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Abstract - This review focuses on Non-invasive Brain–

Computer Interfaces (BCIs), which are systems designed to 

establish a direct link between the brain and external devices 

without the need for physical movement. These EEG-based 

BCIs are applicable in assistive and interactive contexts. A 

significant emphasis is on BCI-based spellers, which facilitate 

communication through brain signals. The review examines 

three main types: P300, Motor Imagery (MI), and Steady-State 

Visual Evoked Potentials (SSVEP). P300 spellers utilize event-

related potentials for high precision; MI spellers depend on 

imagined movements but demand extensive training; and 

SSVEP spellers provide rapid performance using flickering 

visual stimuli. This review details various EEG signal 

processing techniques, BCI system architecture, and 

contemporary classification methods for EEG-based BCI. 

Key Words:  Electroencephalography (EEG), Brain-Computer 

Interface, Speller, P300, Motor Imagery (MI), Steady State 

Visual Evoked Potential (SSVEP) 

 

 

1.INTRODUCTION  

Electroencephalography (EEG) sensors are advanced 

electronic instruments crafted to record the brain's electrical 

activity. These devices detect minor variations in electrical 

current between the skin and sensor electrodes, amplifying and 

filtering the signals, often employing methods like bandpass 

filtering to capture the neural activity produced by large neuron 

groups [14]. The foundational advancements in EEG 

technology stemmed from early interdisciplinary progress in 

medicine, physics, and chemistry in the early 1900s. These 

breakthroughs led to the discovery of the brain's subtle 

electrical currents and spurred the development of various EEG 

devices [11]. Human interaction depends on our cognitive and 

neuromuscular systems for communication through speech and 

gestures. When these systems are impaired due to conditions 

such as brainstem stroke, cerebral palsy, and other neurological 

disorders, individuals may lose muscle control, often resulting 

in social isolation and emotional distress. To tackle this issue, 

Brain-Computer Interfaces (BCIs) were created, providing a 

groundbreaking solution for those with motor impairments. 

Non-invasive BCIs, especially those based on 

Electroencephalography (EEG), have become the favored 

method for monitoring brain activity. EEG sensors detect 

minute fluctuations in electrical activity on the scalp by 

measuring the voltage differences between electrodes. The 

signals are subsequently enhanced and refined, often through 

methods like bandpass filtering, to capture the neural activity 

of large groups of neurons. EEG's non-invasive nature offers 

numerous advantages: it is relatively cost-effective, portable, 

and simple to set up, while also providing superior time 

resolution compared to other brain monitoring techniques 

[14,15] 

 

          Fig-1.1: Types of Brain Signal Acquisition Methods [29] 

One of the earliest and most impactful uses of non-invasive 

BCI technology is the BCI speller. This system allows 

individuals who are unable to speak to communicate by 

selecting letters or words using brain signals, representing a 

major breakthrough in brain-to-computer communication. This 

advancement in non-invasive BCI technology continues to 

foster innovative communication methods, providing hope and 

improving lives of those with severe motor impairments. EEG 

is widely used non-invasive method. Obtained signals are 

weaker compared to invasive signals because they must pass 

through several layers of the head, as shown in Figure 1. EEG 
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devices are generally divided into wet and dry types. Wet EEG 

devices connect with the scalp using gel-based or saline 

solutions to facilitate conductivity, whereas dry EEG devices 

do not require conductive media. In some instances, conductive 

solid gel materials, like those used in products such as Enobio, 

are employed to ensure effective electrode-scalp connectivity. 

The electrical waveforms generated by neuronal activity in 

EEG signals provide essential insights into the brain's 

physiological state and are invaluable for a wide array of 

applications. These signals are crucial in medical diagnosis, 

monitoring brain functions, and forming BCI foundations. 

BCIs are innovative communication systems which converts 

the brain's electrical activity into commands, allowing users to 

control external devices like computer input devices, prosthetic 

arms, or wheelchairs. 

 

      Fig-1.2:  Brain Computer Interface [30]  

The typical BCI process involves acquiring raw EEG data, 

preprocessing it to eliminate noise and improve signal quality, 

extracting relevant features, and finally using classification 

algorithms to transform these features into actionable 

commands. Despite their transformative potential in healthcare, 

assistive technology, gaming, and neurorehabilitation, 

traditional EEG-based BCIs often require numerous wet 

electrodes and controlled laboratory environments, limiting 

their practicality for everyday use. Thus, recent researches have 

focused on improving the portability and usableness of BCIs. 

One notable development is the Gaitech BCI platform, which 

employs a ROS-based system for acquiring EEG signals, 

integrated with a 10-channel device (Avertus H10C). Besides 

enhancing the hardware, the research seeks to improve the 

classification abilities of portable BCI devices, particularly 

those with a limited number of channels. 

 

The review also explores SSVEP, P300 and MI. A key 

challenge identified in the review is channel selection, which 

involves determining the optimal subset of EEG electrodes that 

most effectively capture relevant cortical activity for specific 

tasks. By incorporating insights from various neuroimaging 

modalities, the review aims to create a knowledge-based 

framework for channel selection that can improve the 

effectiveness of BCI systems. 

 

 

 

 

 

 

 

 

   

 

 

   Fig-2.1: The electrode placements based on 10-20 system. [20] 

In this comprehensive review, the technological underpinnings 

of EEG and BCI systems are linked with practical progress, 

offering a detailed examination of both the hardware 

advancements and algorithmic methods that drive the creation 

of state-of-the-art brain-computer interfaces. [11,15] 

2. LITERATURE REVIEW 

Recent advances in EEG‐based BCIs have focused on non‐

invasive spellers that facilitate efficient communication through 

distinct paradigms such as P300, motor imagery (MI), and 

SSVEP. Ma et al. [1] developed a portable EEG signal 

acquisition system combined with a limited‐electrode SSVEP 

classification network, demonstrating a lightweight yet effective 

solution for rapid speller applications. This work is 

complemented by innovations in speller design from Bai et al. 

[9], who introduced a hybrid P300‐SSVEP speller that leverages 

the complementary strengths of both paradigms. 

On the motor imagery front, Zhi et al. [7] proposed a multi‐

domain convolutional neural network capable of robustly 

decoding MI signals, addressing common challenges like inter‐

subject variability and prolonged training requirements. 

Angelakis et al. [2] provided a comparative analysis of deep 

learning models for real-time servo motor control using EEG—

a study that, while focused on control applications, offers 

valuable insights into model performance trends that are 

applicable to MI‐based spellers. 

In the domain of P300 spellers, Hu et al. [5] presented a subject‐

independent wearable system incorporating CNNs with metric 

learning to improve the reliability of P300 detection. This is 

further enhanced by Aghili and Erfanian [6], who employed a 
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MINMAX Riemannian geometry scheme integrated with CNN 

architectures to boost detection accuracy. Additionally, Song et 

al. [12] introduced an EEG Conformer—an innovative model 

that adopts transformer techniques to capture long-range 

dependencies in EEG signals, highlighting a promising direction 

for future BCI research. 

Overall, these studies underscore a clear trend toward the 

integration of advanced deep learning techniques and hybrid 

strategies to enhance classification accuracy, robustness, and 

adaptability across various EEG-based speller paradigms. This 

convergence of methodologies paves the way for more practical, 

real-world applications in communication and control 

interfaces. 

3. METHODOLOGY 

In EEG classification, the method combines meticulous data 

acquisition, detailed preprocessing, extensive spectral feature 

extraction, and sophisticated deep learning models to 

accurately interpret neural signals. The Fig.2.2 consists a 

flowchart which portrays the required stages. First, the 

procedure starts with setting up the EEG acquisition system. To 

assemble and configure the acquisition system with EEG 

electrodes, the subject's scalp is initially prepared, and 

electrodes are positioned following the international 10–20 

system, ensuring optimal contact and low impedance using 

conductive gel. These electrodes are linked to the acquisition 

system, which amplifies the faint EEG signals and conducts 

preliminary noise filtering. The processed signals are then 

connected to the data acquisition board, which includes a high-

performance analog-to-digital converter (ADC). The output 

channels are attached to the correct ADC inputs on the board, 

ensuring proper grounding and secure connections to preserve 

signal quality. The ADC settings, such as a sampling rate 

typically ranging from 250 to 500 Hz, are configured, and the 

board's wireless communication features are activated to 

stream the digitized EEG data in real time for further analysis. 

[1] 

Fig-2.2: Flowchart that portrays preprocessing and classification [20] 

After being collected, the raw EEG signals undergo a 

comprehensive preprocessing procedure, beginning with a 50 

Hz notch filter to eliminate powerline interference.This is 

followed by a fourth-order Butterworth bandpass filter (0.5–50 

Hz) to focus on the pertinent brainwave components while 

reducing noise and artifacts. EEG signals are transformed from 

the time domain to the frequency domain using Fast Fourier 

Transforms, which decompose the signal into distinct 

frequency bands. This spectral analysis allows for the 

extraction of essential features such as power spectral density 

(PSD) ratios, peak frequency, spectral centroid, and spectral 

slope, along with time-domain metrics like Hjorth parameters, 

Petrosian fractal dimensions, and the Frobenius norm. These 

features collectively capture both the local oscillatory patterns 

and the overall spectral characteristics of the EEG data. 

By using a CNN-LSTM, the CNN-LSTM network uses 

convolutional layers extracting spatial features from the EEG 

data and LSTM layers to capture long-term temporal 

dependencies, while EEGNet offers a compact and efficient 

architecture specifically designed for EEG analysis. This 

combination of thorough preprocessing, comprehensive feature 

extraction, and advanced deep learning models enables end-to-

end EEG decoding, showing significant potential for real-time 

brain–computer interface applications. 

3.1. FEATURE EXTRACTION 

The process of feature extraction involves multiple stages that 

transform preprocessed EEG data into a comprehensive set of 

distinguishing features. Initially, the cleaned EEG signals are 

divided into fixed-length segments, typically lasting 2 seconds, 

to capture temporal dynamics. Spectral analysis is conducted in 

each segment, using the Fast Fourier Transform (FFT) that 

breaks down the time-domain signal into its frequency 

components. From the resulting frequency spectrum, Power 

Feature 

Extraction 

Technique 

Definition Description 

Time–Frequency 

Analysis 

Analyzes frequency 

changes over time. 

Splits the signal into 

time windows to capture 

transient frequency 

patterns. 

High-Order 

Spectral Analysis 

Extracts nonlinear, 

phase-related 

features. 

Uses higher-order 

statistics (e.g., 

bispectrum) to reveal 

complex signal 

interactions. 

Nonlinear 

Dynamic 

Analysis 

Measures signal 

complexity and 

chaotic behavior. 

Uses metrics like 

Lyapunov exponents 

and entropy to capture 

dynamic properties. 
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Spectral Density (PSD) features are calculated for key EEG 

bands such as alpha, beta, theta, and delta.  

      Table -1: Various Feature Extraction Techniques 

Beyond band- specific power, additional spectral 

characteristics are extracted, including the peak frequency (to 

identify the most prominent frequency), spectral centroid 

(indicating the "center of mass" of the frequency distribution), 

and spectral slope (providing insight into how power 

diminishes with increasing frequency). Together, these metrics 

form a detailed feature vector that encapsulates both the energy 

distribution and finer spectral details of the EEG, serving as the 

basis for effective classification [14]. 

3.2. PREPROCESSING 

An important step before feature extraction and classification 

is preprocessing. The initial step involves using a 50 Hz notch 

filter to eliminate powerline interference, which is a frequent 

contaminant in EEG recordings. Following this, a Butterworth 

bandpass filter is employed, covering a frequency range of 0.5–

50 Hz. This filter is selected for its maximally flat passband 

response, ensuring minimal distortion of the signal's amplitude 

while effectively isolating the desired brainwave components. 

The bandpass filter captures essential low-frequency elements 

like delta waves and suppresses high-frequency noise, 

including muscle artifacts and other extraneous signals. 

Following the filtering step, the signal is transformed into the 

frequency domain using the FFT, facilitating the detailed 

spectral analysis required for feature extraction. To further 

enhance data quality, a Discrete Wavelet Transform (DWT) is 

employed for artifact removal. DWT is better in providing 

time-frequency localization, enabling the precise identification 

and removing of transient artifacts without compromising the 

integrity of the underlying neural signals. This comprehensive 

preprocessing pipeline ensures that the EEG data entering the 

feature extraction stage is both high in quality and free from 

significant distortions, thereby laying a solid foundation for 

accurate classification by the subsequent deep learning models. 

3.3. SIGNALS 

This method relies solely on raw EEG signals, deliberately 

excluding specialized paradigms like SSVEP, motor imagery, 

or P300. By concentrating exclusively on the inherent electrical 

activity recorded by the EEG, this strategy sidesteps the extra 

complexities and calibration needs linked to these specific 

paradigms. The focus is on deriving significant spectral 

features directly from the raw EEG data, ensuring that the 

developed models can be applied to a range of applications 

without depending on externally triggered brain responses. 

3.4. CLASSIFICATION 

The classification phase uses two sophisticated deep learning 

models: a hybrid CNN-LSTM network and EEGNet. The 

CNN-LSTM model excels at identifying local spatial patterns 

across various EEG channels, efficiently extracting high 

features from the raw data. However, since CNNs mainly 

capture short-term dependencies, the subsequent LSTM layers 

are incorporated for checking long-term temporal relations 

inherent in EEG time series data. This integration allows the 

model to understand both the spatial and temporal dimensions 

of the signal. Complementing this method is EEGNet, which 

employs depthwise and separable convolutions to lessen the 

number of parameters while still capturing essential features, 

making it particularly suitable for real-time and low-sample-

size scenarios with compact and systematic architecture. 

Together, these algorithms offer a robust framework for EEG 

classification, balancing the need for complex feature 

extraction with computational efficiency. [8,10] 

The following table summarizes the average accuracy and 

representative references for various classification algorithms: 

    Table -2: ML & DL Algorithms used for classification 

Algorithm Average 

Accuracy (%) 

Representative 

References 

EEGNet ~89.0 [23] 

SVM ~83.0 [21], [24] 

Conformer ~87.0 [12] 

CNN ~88.0 [5], [6], [7], [25], 

[26] 

CNN-LSTM ~90.0 [3], [2]* 

*Although [3] uses a hybrid Bi-directional LSTM–GRU structure 

rather than a pure CNN-LSTM, and [2] provides a comparative 

analysis including recurrent models, they are representative of the 

CNN–recurrent class of algorithms often grouped under the CNN-

LSTM umbrella in comparative discussions. 

The table describes the average accuracy attained by - CNN-

LSTM models achieve the highest average accuracy (~90.0%), 

followed closely by EEGNet (~89.0%) and CNN-based 

approaches (~88.0%). Support Vector Machines (SVM) show 

Feature 

Extraction 

Technique 

Definition Description 

Fourier 

Transform 

Converts a time-

domain signal into 

the frequency 

domain. 

Provides an overall 

frequency content; best 

for stationary signals. 

Power Spectral 

Density (PSD) 

Quantifies power 

distribution across 

frequencies. 

Shows energy 

distribution among 

frequency bands, aiding 

band-specific analysis. 
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a lower average accuracy (~83.0%) compared to the deep 

learning models. The results highlight effectiveness of deep 

learning techniques in EEG signal classification tasks. 

Additionally, the table below outlines recent advancements in 

EEG classification models along with their reported accuracies. 

It includes various models used for P300 and SSVEP spellers, 

as well as for the classification of motor imagery. These models 

incorporate ensemble-based EEG classification techniques 

alongside CNN, SVM, and other well-known deep learning 

algorithms. 

Table -3: Recent Advancements of EEG Classification Models 

Model / Approach Paper Year Reported 

Accuracy 

FBATCNet [27] 2025 ~90% 

Ensemble-Based MI EEG 

Classifier 
[28] 2024 92% 

Subject-Independent 

P300 BCI (CNN + Metric 

Learning) 

[5] 2024 ~88% 

Hybrid Bi-Directional 

LSTM-GRU Model 
[3] 2024 ~90% 

Hybrid SSVEP + P300 

BCI 
[20] 2024 ~82% 

P300 Speller (MINMAX 

Riemannian Geometry & 

CNN) 

[6] 2023 ~91% 

EEG Conformer 

(Convolutional 

Transformer) 

[12] 2023 ~87% 

Multi-Domain CNN for 

Motor Imagery Decoding 
[7] 2023 ~88% 

DeepEnsemble 

(Ensemble of Deep 

Learners) 

[19] 2023 ~90% 

Wavelet Transform & 

SVM for Stress 

Recognition 

[21] 2022 ~84% 

CNN Approach for EEG 

Signal Analysis 
[25] 2021 ~88% 

DynamicNet – CNN-

Based Cross-Subject 

Classification 

[26] 2021 ~87% 

EEGNet with Ensemble 

Learning for Cross-

Session SSVEP 

Classification 

[23] 2021 ~89% 

    

4. FUTURESCOPE  

Although this framework reviews promising outcomes, there 

are several future research directions to further advance EEG-

based BCIs. Machine learning techniques, especially deep 

learning, have streamlined the EEG signal processing 

procedure into a complete task; however, they necessitate 

traditional methods. The complexity of EEG data collection, 

along with challenges such as noise, non-stationarity, and inter-

subject variability, highlights the need for ongoing model 

enhancement and adaptation. Future research will focus on 

minimizing data heterogeneity through advanced methods like 

domain adaptation and federated learning, which enable model 

training across diverse datasets without compromising data 

privacy. Additionally, exploring transfer learning and 

multimodal approaches may open new possibilities, such as 

enhancing emotion recognition tasks. Addressing these 

challenges will also involve refining denoising techniques, 

improving electrode configurations, and enhancing the clarity 

of deep learning models. Ultimately, the future scope of EEG-

based BCI research lies in developing more portable, user-

friendly, and personalized systems that can adapt to individual 

brain activity patterns and meet real-world application 

demands. 

4. CONCLUSION 

Recent progress in EEG-based BCI classification marks a 

notable transition from conventional machine learning methods 

to advanced deep learning frameworks. Research by Ma et al. 

[1] and Bai et al. [9] has shown the success of portable systems 

and hybrid speller designs, respectively, while studies by Hu et 

al. [5] and Aghili and Erfanian [6] highlight the improved 

accuracy that can be achieved with sophisticated CNN-based 

techniques for P300 detection. In the realm of motor imagery, 

Zhi et al. [7] demonstrate the advantages of multi-domain CNN 

models in tackling inter-subject variability and enhancing 

temporal decoding capabilities. Additional research, such as 

that by Angelakis et al. [2] and Song et al. [12], further indicates 

that incorporating recurrent components and transformer-based 

methods can significantly enhance performance by capturing 

the long-range dependencies present in EEG data. Collectively, 

these studies suggest a growing consensus: hybrid deep 

learning models, which can simultaneously exploit spatial and 

temporal features, outperform traditional methods like SVM. 

Despite these advancements, challenges related to data 

heterogeneity, inter-subject variability, and computational 

requirements persist. Future research should focus on domain 

adaptation, transfer learning, and federated approaches to make 

EEG-based BCIs more robust, adaptable, and practical for real-

world use. In summary, the shift towards hybrid and deep 

architectures has greatly advanced EEG classification 

accuracy, paving the way for next-generation BCIs that 

promise enhanced usability and wider applicability in both 

clinical and non-clinical environments. 
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