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Abstract – This article focuses on the mathematical models 

which are developed for the re-entry phase of reusable rockets. 

Furthermore, after deriving the necessary mathematical and 

equations of motion, a code is generated in python which uses a 

PID controller to validate how the re-entry phase of a reusable 

rocket is successfully achieved.  
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1.INTRODUCTION  

 
Reusable rockets are the latest piece of technology which are 
capable of reducing the launch cost of spacecrafts by a huge 
margin. SpaceX is a great example of the cost efficiency which one 
can achieve using reusable rocket technology. Other companies 
around the world are as well aiming to achieve this technology, in 
order to decrease launch costs and send a greater number of 
satellites in the orbit.  

However, it should be noted that conducting a successful re-entry 
maneuver for a reusable rocket requires deriving mathematical 
models and solving equations of motion. Once this algorithm is 
derived, it has to be fed to the software which can control the 
rocket. In order to develop this algorithm, I have used python as a 
coding language where I have designed a PID controller in a closed 
loop feedback system which generates the required results for re-
entry phase of a reusable rocket. The mathematical model and the 
code will be discusses in the later part of this article.  

 

2. Body of Paper 
Section 2 of this paper is further divided into four parts. The first 

three parts help us understand the rocket equations which are 

responsible for guidance of the rocket, safely back to the 

launching pad. Fourth section, shows the results generated by the 

python code implemented, to generate a successful re-entry phase 

maneuver.  

In Section 2.1, I have discussed the non-linear equation of a rocket 

motion. The non-linear equations of the rocket help us in 

understanding how the fins and placement of fins along with 

forces can be modelled to derive the equilibrium point of the 

rocket motion. The derived equations are as follows:  

 

2.1 Modelling of the rocket motion equations:  

 

𝐷left fin = 𝐷 sin(π − ϕ𝐷) = 𝐷 sinϕ𝐷 

𝐷right fin = 𝐷 cosϕ𝐷 

𝑇vector = 𝑇 cos(π − (θ + ϕ𝑇)) = −𝑇 cos(θ + ϕ𝑇) 

𝑀𝑥̈ = −𝑇co s(θ + ϕ𝑇) + 𝐹𝑠co s θ 

𝑀𝑥̈ = −𝑇 cos(θ + ϕ𝑇) + 𝐷 sinϕ𝐷 cos θ 

 

𝑥̈ = −
𝑇

𝑀
co s(θ + ϕ𝑇) −

2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇)si nϕ𝐷 co s θ 

 

𝑇𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑇si n(π − (θ + ϕ𝑇)) 

 

𝑇𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑇si n(θ + ϕ𝑇) 
 

𝑀𝑦̈ = 𝑇si n(θ + ϕ𝑇) + 𝐹𝑠si n θ −𝑀𝑔 

 

𝑀𝑦̈ = 𝑇si n(θ + ϕ𝑇) + 2𝐷si nϕ𝐷 si n θ − 𝑀𝑔 

 

𝑦̈ =
𝑇

𝑀
si n(θ + ϕ𝑇) +

2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇)si nϕ𝐷 si n θ − 𝑔 

 

𝐽θ̈ + 𝑇si nϕ𝑇

𝐿

2
= 0 

 

𝐽𝑔 =
𝑀𝐿2

12
 

 

𝑀𝐿2

12
θ̈ + 𝑇si nϕ𝑇

𝐿

2
= 0 

 

θ̈ =
−𝑇 sinϕ𝑇 ⋅

𝐿
2

𝑀𝐿2

12

 

 

 

θ̈ =
−6𝑇 sinϕ𝑇

𝑀𝐿
 

 

2.2 Achieving equilibrium point: 

 

Section 2.2, is dedicated to achieving the equilibrium point from 

the rocket motion of equation. The equilibrium point is also 

regarded as the operating point. This means, it helps us in 

identifying the initial state of the rocket, which once the payload 

is delivered, the rocket has to achieve again upon navigating the 

descent phase.  

 

 

𝑥̇ = 0 ⇒ −
𝑇

𝑀
cos(θ + ϕ𝑇) −

2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇) sinϕ𝐷 cos θ = 0 

−𝑇co s(θ + ϕ𝑇) = 2𝐾𝐷(𝑥
2̇ + 𝑦2̇)si n ϕ𝐷 co s θ 

 

2𝐾𝐷𝑣
2 sinϕ𝐷 cos θ + 𝑇 cos(θ + ϕ𝑇) = 0 

 

2𝐾𝐷𝑣
2 sinϕ𝐷 cos θ = 0 

sinϕ𝐷 = 0 or cos θ = 0 

ϕ𝐷 = 𝑘π,  𝑘 = 0,1,2, .. 
 

θ =
(2𝑘 + 1)π

2
,  𝑘 = 0,1,2, … 
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𝑇 cos(θ + ϕ𝑇) = 0 

 

θ̈ = 0 

 
−6𝑇 sinϕ𝑇

𝑀𝐿
= 0 

 

𝑇 = 0 or sin ϕ𝑇 = 0 

 

(𝑇 ≠ 0), 𝑡ℎ𝑒𝑛(sin ϕ𝑇 = 0) 
 

This is not possible. 

 

From the condition ϕ𝐷 = 0 we obtain: 

 

ϕ𝑇 = 𝑘π,  𝑘 = 0,1,2, … 

 

[0 = −
𝑇

𝑀
cos θ −

2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇) sinϕ𝐷 cos θ] 

 

 

0 = − cos θ [𝑇 + 2𝐾𝐷(𝑥
2̇ + 𝑦2̇) sin ϕ𝐷] 

 

Since (cos⁡ θ = ⁡0),we obtain:  

 

θ =
(2𝑘+1)π

2
,  𝑘 = 0,1,2,.. 

 

For tension (⁡𝑇): 
 

𝑇 = −2𝐾𝐷(𝑥
2̇ + 𝑦2̇) sinϕ𝐷 

Since, the tension force cannot be negative this condition is not 

feasible.  

 

Now, we take into account the next equilibrium condition: 

 

0 =
𝑇

𝑀
sin θ +

2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇) sin ϕ𝐷 sin θ − 𝑔 

 

0 =
𝑇

𝑀
+
2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇) sin ϕ𝐷 − 𝑔 

 

In the case that, ϕ𝐷 = 0: 

 

0 =
𝑇

𝑀
− 𝑔 ⇒ 𝑇 = 𝑀𝑔 

This condition is not feasible because equilibrium will not be 

maintained.  

 

If ϕD =
π

2
⁡: 

 

0 =
𝑇

𝑀
+
2𝐾𝐷

𝑀
(𝑥2̇ + 𝑦2̇) − 𝑔 

 

𝑇 + 2𝐾𝐷(𝑥
2̇ + 𝑦2̇) = 𝑀𝑔 

 

𝑇 = 𝑀𝑔 − 2𝐾𝐷(𝑥
2̇ + 𝑦2̇) 

 

The above equation describes the feasible force for equilibrium. 

 

 

 

2.3 Linearization of the equations and stability analysis: 

 

𝑱𝛉̈ = −𝑮 

 

𝐽θ̈ + 𝑇 sin ϕ𝑡 ⋅
𝐿

2
= 0 

 

𝑓 = 𝐽θ̈ +
𝑇∗𝐿

2
δϕ𝑡 = 0 

𝑑𝑓

𝑑𝑞
|
𝑞∗

= 0 ⋅ δ𝑥 + 0 ⋅ δ𝑦 + 0 ⋅ δθ +
𝐿

2
sinϕ𝑡

∗ δ +
𝑇∗𝐿

2
cosϕ𝑡

∗ δϕ𝑡

+ 0 ⋅ δϕ0 

 

=
𝑇∗𝐿

2
δϕ𝑡 

 
𝑑𝑓

𝑑𝑞̇
|
𝑞∗

= 0 

 
𝑑𝑓

𝑑𝑞̈
|
𝑞∗
= 𝐽δθ̈ 

 

𝐽δθ̈ +
𝑇∗𝐿

2
δϕ𝑡 = 0 

𝑀𝑥̈ = −𝐹 

 

𝑀𝑥̈ + 𝑇 cos(θ + ϕ𝑡) + 2𝐾𝐷(𝑥
2 + 𝑦2) sin ϕ𝑡 cos θ = 0 

 
𝑑𝑓

𝑑𝑞
|
𝑞∗

= 0 ⋅ δ𝑥 + 0 ⋅ δ𝑦 + 0 ⋅ δ + (− sinϕ𝑡 cosϕ𝑡)

− cosϕ𝑡 sinϕ𝑡 δ 

 

+cos(θ + ϕ𝑡) δ𝑇 + 𝑇[− sinϕ𝑡 cos θ − cosϕ𝑡 sin θ]δϕ𝑡 

+2𝐾𝐷(𝑥
2 + 𝑦2) cosϕ𝑡 cos θ − 2𝐾𝐷(𝑥

2 + 𝑦2) sinϕ𝑡 sin θ δ 

 

 

 

 

Now, for the given conditions: 

 

ϕ𝑡
∗ = 0,  sin ϕ𝑡

∗ = 0,  cosϕ𝑡
∗ = 1 

 

θ∗ =
π

2
,  sin θ∗ = 1,  cos θ∗ = 0 

 

ϕ0
∗ =

π

2
,  sin ϕ0

∗ = 1,  cosϕ0
∗ = 0 

Thus,  

 

−𝑇∗δθ − 2𝐾𝐷(𝑥
2 + 𝑦2) sin ϕ𝑡 sin θ δθ − 𝑇∗δϕ𝑡 = 0 

 
𝑑𝑓

𝑑𝑞
|
𝑞∗
= 4𝐾𝐷𝑥̇ sin ϕ𝑡

∗ cos θ∗ δ + 4𝐾𝐷𝑦̇ sinϕ𝑡
∗ cos θ∗ δ𝑦 = 0 

 
𝑑𝑓

𝑑𝑞̈
|
𝑞∗
= 𝑀δ𝑥̈ 

 

𝑀δ𝑥̈ − 𝑇∗δθ − 2𝐾𝐷(𝑥
2 + 𝑦2)δθ − 𝑇∗δϕ𝑡 = 0 

 

𝑀𝑦̈ = 𝑇 sin(θ + ϕ𝑡) − 2𝐾𝐷(𝑥
2 + 𝑦2) sin ϕ𝑡 sin θ +𝑀𝑔 = 0 

 

𝑀𝑦̈ − (sin θ cosϕ𝑡 + cos θ sin ϕ𝑡)𝑇
− 2𝐾𝐷(𝑥

2 + 𝑦2) sin θ sin ϕ𝑡 +𝑀𝑔 = 0 
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−𝑇[cos θ∗ cosϕ𝑡
∗ − sin θ∗ sinϕ𝑡

∗]δ𝜃 − 2𝐾𝐷(𝑥
2 +

𝑦2) sin ϕ𝑡
∗ cos θ∗ δ𝜃 − (sin θ∗ cosϕ𝑡

∗ + cos θ∗ sinϕ𝑡
∗)δ𝑇 

−𝑇[sin θ∗ sin ϕ𝑡
∗ + cos θ∗ cosϕ𝑡

∗]δϕ𝑡 − 2𝐾𝐷(𝑥
2 +

𝑦2) sin ϕ𝑡
∗ cos θ∗ δϕ𝑡 +𝑀𝑔 = 0 

 

Now,  

 

ϕ𝑡
∗ = 0,  sin ϕ𝑡

∗ = 0,  cosϕ𝑡
∗ = 1 

θ∗ =
π

2
,  sin θ∗ = 1,  cos θ∗ = 0 

ϕ0
∗ =

π

2
,  sin ϕ0

∗ = 1,  cosϕ0
∗ = 0 

 

Thus,  

 

𝑀δ𝑦̈ − 4𝐾𝐷𝑥̇δ𝑥 − 4𝐾𝐷𝑦̇δ𝑦 − δ𝑇 + 𝑀𝑔 − 𝑇∗ − 2𝐾𝐷(𝑥
2 + 𝑦2)

+ 𝑀𝑔 = 0 

 

 

 

2.4 Results generated for PID controller of a rocket re-entry 

phase 

 

In this sub-section, I have discussed the results which are 

generated for the rocket re-entry phase.  The main reason I have 

preferred to utilize a PID controller over any other forms of 

control design such as MPC and LQR composer, is because of 

the simple nature of the control system and the output generating 

capacity as compared to other control systems.  

 

Furthermore, a PID controller runs using real-time values and 

keeps correcting the state of the system based on the input values 

in real time. This nature of the system is of essential importance 

so that the rocket can ignite the thrusters or actuators based on 

the information feedback sent in by the sensors on-board the 

rocket.  

 

A PID controller stands for Proportional-Integral and Derivative 

controller. It is these three basic components which make up the 

fundamental building and working blocks of the control system.  

 

Proportional Control: The value of proportional component is 

based upon the difference between the target point and process 

variable. The proportional gain is defined as the ratio of output 

response to error signal.  

 

Integral Control: The component of integral control sums the 

error over a period of time. This implies that the integral gain 

will gradually increase over time, till the error is zero.  

 

Derivative Control: The derivative component is in proportion to 

the rate of change of process variable. It means that in case the 

process variable i.e. the error is increasing rapidly the output 

decreases.  

 

Now, that we have understood the basic components of a PID 

controller, let us move to the next part of this sub-section.  

 

I have used python as the coding language to design a PID 

controller and generate results which help us in understanding 

that the control system is working correctly and the rocket re-

entry phase is achieved.  

 

The parameters of PID gains used are: 

 

KP = 0.36 

KI = 40.0 

KD = 0.000809 

  

The above-mentioned values of the three gains of a PID 

controller are calculated using the Ziegler-Nichols method. 

 

The maximum allowable height achieved by the rocket should be 

15 units in the positive x-direction. The initial set pint 

coordinates of the rocket is (0,-100).  

Once, the code is executed, a successful result is generated.  

 

 
Fig -1: Final state of the rocket post re-entry phase  

 

Fig.1 is the final result generated by the simulation post 

successful execution of the code. As one can see from the figure 

that, the final point of the rocket is at point (0, -100), which 

means that the rocket has landed successfully from its initial 

staring set point.  

 

Hence, a successful re-entry phase is executed and the PID 

controller is working.  

 

 
Fig -2: Plots representing the values of the three gains for closed 

loop system, height of the rocket and thrust by engines 

 

 

In Fig. 2, the graphs generated help us in understanding the 

process though which the three gains of a PID controller respond 
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for the chosen condition and how a successful re-entry phase is 

generated.  

 

One of the plots in Fig. 2 represent the rocket height, it can be 

seen how the plot represents a steady decline in the height of the 

rocket, which represent the descent of the rocket back to its 

starting point or the launch pad. 

 

3. CONCLUSIONS 

From this particular simulation results it can be inferred that 

a PID controller in a closed loop system can help the 

engineers in creating a strong foundational base to create a 

reusable rocket which is guided by the principles of 

equations of motion for a rocket. The system can in-turn 

help the rocket to navigate the re-entry descent phase of the 

rocket. Thereby, landing the rocket back to the launching 

pad.  
 

 

ACKNOWLEDGEMENT 

 
I would like to sincerely thank Mr. Mohammad Abdullah for his 

valuable insights and support throughout the course of writing this 

paper. Furthermore, I would extend my gratefulness to my 

parents, friends and Aeroin SpaceTech for providing the 

necessary resources and support throughout the course of this 

project work.  

 

REFERENCES 

 
1. R. Ferrante, “A robust control approach for rocket landing”, 2017. 

[Online]. Available: https://api.semanticscholar.org/ 

    CorpusID:245352859. 

 

2. G. de Almeida Souza, O. Silva, and M. Maximo, “Thrust vectored 

rocket landing integrated guidance and control with proximal policy 

optimization”, Oct. 2022, pp. 1–6. doi: 

10.1109/LARS/SBR/WRE56824.2022.9995921. 

 

 

3. van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and 

Developments. Lecture Notes in Computer Science, Vol. 1000. 

Springer-Verlag, Berlin Heidelberg New York (1995) 

4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution 

Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York 

(1996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijsrem.com/

