

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 1

Disease Predicting Web Application Using Machine Learning

Sreeraj P1, Ms. K.V. Indulekha 2

1II MCA, Department of Computer Applications, Nehru Institute of Information Technology and Management, Coimbatore,

Tamilnadu, India
2Assistant Professor, Department of Computer Applications, Nehru Institute of Information Technology and Management,

Coimbatore, Tamilnadu, India

---***---

Abstract - In recent years, the integration of machine learning

into healthcare systems has gained significant momentum,

particularly in areas focusing on early diagnosis and predictive

analytics. This research presents the design, development, and

evaluation of a multi-disease prediction web application that

leverages binary classification models to identify potential

illnesses based on user-provided symptoms. The system is built

upon a modular machine learning architecture, where each

disease — including AIDS, Allergy, Dengue, Diabetes, Heart

Attack, Jaundice, Malaria, Pneumonia, Tuberculosis, and

Typhoid — is addressed through an independently trained

classifier using labeled datasets. This approach enhances model

precision by isolating disease-specific symptom patterns and

mitigating multi-class confusion.

The application provides an intuitive user interface, developed

using Gradio, which supports both individual and batch

predictions via manual symptom input or CSV file uploads. It

returns predictions with associated confidence scores and also

suggests relevant diagnostic tests to aid further clinical

validation. User authentication mechanisms have been

incorporated to ensure data privacy and secure access. The

backend is implemented using Python-based frameworks such as

Flask and Scikit-learn, and the entire application is deployed on

Hugging Face Spaces for cloud accessibility and scalability.

This project shows how machine learning can help with early

disease detection, especially in areas with limited medical

access. It's easy to use, expandable for future features, and

supports both individuals and healthcare workers in making

quick, informed health decisions.

Key Words: Machine Learning, System-based Diagnosis,

Healthcare AI, Gradio Interface, Scikit-Learn

1. INTRODUCTION

The rapid advancement of artificial intelligence (AI) and
machine learning (ML) has revolutionized numerous industries,
with healthcare standing out as one of the most impacted. Early
diagnosis of diseases significantly improves patient outcomes
and reduces treatment costs. However, in many parts of the
world, especially in underdeveloped or rural areas, access to
healthcare professionals and diagnostic tools remains limited.
This gap presents a critical opportunity for intelligent systems
that can support preliminary disease detection and empower
individuals to make informed decisions regarding their health.

In this context, we propose a web-based disease prediction
system that utilizes machine learning to identify ten common
diseases—AIDS, Allergy, Dengue, Diabetes, Heart Attack,
Jaundice, Malaria, Pneumonia, Tuberculosis, and Typhoid—
based on symptoms inputted by the user. The system employs
multiple binary classifiers, each trained specifically for a
particular disease, to provide accurate predictions. By doing so,
it ensures focused and precise results, minimizing the risk of

overlapping symptom misclassification. The application is user-
friendly and supports both single-patient and batch predictions,
making it scalable for both individual and institutional use.

To make the tool accessible, a web interface was developed
using Gradio, allowing users to interactively enter symptoms or
upload a CSV file with patient data. The backend leverages
Python libraries such as scikit-learn and Pandas to process input
and return predictions with confidence scores, along with
recommended diagnostic tests. The entire system is hosted on
Hugging Face Spaces and developed using Google Colab,
ensuring ease of deployment and global accessibility without local
infrastructure requirements.

 This paper presents the system design, data handling
approach, model training, evaluation metrics, and practical
deployment of the tool. The objective is to demonstrate the
feasibility and effectiveness of combining machine learning with
web technologies for real-time disease prediction. Additionally,
the system's modular architecture enables further enhancements
such as adding more diseases, multilingual support, or integration
with electronic health records. This research aims to contribute
toward building intelligent, accessible, and scalable healthcare
solutions using modern AI technique

 In recent years, numerous studies have explored the
application of artificial intelligence for disease prediction, yet
many of these solutions focus on a single illness or require
complex user inputs not suitable for non-expert users. Our system
stands out by offering a unified platform that integrates multiple
disease models within a simplified, user-centric design. This
multi-disease approach not only increases usability but also
reflects real-world scenarios where patients may experience
overlapping symptoms of various illnesses. By streamlining the
diagnostic process and making it more accessible, the system
holds the potential to support community health programs, remote
clinics, and even preliminary online consultations.

 Overall, this project demonstrates how AI-powered tools can
play a supportive role in the healthcare sector by enabling faster,
symptom-based preliminary assessments. With its modular and
scalable architecture, the system opens doors for continuous
improvement and wider adoption in both clinical and non-clinical
environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 2

2. RELATED WORK

In recent years, the intersection of machine learning and
healthcare has opened up transformative possibilities in disease
prediction and early diagnosis. Researchers have increasingly
turned to data-driven models to help bridge gaps in medical
accessibility, reduce the workload on healthcare professionals,
and enable timely intervention. Various algorithms such as
Decision Trees, Logistic Regression, Support Vector Machines
(SVM), Random Forests, and Artificial Neural Networks have
been implemented to analyze patient symptoms and historical
data to predict diseases like diabetes, heart conditions, and even
infectious diseases. These models have demonstrated
encouraging results in terms of predictive accuracy, learning
efficiency, and clinical relevance. By applying statistical
learning techniques to large-scale health datasets, earlier studies
laid the groundwork for intelligent health systems capable of
assisting both patients and medical professionals in identifying
potential illnesses.

A significant area of exploration within this field has been
the use of deep learning techniques—especially Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs)—for image-based diagnosis. Studies focusing on
diseases such as pneumonia and tuberculosis have trained
models on chest X-ray images to detect anomalies with
impressive precision. Similarly, CNN architectures have also
been employed in facial recognition-based medical alert systems
or to detect visible symptoms like jaundice or skin lesions.
However, these approaches typically require substantial
computational power and access to high-quality medical images,
which may not always be feasible in low-resource settings. In
contrast, text-based and symptom-based disease prediction
models, such as those relying on questionnaire inputs or
structured patient symptom logs, offer an accessible and low-
cost alternative. These models reduce the dependency on
medical imaging and can be deployed using simpler interfaces,
making them ideal for preliminary diagnostics in rural or
underserved areas.

By integrating the best practices and innovations from
previous studies, this project aims to offer a more flexible and
scalable solution for disease prediction. Unlike many of the
earlier systems that focused on specific diseases or narrow
datasets, our project combines ten disease-specific binary
classifiers into a unified web application, making it both
comprehensive and highly customizable. Each classifier is
trained on a focused set of symptoms, improving specialization
and reducing cross-condition misdiagnoses. The system
provides not only predictions but also confidence scores and test
suggestions, making it a useful tool for informed decision-
making. Overall, the project contributes to the growing body of
work aimed at making intelligent healthcare solutions more
practical, accessible, and user-centric.

3. SYSTEM OVERVIEW

The proposed system is a machine learning-based web
application designed to assist users in predicting potential
diseases based on their symptoms. It leverages multiple binary
classification models, each trained individually to detect one of
ten common diseases: AIDS, Allergy, Dengue, Diabetes, Heart
Attack, Jaundice, Malaria, Pneumonia, Tuberculosis, and
Typhoid. By isolating the symptom set for each disease and
training a dedicated model, the system enhances accuracy and
reduces misclassification, allowing each disease to be evaluated
independently.

The architecture is composed of three main layers: the frontend user
interface, the prediction engine, and the backend data and logic
components. The frontend is developed using Gradio, a lightweight
Python library that simplifies interface creation and enables real-time
interaction. Users can input symptoms manually through checkboxes
or upload a CSV file containing patient data for batch processing.
Once submitted, the system routes the input data to the appropriate
models in the backend.

 The core intelligence of the system lies in its prediction engine,
which uses Scikit-learn to implement and manage the trained
classifiers. Each input is processed and fed into all ten classifiers
to determine the probability of each disease. The results are
returned along with a confidence score and a list of recommended
diagnostic tests tailored to the predicted disease. This approach
ensures that the user receives both a probable diagnosis and
actionable guidance.

The system also features a basic authentication mechanism,

including a login page, to restrict access to authorized users.

Hosting is managed via Hugging Face Spaces, making the

application accessible from any device with internet access. The

overall design prioritizes user-friendliness, modularity, and

scalability, ensuring that the system can be extended in the future

to include more diseases, languages, or even real-time integration

with healthcare databases. Through this intelligent and interactive

platform, the system demonstrates how machine learning can

support early detection and decision-making in medical

diagnostics.

Workflow Summary:

User Input: Users log in and either select symptoms manually or

upload a CSV file with patient data.

Model Processing: The system feeds input into ten separate

machine learning models (one for each disease).

Prediction Output: Each model returns a prediction with a

confidence score and suggests relevant medical tests.

Display Results: Results are displayed on the web interface,

offering users an instant and informative diagnosis summary.

Technologies and Tools Used:

 Scikit-learn – Model training

 Pandas & NumPy – Data processing

 Gradio – Web interface

 Colab – Deployment platform

Fig -1: System design

The system integrates machine learning models with an intuitive
interface to provide fast, preliminary disease predictions based on
user symptoms. Its modular design, real-time interaction, and

ease of deployment make it a practical tool for accessible health

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 3

monitoring and early diagnosis support.

1.1 Module Description

1. User Authentication

The user authentication module is designed to secure access to

the web application by ensuring that only authorized users can

interact with the system. It includes a login interface where users

must enter valid credentials, such as a username and password,

before gaining access to the prediction tools. This not only

prevents unauthorized use but also helps in tracking and

maintaining user-specific data or sessions in the future. The

authentication system may be further enhanced with features

like password hashing, session tracking, and possibly multi-

factor authentication in advanced versions. It serves as the

gateway to the system, ensuring both security and controlled

access.

2. System Input

The system input module provides a flexible and user-friendly

interface for users to enter their health-related data. It supports

both manual input through symptom selection and automated

input via CSV file upload, allowing users to either input

symptoms one at a time or test multiple patient records at once.

The manual interface is built for ease of use, with dropdowns or

checkboxes listing symptoms, while the batch upload feature

caters to users with larger datasets. This module ensures that the

input data is formatted correctly and passed on seamlessly to the

processing layer for further analysis.

3. Data Processing

The data processing module plays a critical role in preparing

user input for accurate and consistent disease prediction. It

begins by validating the inputs received from either manual

selection or CSV file uploads, ensuring that only relevant and

non-empty data is passed to the next stage. For manual input, the

symptoms selected by the user are transformed into a binary

vector format, where each symptom corresponds to a predefined

position in the vector, marked as 1 if present and 0 otherwise. In

the case of batch uploads, the module reads the file using data

handling libraries like Pandas and performs row-wise validation

to handle missing or malformed data, correcting or flagging

issues when necessary. It also standardizes the input formats by

converting textual symptom names into consistent lowercase or

encoded representations to match the training data. The module

may also include additional preprocessing steps like

normalization or encoding, especially if future enhancements

incorporate continuous variables like age or vital signs.

Furthermore, the data processing pipeline ensures compatibility

across all trained models by maintaining a uniform input

schema. Efficient and accurate preprocessing not only reduces

model errors but also contributes to better confidence scores and

reliable test recommendations. This module forms the backbone

of the system’s intelligence by acting as the bridge between raw

user input and meaningful machine learning inference.

4. Model Loading & Prediction

The model loading and prediction module is responsible for

loading the trained binary classification models for each disease

and running predictions on the processed input data. Each

disease has its own dedicated model, which is loaded either on

application start-up or dynamically as needed to optimize

memory usage. Once the user inputs are processed, this module

runs the input through the relevant model(s) and generates a

prediction along with a probability score indicating confidence.

This output is then formatted and passed to the frontend for user

viewing, along with recommended diagnostic tests based on the

prediction.

5. Batch Prediction

The batch prediction module is designed to handle multiple patient

records simultaneously, significantly enhancing the system’s

scalability and utility, especially for medical professionals, health

clinics, or researchers dealing with large volumes of data. This

module allows users to upload a CSV file containing symptoms

for several individuals at once. Upon upload, the file is parsed

using robust data processing libraries like Pandas to extract,

validate, and structure each record in a format compatible with the

trained models. Each patient’s symptom set is transformed into a

binary input vector, just like in single prediction, ensuring

consistent input across all cases. The system then iterates through

each row, performing predictions for every patient using the

appropriate binary classifiers. For every prediction, the system

outputs not only the most probable disease but also the associated

confidence score and a list of recommended medical tests tailored

to that specific outcome. All results are compiled into a single

downloadable file, typically a CSV, allowing easy review, further

analysis, or integration with external health management tools.

Additional error-handling routines are embedded to manage

missing or malformed entries gracefully, skipping or flagging

problematic records without interrupting the overall batch process.

This functionality greatly improves efficiency, saves time, and is

particularly valuable for screening large groups in community

health drives, preliminary research studies, or hospital record

audits. Ultimately, batch prediction exemplifies the system’s

capacity to operate at scale while maintaining the same level of

precision and reliability as individual predictions.

4. METHODOLOGY

The methodology of this project is structured into several core

stages that collectively enable accurate and user-friendly disease

prediction based on symptoms. The first stage involves data

collection and preprocessing, where reliable and publicly

available medical datasets were sourced, cleaned, and

standardized. Each disease under consideration—AIDS, Allergy,

Dengue, Diabetes, Heart Attack, Jaundice, Malaria, Pneumonia,

Tuberculosis, and Typhoid—was treated independently to train a

binary classification model. This means ten separate models were

trained, each specializing in detecting the presence or absence of a

specific disease. Symptom data was transformed into binary

vectors, where each symptom corresponds to a fixed index and its

presence is represented as 1 and absence as 0. This standardization

ensures that models can interpret inputs consistently, whether

from a single user or a batch of records.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 4

The next stage is model training and evaluation. For each

disease, a machine learning algorithm—such as Random Forest,

Logistic Regression, or Support Vector Machine (SVM)—was

trained using the corresponding symptom dataset. During

training, the datasets were split into training and testing sets to

validate model performance and minimize overfitting. Various

performance metrics like accuracy, precision, recall, and F1-

score were calculated to determine the effectiveness of each

model. The final models were selected based on the best-

performing configurations and saved using joblib or pickle for

later deployment. This modular approach not only ensures high

precision per disease but also allows for easier updates or

retraining of individual models as more data becomes available.

Once trained, these models were integrated into a unified web

application using Python-based libraries. Gradio was used to

build an intuitive and interactive front end that allows users to

input symptoms manually via checkboxes or upload a CSV file

for batch processing. The system accepts user input, processes it

into a format compatible with each binary classifier, and then

runs predictions across all ten models in real-time. The

prediction results are displayed to the user, showing the most

probable disease(s), the associated confidence scores, and a list

of suggested medical tests. For batch predictions, a processed

results file is returned, containing individual predictions for each

patient record.

Fig -2: Process of Determining the Presence of a Disease

The authentication and hosting mechanism ensures that only

authorized users can access the application. A simple login

module was created using Python and integrated into the

frontend to gatekeep system access. The entire application,

including the backend logic and machine learning models, was

hosted on Hugging Face Spaces using Gradio and Flask. This

setup allows for seamless deployment and access through a web

browser on any device with internet connectivity. The Hugging

Face platform supports quick updates, easy debugging, and

scalable user interaction, making it an ideal environment for

development and testing.

In summary, the methodology follows a well-defined pipeline:

data preparation, model training, model evaluation, frontend

integration, authentication, and deployment. Each component

was designed with modularity and scalability in mind, ensuring

that the system remains flexible for future enhancements such as

adding more diseases, integrating natural language symptom input,

or connecting with hospital APIs. The methodology ensures not

just technical soundness but also real-world applicability and ease

of use for non-technical users.

Fig -3: General Procedure

5. REQUIREMENT SPECIFICATION
Requirement Specification is a crucial part of this

project, detailing the essential hardware and software

components required to develop and run the system effectively.

This section also outlines the programming tools and

environments utilized for implementation.

5.1 Hardware Requirements

Physical computing tools, or hardware, form the backbone of any

computing system. The hardware requirements listed below are

the minimum specifications needed for the smooth functioning of

the proposed system:

Table – 1: Hardware requirements
Component Specification

Processor Intel i3 / AMD Ryzen 3 or higher

RAM 4 GB minimum

Storage 1 GB free space

Processing Speed 2.5 GHz dual-core CPU

Hard Disk Drive 512 GB SSD

Display Standard monitor(min 1024×768)

Note: Higher configurations may improve performance,

especially in real-time image processing tasks.

5.2 Software Requirements

The software requirements define the platforms, languages, and

tools required to design and run the application. The system

depends on the integration of multiple tools across frontend,

backend, and data processing components.

Table – 2: Software requirements
Component Specification

Frontend HTML, CSS, Gradio

Backend Python, Scikit-Learn

Database MySQL

Dataset Format CSV

Development IDE Google Colab

Operating System Windows 10/11 or macOS

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 5

6. SYSTEM IMPLEMENTATION

System implementation represents the final and most

critical phase of the development lifecycle, where theoretical

designs are converted into an operational and functional

system. It involves the integration of all software and

hardware components, system configuration, and deployment

into a live environment. In the context of this project—

focused on real-time criminal identification through facial

recognition—implementation includes configuring servers,

deploying machine learning models, establishing a

communication system for alerts, and setting up the supporting

database infrastructure.

 A successful implementation requires thorough planning,

verification, and validation to ensure the system performs as

intended. Each module must be rigorously tested to guarantee

accuracy, responsiveness, and reliability. Equally important is

training the end-users and administrators responsible for

system monitoring and management.

The primary procedures involved in this system's

implementation include:

• Application Development and Integration

• User Interface Deployment

• Server Configuration (Apache, MySQL)

• Model Integration and Testing

• Web-based System Recording and Testing

6.1 Equipment Installation

Anaconda

Anaconda is the free and open-source Python and R

programming language distribution that is simple to set up.

Anaconda is a software environment for mathematical

computation, computer science, predictive analysis, and deep

learning. Anaconda 5.3 is the most recent distribution, which

was launched in October of 2019. It contains the module, an

environmental manager, and the library at over 1000 open-

source packagers, all of which come with free community

support.

Key Benefits:

• Simplified package and environment management

• Integrated support for Jupyter Notebooks and deep

learning libraries

• Efficient handling of large datasets for training and

recognition tasks

Google Colab

Google Colab was employed as the primary development and

execution environment for training, testing, and validating the

machine learning models used in this disease prediction

system. As a cloud-based platform offered by Google, Colab

allows developers to write and run Python code in a Jupyter

Notebook-style interface without requiring any local setup. The

platform provides seamless access to high-performance

computing resources such as GPUs (Graphics Processing

Units) and TPUs (Tensor Processing Units) free of charge,

making it an ideal solution for resource-intensive ML tasks.

Through Google Colab, the project team was able to efficiently

preprocess large datasets, train multiple binary classification

models for various diseases, and test prediction logic—all in an

interactive, collaborative, and cloud-hosted setting. Its

compatibility with major machine learning libraries like Scikit-

learn, Pandas, NumPy, and Matplotlib further streamlined the

workflow. Additionally, since Colab runs entirely on the cloud, it

bypasses hardware limitations, ensuring even low-end systems

can perform complex computations without lag or crashes.

Key Benefits:

• Free GPU/TPU Access

• Cloud-Based Environment

• Auto-Save to Google Drive

• Collaborative Coding

Gradio Interace

The Gradio framework was utilized to create an intuitive and

interactive user interface for the web application. Gradio

simplifies the process of turning Python functions—especially

those built for ML models—into fully functional web interfaces

with minimal code. It allows users to interact with the disease

prediction system by selecting symptoms manually or uploading

CSV files for batch processing directly through their browser.

Gradio also supports real-time feedback, where the model's

predictions are displayed instantly along with relevant medical

test suggestions. The front end built with Gradio eliminates the

need for complicated front-end frameworks or server-side

rendering engines, which simplifies both the development and

deployment pipeline. The final application, once integrated with

Hugging Face Spaces, became instantly accessible via a browser

on any internet-connected device, making it extremely user-

friendly and cross-platform compatible.

Key Benefits:

• Real-Time Predictions

• Web-Based Access

• Rapid Prototyping

7. SAMPLE OUTPUTS

Fig- 3: Login Successful.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51675 | Page 6

Fig- 4: Predicting Disease after Manually Entering the

Symptoms.

Fig- 5: Predicting Disease after Uploading CSV File.

8. CONCLUSION
In conclusion, this project showcases the practical integration

of machine learning with modern web technologies to build a

user-friendly and intelligent disease prediction system. By

leveraging binary classifiers trained on diverse medical

datasets, the application can effectively predict the likelihood

of ten different diseases based on symptom inputs provided

by the user. Through the seamless use of tools like Google

Colab for model development and Gradio for interface

creation, the system ensures real-time interaction, high

accuracy, and ease of use, making it accessible to users across

varying levels of technical expertise. The deployment of the

application on

 hugging Face Spaces allows for universal access via a web

browser, encouraging its use even in resource-constrained

environments. Furthermore, with features such as batch

prediction, confidence scoring, and relevant diagnostic test

suggestions, the system not only aids individuals in making

informed decisions but also supports healthcare professionals

in initial patient assessments. This project demonstrates a step

toward digital-first healthcare solutions and serves as a

foundational model for future developments that can

incorporate more diseases, deeper medical integration,

multilingual capabilities, and personalized health

recommendations. It stands as a testament to how artificial

intelligence can enhance healthcare accessibility, empower

users, and bridge gaps in early diagnosis and proactive health

monitoring.

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to all those who

supported and guided us throughout the course of this project.

We are immensely thankful to our project guide, Ms. K. V.

Indulekha MCA, NET, Asst. Professor, Department of

Computer Applications, for their valuable insights, timely

feedback, and constant encouragement, which played a crucial

role in the successful completion of this work. We also wish to

thank the Department of Computer Applications, Nehru

Institute of Information Technology and Management,

Coimbatore, Tamilnadu, India for providing the necessary

infrastructure and academic environment.

Finally, we are grateful to our friends and family for their moral

support and motivation throughout this journey.

REFERENCES

[1] D. S. Mukkamala and Y. Sun, “Disease Prediction Using

Machine Learning Algorithms: A Review,” International

Journal of Innovative Research in Computer and

Communication Engineering, vol. 8, no. 4, pp. 1234–1242,

2021.

[2] P. Kumar, A. R. Patil, and M. Gupta, “Early Disease

Detection Using Multiclass Machine Learning Algorithms,”

IEEE International Conference on Smart Technologies and

Management for Computing, Communication, Controls, Energy

and Materials (ICSTM), pp. 227–232, 2022.

[3] M. N. Raut, S. Chavan, and R. Rajderkar, “Predicting

Diseases from Symptoms Using Machine Learning,”

International Journal of Engineering Research & Technology

(IJERT), vol. 10, no. 8, pp. 400–405, 2021.

[4] A. Sharma and R. Jain, “Symptom-Based Disease Prediction

System Using Decision Tree and Random Forest,” International

Journal of Advanced Research in Computer Science, vol. 11, no.

3, pp. 100–106, 2020.

[5] P. Agrawal and V. Saini, “A Hybrid Model for Disease

Diagnosis Using Machine Learning,” 2020 2nd International

Conference on Innovative Mechanisms for Industry Applications

(ICIMIA), pp. 45–50.

http://www.ijsrem.com/

