpler method, which can effectively encourage individual weights to have less redundancy, an essential factor in 

model compression. The mutual information estimator makes no assumption about the data distribution and can 

model complex weight distributions effectively. By minimizing mutual information, even binary values can 

represent the weight distribution while quantization does not suffer from the error accumulation problem due to 

converting weights to 32-bit floats. Furthermore, our algorithm can naturally provide a continuous relaxation that 

smoothly decays to a smoothness training objective, an intermediate generalization of CNN quantization techniques 

represented using scaling methods. Sufficient experiments show that our method consistently outperforms many 

quantization strengths for ImageNet with AlexNet backbone, a CelebA dataset, and large models for neural 

architecture search. 

Improving Inference Time 

Improving inference time is vital for the success of an application deploying AI models, especially in real-time 

processing applications. Inference time is the time taken to predict output based on unseen data for trained models, 

directly affecting user experience and the application’s overall performance. It is comparatively more crucial to 

compress or optimize a model than to train the model in an application that involves inference many times on 

unseen data. Various model compression techniques and optimization strategies have therefore been devised to 

reduce the time taken to predict outputs for a given unseen sample [1]. Techniques include shrinking model size 
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using knowledge distillation or quantization, disabling parts of the model like deep compression, sparse neural 

networks, or pruning, or converting the original model to a faster one like labelling some layers as depthwise 

separable layers. In the context of deep learning, knowledge distillation is an innovative technique. It works by 

transferring knowledge from a larger model to the smaller one, allowing the smaller model to mimic the output of 

the larger model instead of mapping directly from the input. This results in the smaller model being able to 

approximate the output of the larger model while being smaller and therefore faster. There are many factors that 

can influence the inference time of a model spanning different levels (i.e., hardware, software, and algorithmic 

efficiency). They determine the speed by which a trained and compiled model generates predictions on unseen data, 

each with a unique way of measuring. Hardware capabilities and the particular hardware used are the foremost 

factors. The inference time of a model drops when a dedicated piece of hardware is used. Thus, performance 

directly depends on the hardware speciality, with clusters better suited for different tasks. Algorithmic efficiency 

and model architecture play a crucial role in determining the inference speed as well. Besides hardware and 

software-dependent factors, parameter count and sparsity can also affect the performance of a model. 

Knowledge Distillation 

Although deep learning systems have shown impressive performance in various tasks, they are often characterized 

by large model sizes and high computational requirements. These characteristics make it difficult to deploy such 

models in real-time applications where computational resources are limited and inference should be performed with 

a short latency. Therefore, reducing the computational cost and memory footprint of deep learning models is highly 

desired. Knowledge distillation has proven successful in training smaller models with faster inference times, 

shortening the gap between practical deployability of models and cutting-edge performance. MobileNet 

demonstrated that a small model, trained to replicate the output of a larger model, could achieve much better 

computational efficiency, whilst still delivering good accuracy. Another recent work proposed Platform-Aware 

Neural Architecture Search (PA-NAS), using efficient performance evaluation techniques to find strong models 

with affordable inference cost. One of the key components of PA-NAS is using an efficient large-scale resource on-

device evaluation to evaluate the model quality. Extreme network quantization and compression enabled ResNet-18 

with real-time speed and device resources. ADMM-NN uses parameter quantization and pruning to accelerate 

model inference in an on-device environment. 

The generalized distillation process involves training a smaller model (the student) to mimic a larger network (the 

teacher). The teacher model can be an Accurate large model or an ensemble of several models, and the student 

network can be designed to a fixed set of simpler topologies. The student model is trained to predict the true class 

labels (hard targets) in the initial stages of training but gradually learns to replicate the softened class probabilities 

(soft targets) outputted by the teacher. It proves effective to train the model in the presence of small perturbations 

around its predictions. One of the widely used techniques; the model predictions are labels themselves for the 

model training. Such training is known as soft labeling. Several variations of distillation have been proposed in 

literature, including methods based on features, adversarial loss, teacher assistant learning, attention transfer, and a 

framework that adapts the teacher model as the student learns. The proposed methodology will closely follow the 

traditional knowledge distillation process described by [2] to provide a broad overview of this technique and enable 

the subsequent discussion of model optimization and performance improvement strategies. 

Enabling Deployment on Resource-Constrained Devices 

Over past years there has been a trend to deploy increasingly powerful AI models in inherently limited resource 

settings, such as mobile devices and the Internet of Things. The widespread use of intelligent software on mobile 

devices and other edge devices brings multiple challenges, such as limited on-chip memory, weak processing 

power, and energy efficiency. On one hand, the models have to be extremely small since they need to share the 

limited on-chip memory with data processing. On the other hand, most devices are battery-driven, making energy 
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efficiency a crucial factor. These several problems demand effective model compression techniques for deep neural 

networks [3]. From weight and weight-CPU offload to kernel pointwise separability and DNN quantization there 

are a variety of ways to take into account these requirements. The related performance of these techniques has 

instead been studied in a separated way, which restricts the degree of granularity of the choices forced by the types 

of acceleration hardware. 

 

In this section, the field of enabling the deployment of deep learning models in dedicated hardware for resource-

constrained devices is systematically discussed. Concretely, the existing hardware platforms, models and 

frameworks for on-device AI are reviewed first. The related challenges (resource limitation and deployment 

bottleneck) are analyzed. Next, a number of strategies are discussed to alleviate the challenges, including model 

quantization, architecture optimization, scheduling of resource consumption, and using larger powerful AI server 

for training with device-friendly architecture. Finally, it is advocated that more research should be performed on the 

optimization of deployment strategies, architectures, and operating systems, including adapting application neural 

network structures and deployment configurations to new devices and applications. 

MobileNet and SqueezeNet Architectures 

High computational demand and the large model sizes of Deep Convolutional Neural Network (CNNs) hinder their 

deployment in resource constrained applications such as mobile and edge computing. Therefore there has been 

considerable interest in compressed models that are both computationally efficient and relatively small in size. 
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There is significant prior work on network compression of CNNs into smaller versions. MobileNet and SqueezeNet 

are selected as exemplary models as they showcase innovative architecture and weight sharing to obtain compact 

network, that are also deployable on mobile. 

MobileNet leverages depthwise separable convolutions to compose models that achieve high accuracy while 

remaining computationally lightweight. A MobileNet model consists of a series of layers, all of which have a single 

input and output tensor. Each layer i in a MobileNet model has a Type, StrideS[i], a multiplier for the number of 

output filters called M[iM], an expand ratio M[eff][i], a set of kernel weights K[i], bias B[i], and a nonlinearity. 

There are eight types of layers that appear in MobileNet: ‘Conv2D’, ‘Depthwise’, ‘SeparableConv’, ‘Add’, ‘Pad’, 

‘Mean’, ‘Reshape’ and ‘Concat’. The ‘Conv2D’ layer corresponds to a normal 2D convolution. The ‘Pad’ layer 

“pads” a feature map with zeroes either on the right hand side or on the bottom. The ‘Mean’ layer is an average 

pooling operation along the spatial dimensions. The ‘Concat’ layer concatenates multiple inputs along their spatial 

dimensions. The stride of a ‘Mean’ layer should always be 2, and the stride and multiplier for a ‘Mean’, ‘Pad’, and 

‘Concat’ layer should always be 1. There are 28 2D Conv layers and 11 1x1 Conv layers in this Tab. These layers 

reduce the spatial dimensions and increase the number of channels. Additional 3x3 or 5x5 depthwise separable 

convolution layers are added after expand layers to further shrink the spatial dimension. Depthwise separable 

convolutions consist of a 2D depthwise convolution followed by a pointwise convolution, and this operation is 

separable in that it is factored into a depthwise convolution with a kernel size of k, followed by a 1x1 pointwise 

convolution to the output of the depthwise convolution. 

Experimental Evaluation and Case Studies 

Despite the extensive studies on model compression, unfortunately, there is still a lack of a comprehensive and 

valid method of empirical evaluation to inspire trust into the effectiveness and trustworthiness of artificially 

compressed models within realistic systems. Various valid methodologies are proposed for evaluating model 

compression comprehensively in terms of model performance. First, quantitative metrics are presented. 

Experimental results on model performance metrics with variances carried out using the same or similar 

experimental settings. It offers model developers detailed observations of the influence of different 

hyperparameters, architectures, or designs on the model’s performance when being compressed. Also, with the use 

of benchmark datasets, a fair comparison in terms of model performance between artificially compressed models 

and natively compact models is offered. Importantly, the evaluational framework points out future directions of 

continuously refining the evaluation methodologies while the ever-changing AI landscape, such as neural network 

architecture, hyperparameter, and application domain, evolves beyond that from the time of writing. Qualitative 

assessments of model performance are also presented. It shows the importance of beneficial effects of training from 

scratch using the assistance of artificially compressed models. As widely used in studies on model compression, the 

study uses benchmark datasets as well for facilitating researchers and engineers to compare and differentiate the 

performance of artificially compressed models and native compact models. Case studies aiming to fulfill a variety 

of real-world applications are presented. Overall, positive results are yielded in real-world applications. Three CNN 

models and two Transformer models with distinct topologies and scale are comprehensively used as baselines to 

implement experimental efforts, which provide valuable comparisons and insights into the effectiveness, 

robustness, and limitations of arbitrarily developed model compression techniques. Finally, trustworthiness and 

empirical leeriness about model compression are discussed, with an emphasis on the critical necessity of thorough 

empirical testing for the reliability of artificially compressed models in operationalized systems. Further still, the 

importance of continuously improving empirical evaluation methodologies for shedding light on the powerful AI 

model compression domain is addressed. 
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Benchmark Datasets and Metrics 

Model compression techniques have gained broad attention as they play a pivotal role in the deployment of deep 

neural networks on device constrained applications. It is of paramount importance for users and developers to 

measure the effectiveness of AI model compression techniques. With this objective, the role of benchmark datasets 

and evaluation metrics are highlighted in this subsection. Benchmark datasets and metrics are depicted as two 

inseparable components for the evaluation of model compression techniques, indicating that they both influence 

and relate to architectures. Existing benchmark datasets and metrics are surveyed for evaluating AI model 

compression methods. Then, the challenges, principles, and future considerations on benchmark datasets and 

metrics are shared. Aiming at providing a guide for constructing benchmark datasets and metrics for new 

compression techniques, a benchmark dataset is built for adversarial training on noise robustness evaluation tasks 

[4]. 

In the deployment of AI technologies on device-constrained applications, developing efficient AI frameworks for 

real-time processing with low-latency, power consumption, and bandwidth are crucial. To this end, a wide range of 

efforts has been studied in recent years, such as hardware design for efficient inference, knowledge distillation, and 

neural architecture search. However, with the rapid development of deep neural networks, the modest gain in 

hardware devices in terms of floating-point operation speeds makes the deployment of complex and large AI 

models on device-constraint applications still challenging. It further promotes the adapt needs for designing 

efficient and small network architectures. With the quickly growing variety of model architectures, encouraging the 

development of sophisticated benchmark datasets and metrics for evaluating model architectures becomes 

necessary. 

Conclusion: 

It is essential to provide synthetic and compact representations for deep neural networks to deploy them in mobile 

systems or use them in real time. In the last years a number of model compression techniques proved to be very 

effective at that end. Unfortunately, a similar effort on evaluating and comparing the effectiveness of such 

techniques is still at its beginning [5]. Not always better results are obtained using the latest and more complex 

techniques in literature: this depends among other aspects on architecture, dataset or resources availability. It is 

crucial to understand how to run such experiments reliably; with this purpose, a series of guidelines are provided 

both at a low level, e.g., the critical aspect of controlling the training variability during multiple runs, and at a more 

general level, like what structured and organized comparisons should be done and reported to consistently evaluate 

the impact of a compression technique. 

Deep learning-powered solutions have achieved unparalleled goals in multiple domains, such as image 

classification and recognition, speech and sound processing, language modeling and natural language processing. 

Nevertheless, hostile deployment of large and time-consuming deep neural networks remains a concern. As 

extensive literature and studies have demonstrated, performance, and consequently generalizability, are only poorly 

determined by the size and structure of the trained DNNs [6]. Subsequently, researchers have sought to uncover 

expressive and powerful aspects of DNNs which would allow designs of more efficient networks with smaller 

computational and memory demands that still provide satisfactory accuracy' here obtained by analyzing universally 

applicable aspects like training dynamics or expressibility properties of DNNs, which can drive future research and 

shaping of more efficient design paradigms from a broader perspective. 
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