
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Distributed Rendering Systems Leveraging Consumer-Grade GPUs

Manav Gadhiya

School Of Computer Science and Technology, ITM

SLS Baroda University, Vadodara, India

manav18gadhiya@gmail.com

Meet Pandya

School Of Computer Science and Technology, ITM

SLS Baroda University, Vadodara, India

pandyameeet@gmail.com

Abstract -This research paper explores the potential of

distributed rendering systems that leverage the computational

power of idle consumer-grade GPUs. The increasing demand

for rendering power in various fields necessitates cost-

effective solutions, and utilizing the parallel processing

capabilities of readily available GPUs offers a promising

alternative to expensive workstations and cloud render farms.

We examine the fundamental concepts and architectures of

distributed rendering, the computational strengths of

consumer-grade GPUs, and existing frameworks for

distributed resource utilization. The paper analyzes

techniques for parallelizing rendering workloads across

heterogeneous GPUs and evaluates the potential cost-

effectiveness of this approach. While highlighting the

significant benefits of reduced rendering times and cost

savings, we also address the challenges and limitations

associated with user-managed distributed systems, such as

network latency, data synchronization, and security. Finally,

we discuss existing research in this area and explore the

diverse applications of such systems in indie game

development, architectural visualization, education, and

small animation studios. This work contributes to the

understanding of how consumer-grade hardware can be

effectively harnessed to meet the growing demands of 3D

rendering.

Index Terms - Distributed rendering, Consumer-grade GPUs,

Cost-effectiveness, Parallel processing.

INTRODUCTION

The Growing Demand for Rendering Power and the

Potential of Distributed Systems with Consumer GPUs

The pursuit of increasingly realistic and immersive experiences

across various digital domains, including filmmaking, video

game development, architectural visualization, and scientific

simulations, has led to an exponential growth in the

computational demands of 3D

rendering [1]. Achieving photorealistic quality often

necessitates the use of advanced rendering techniques such as

ray tracing and path tracing, which simulate the complex

interactions of light with virtual environments [2]. While these

methods produce stunning visual fidelity, they are inherently

computationally intensive, requiring significant processing

power and often resulting in protracted rendering times on

single computing units. The integration of modern graphics

techniques, such as physically based rendering (PBR), further

exacerbates these demands by requiring more intricate

calculations of material properties and lighting interactions [2].

Traditional approaches to meeting these computational

demands have primarily relied on high-end professional

workstations equipped with powerful graphics processing units

(GPUs). However, the acquisition and maintenance of such

specialized hardware can be prohibitively expensive,

particularly for individual creators, small studios, or

educational institutions. Another prevalent solution is the

utilization of cloud-based render farms, which offer vast

computational resources on demand. While cloud rendering

provides scalability and flexibility, the operational costs,

especially for large-scale projects with extensive rendering

requirements, can become substantial [1].

In contrast to these dedicated and often costly solutions,

consumer-grade GPUs represent a significant pool of untapped

computational potential. These GPUs, designed for gaming and

general consumer applications, often possess considerable

processing power that remains partially idle during typical

desktop usage. The proposition of leveraging this readily

available, yet underutilized, compute capacity presents a

compelling and potentially cost-effective alternative for

accelerating 3D rendering tasks [1].

The concept of distributed rendering offers a promising avenue

for harnessing this potential. Distributed rendering involves

partitioning a single rendering task across multiple computing

devices connected over a network, allowing for parallel

processing and a significant

http://www.ijsrem.com/
mailto:manav18gadhiya@gmail.com
mailto:pandyameeet@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

reduction in the overall rendering time [4]. By establishing a

distributed rendering system that harnesses the collective

power of consumer-grade GPUs, it may be possible to create a

rendering infrastructure that is both powerful and significantly

more affordable than traditional alternatives. This paper aims

to explore the fundamental concepts and architectures of such

distributed rendering systems, investigate the computational

capabilities of consumer-grade GPUs relevant to rendering,

examine methods and frameworks for their distributed

utilization, analyze parallelization and load balancing

techniques, evaluate the cost-effectiveness of this approach,

identify potential challenges and limitations, review existing

research in this area, and explore potential applications for this

innovative technology.

FUNDAMENTAL CONCEPTS AND ARCHITECTURE OF DISTRIBUTED

RENDERING

Distributed rendering is a computational technique that

leverages the collective processing power of multiple

interconnected computers to accelerate the generation of 2D

images from 3D scenes [1]. The core motivation behind this

approach is to overcome the inherent computational

bottlenecks of single-machine rendering, particularly when

dealing with complex geometries, high-resolution textures,

and advanced lighting models. By distributing the workload

across several machines, the time required to produce a final

rendered image can be substantially reduced [1].

The distribution of rendering tasks can occur at different

levels of granularity. Frame-level (coarse-grained)

distributed rendering involves dividing an animation

sequence into individual frames, with each participating

computer rendering one or more complete frames

independently [4]. This approach is particularly well-suited for

animation projects where each frame can be processed in

isolation without dependencies on preceding or succeeding

frames [4]. Conversely, fine-grained distributed rendering

focuses on parallelizing the rendering of a single frame by

dividing it into smaller, manageable units, often referred to as

tiles or buckets [4]. Each computer in the distributed system

then renders a subset of these tiles, and the resulting partial

images are subsequently composited to form the final, high-

resolution image [4]. This method is effective for both static

images and individual frames of an animation, allowing for a

high degree of parallelism.

Several architectural patterns are commonly employed in

distributed rendering systems. The client-server architecture

features a central server, often referred to as the render client,

which is responsible for managing the overall rendering job

[4]. The render client divides the work into smaller tasks and

distributes these tasks to multiple render servers, which

perform the actual

rendering computations [4]. Once the render servers complete

their assigned tasks, they return the results to the client, which

then assembles the final image.9

In contrast, a peer-to-peer architecture distributes rendering

tasks directly among the participating computers without the

need for a dedicated central server. In this model, each peer can

both contribute to and receive rendering work, fostering a more

decentralized and collaborative environment [5]. Hybrid

architectures combine elements of both client-server and peer-

to-peer models. For instance, a system might employ a

designated master node to coordinate the distribution of work

among a cluster of peer rendering nodes. These concepts are

similar to grid computing and cluster systems, where multiple

resources act as a unified entity [4].

METHODS AND FRAMEWORKS FOR UTILIZING IDLE COMPUTING

RESOURCES IN A DISTRIBUTED MANNER

The concept of leveraging idle computing resources for

computationally intensive tasks like 3D rendering has been

explored through various methods and frameworks. These

initiatives range from large-scale volunteer computing projects

to emerging decentralized platforms and software solutions

designed for local network utilization. Some of the prominent

and well-known ways are listed below:

● Volunteer computing (BOINC, Folding@home):

Users donate spare computing power.

● Decentralized GPU platforms (Render Network,

Spheron): Marketplaces for GPU Compute Services.

● Peer-to-peer rendering software (V-Ray Swarm,

Cinema 4D’s Team Render): Local network utilization.

● Open-source render farm management

(CrowdRender, DrQueue).

These frameworks handle task distribution, synchronization of

rendering processes, and aggregation of the final rendered

output within a controlled network environment.

In summary, a diverse range of methods and frameworks exist

for utilizing idle computing resources in a distributed manner.

These include large-scale volunteer computing projects,

decentralized marketplaces for GPU power, peer-to-peer

software for local network rendering, and open-source tools for

managing user-built render farms. The most suitable approach

for a distributed rendering system leveraging consumer-grade

will likely depend on the intended scale of the system, the level

of user involvement in managing resources, and the specific

requirements of the rendering tasks to be performed.

TECHNIQUES FOR PARALLELIZING 3D RENDERING WORKLOADS

ACROSS HETEROGENEOUS GPUS

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

Effectively parallelizing 3D rendering workloads across a

network of heterogeneous GPUs requires careful consideration

of how the work is distributed and managed. Several workload

distribution strategies exist, each with its own advantages and

disadvantages depending on the nature of the rendering task

and the characteristics of the distributed system.

Frame distribution is a straightforward approach primarily

used for animation rendering. In this method, each available

GPU in the distributed system is assigned one or more entire

frames to render independently. This strategy is relatively easy

to implement and works well when the frames of an animation

can be processed in isolation. However, it does not provide any

benefit for rendering single, static images or for accelerating

the rendering of individual frames beyond the capabilities of a

single GPU [6].

For parallelizing the rendering of single frames or enhancing

the rendering speed of individual animation frames, pixel

distribution, also known as sort-first rendering, is a common

technique. In this approach, the final image is divided into a

grid of smaller regions or tiles, and each GPU in the system is

responsible for rendering a specific subset of these pixels [7].

Once all the tiles have been rendered, they are composited

together to form the complete image. While this method allows

for significant parallelization, it can suffer from load imbalance

if some tiles contain more complex scene elements than others,

leading to varying rendering times across the GPUs [6].

Another strategy is object distribution, also referred to as

sort-last rendering. Here, different objects or parts of the 3D

scene's geometry are assigned to each GPU for rendering. Each

GPU renders its assigned objects, and the resulting partial

images are then composited, often using alpha compositing, to

produce the final image. This approach can be effective for

data scaling, allowing the rendering of very large scenes by

distributing the geometry across multiple GPUs. However, it

introduces the overhead of the compositing stage, and load

balancing can be challenging depending on the complexity and

screen-space contribution of the assigned objects [6].

Finally, hybrid distribution strategies combine elements of

the aforementioned techniques to leverage the strengths of

each. For example, a system might use frame distribution for an

animation while also employing pixel or object distribution

within each frame to further enhance parallelism. While

offering greater flexibility in adapting to different rendering

scenarios, hybrid approaches often introduce increased

complexity in implementation and management [6].

Given that the proposed system aims to utilize consumer-grade

GPUs, which can vary significantly in their computational

capabilities (heterogeneity), effective load balancing is

paramount to ensure that all available resources are utilized

efficiently. Static load balancing

involves distributing tasks based on predetermined

performance estimates of each GPU. While simpler to

implement, this approach may not be optimal for rendering

workloads where the computational complexity can vary

dynamically across different parts of the scene.Dynamic load

balancing, on the other hand, adjusts the distribution of tasks

at runtime based on the actual rendering time of previous tasks

or the current workload of each GPU [9]. Several dynamic load

balancing techniques could be employed, such as dynamically

splitting the frame into smaller regions based on the observed

rendering power of each GPU [8], using a load distribution map

derived from the rendering times of the previous frame to guide

task assignment [9] , or implementing a work-stealing

mechanism where GPUs that finish their assigned tasks quickly

can take on additional work from slower or busier GPUs.

A critical aspect of any distributed rendering system is

managing data synchronization and communication between

the participating GPUs. Ensuring that all GPUs have access to

the necessary scene data, including geometry, textures, and

materials, is essential for producing a coherent final image [1].

Data synchronization can become a significant bottleneck,

especially when dealing with large and complex scenes or when

the network connecting the GPUs has limited bandwidth [4].

Techniques such as spatially coherent data distribution, aim to

mitigate this issue by partitioning the scene geometry in a way

that each rendering node primarily works on a localized portion

of the data, thereby minimizing the need for extensive

communication across the network [4]. Efficient caching

mechanisms and data compression techniques can also play a

crucial role in reducing communication overhead and

improving overall system performance.

COST-EFFECTIVENESS ANALYSIS OF DISTRIBUTED RENDERING WITH

CONSUMER GRADE GPUS

Evaluating the cost-effectiveness of a distributed rendering

system using consumer-grade GPUs requires a comprehensive

analysis of various factors, including hardware acquisition,

network connectivity, Power consumption, maintenance costs,

and rendering time comparisons with traditional solutions such

as high-end workstations and cloud render farms.

Consumer-grade GPUs offer a significant advantage in terms of

hardware acquisition costs compared to professional-grade

rendering workstations or dedicated render farm hardware.

While prices vary depending on the specific model and its

performance tier, even high-end consumer GPUs are generally

more accessible than their professional counterparts.

Furthermore, the proposed system aims to leverage the often-

idle computing power of existing consumer PCs equipped with

GPUs, potentially eliminating the need for substantial

upfront

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

investment in new hardware specifically for rendering. The

maintenance costs associated with consumer PCs are also

typically lower than those for specialized rendering equipment,

contributing to the overall cost-effectiveness of this approach.

Power consumption is another important aspect to consider.

Different models for example within the NVIDIA RTX series

have varying thermal design power (TDP) ratings, indicating

their maximum power draw. While high-performance RTX

GPUs can consume a considerable amount of power, the

overall energy efficiency, measured as performance per watt,

can be quite favorable compared to older or less specialized

hardware. When evaluating the cost of running a distributed

rendering system, the electricity consumption of multiple

GPUs needs to be factored in, especially for prolonged

rendering sessions [10]. However, the potential for significantly

reduced rendering times can offset these costs by allowing

projects to be completed more quickly, thereby minimizing the

total energy expenditure.

The primary benefit of a distributed rendering system is the

potential for substantial reductions in rendering time compared

to a single workstation [4]. By harnessing the parallel

processing power of multiple consumer-grade GPUs, complex

scenes and animations that might take hours or even days to

render on a single machine could be completed in a fraction of

the time. This acceleration in rendering speed can lead to

significant time and cost savings in production workflows,

allowing creators to iterate faster and meet tight deadlines more

effectively. When comparing the cost-effectiveness of a

distributed system with consumer-grade GPUs to cloud render

farms, several factors come into play [3]. Cloud render farms

offer immense scalability and eliminate the need for local

hardware investment, but they operate on a pay-per-use model,

which can become expensive for large or frequently rendered

projects [3]. A locally managed distributed system, while

requiring some initial setup and ongoing electricity costs, could

potentially offer a more cost-effective solution for users with

consistent rendering needs, especially if they can utilize

existing hardware.

TABLE 1. This table compares the key characteristics of

different rendering solutions, including traditional

workstations, distributed rendering using consumer-grade

GPUs, and cloud render farms, across various factors such as

cost, speed, and scalability.

Feature

Traditio

nal

Workst

ation

(High-E

nd

GPU)

Distribu

ted

Consum

er RTX

GPUs

(e.g., 4x

RTX

3070)

Cloud Render

Farm (e.g., 100

nodes)

Hardwar

e Cost

High

Moderat

e (if

using

existing

PCs) to

High (if

purchasi

ng)

None

(pay-as-you-go)

Mainten

ance

Cost

Moderat

e

Low (if

using

existing

PCs) to

Moderat

e (if

purchasi

ng)

Included in

service cost

Power

Consum

ption

Moderat

e to

High

Moderat

e to

High

(dependi

ng on

number

of

GPUs)

Variable

(depends on

usage)

Renderi

ng

Speed

Baseline

Signific

antly

Faster

Very Fast

(highly

scalable)

Scalabili

ty

Limited

Moderat

e

(limited

High

(on-demand)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

POTENTIAL CHALLENGES AND LIMITATIONS OF IMPLEMENTING A

USER-MANAGED SYSTEM

Implementing a distributed rendering system that relies on user-

managed consumer-grade GPUs presents several potential

challenges and limitations that need careful consideration.

One of the primary concerns is network latency and

bandwidth constraints [4]. Network latency, the delay in data

transfer across the network, can significantly impact the overall

performance of a distributed system, particularly if the

participating machines are geographically dispersed or

connected through high-latency internet connections.

Furthermore, the limited bandwidth available on typical

consumer internet connections can create a bottleneck when

transferring large scene files, textures, and the resulting

rendered data between the rendering nodes [11].

Data synchronization issues and consistency are another

significant hurdle [2]. Ensuring that all participating machines

have access to the exact same version of the 3D scene and its

assets, and that any updates or changes are synchronized across

all nodes in a timely manner, can be challenging. Discrepancies

in data can lead to inconsistencies in the final rendered output,

undermining the quality and reliability of the system [7]

The reliability and fault tolerance of a user-managed system

are also important considerations [1]. Consumer-grade PCs,

being under the control of individual users, may not offer the

same level of stability

offline unexpectedly due to user activity, software issues,

hardware failures, or network connectivity problems. A robust

distributed rendering system needs to be designed to gracefully

handle the failure of individual nodes and automatically

redistribute the rendering tasks to other available resources [2].

Security considerations are paramount when involving user-

managed computers in a distributed rendering process.4

Utilizing resources that are not under a centralized

administrative control introduces potential security risks,

especially when dealing with sensitive project data or

intellectual property [12]. Ensuring the confidentiality,

integrity, and availability of the data in a distributed

environment with varying levels of user security practices

requires careful planning and implementation of appropriate

security measures.114

Managing heterogeneity and ensuring compatibility across a

fleet of user-managed consumer GPUs can also be a complex

task [1]. Even within NVIDIA's RTX series, there can be

significant differences in architecture, performance

characteristics, and supported features between different

models and generations. Ensuring compatibility between the

rendering software and the diverse range of GPUs, as well as

managing software versions, drivers, and plugin installations

across multiple independent machines, can add a layer of

complexity to the system management [1].

Finally, resource management and scheduling in a user-

managed distributed rendering system present a unique set of

challenges [12]. The availability of rendering nodes can

fluctuate as users connect and disconnect their machines, and

the processing power contributed by each machine can vary.

Developing effective mechanisms for discovering available

resources, scheduling rendering tasks efficiently across this

dynamic pool of compute, and managing the distribution and

collection of data requires sophisticated resource management

and scheduling algorithms [6].

CONCLUSION AND FUTURE DIRECTIONS

This paper has explored the potential of creating a distributed

rendering system that leverages the often-idle computing

power of consumer-grade GPUs. The analysis has highlighted

the growing computational demands of 3D rendering and the

limitations of traditional rendering solutions, setting the stage

for the investigation of a more cost-effective alternative. The

fundamental concepts and architectures of distributed

rendering, including frame-level and fine-grained distribution,

as well as client-server, peer-to-peer, and hybrid models,

provide a solid foundation for system design. Existing methods

and frameworks, ranging from volunteer computing to

decentralized platforms and local network rendering software,

offer valuable insights into how idle GPU resources can be

harnessed in a distributed manner.

by

network

and

availabl

e GPUs)

Operatio

nal Cost

Electrici

ty

Electrici

ty

Cost per

compute hour

Setup

Comple

xity

Low

Moderat

e to

High

(setting

up

distribut

ed

system)

Low (managed

by provider)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

The exploration of parallelization techniques across

heterogeneous GPUs underscores the importance of dynamic

load balancing to ensure efficient utilization of diverse

hardware. While workload distribution strategies like pixel

distribution appear promising, the challenges of data

synchronization and communication overhead remain

significant. The cost-effectiveness analysis suggests that a

distributed system with consumer-grade GPUs can offer

advantages in terms of hardware acquisition costs and

potentially rendering times compared to single workstations.

However, a thorough comparison with cloud render farms

requires careful consideration of operational costs and

scalability. The potential challenges and limitations, including

network latency, data synchronization, reliability, security, and

the management of heterogeneity, highlight the complexities

involved in implementing a robust user-managed system.

Existing research and projects demonstrate the ongoing interest

and progress in this field, providing a foundation for future

advancements. Finally, the diverse range of potential

applications, from indie game development to architectural

visualization and educational purposes, underscores the

significant impact such a system could have.

Overall, the technical and economic feasibility of

implementing a distributed rendering system with consumer-

grade GPUs appears promising, particularly for users and

organizations with consistent rendering needs and a desire for a

more cost-effective solution than traditional workstations or

cloud services. However, addressing the inherent challenges

related to network performance, data consistency, reliability,

security, and the management of heterogeneous resources will

be crucial for the practical viability and widespread adoption of

such a system.

Future research directions in this area could focus on several

key aspects. Developing more robust and efficient dynamic

load balancing algorithms specifically tailored for the diverse

performance characteristics of heterogeneous consumer GPUs

would be beneficial in maximizing resource utilization.

Investigating advanced data compression and streaming

techniques to minimize the impact of network latency and

bandwidth limitations on data transfer between rendering nodes

is also critical. Exploring novel approaches to enhance the

reliability and fault tolerance of user-managed distributed

rendering systems, perhaps through intelligent task redundancy

and checkpointing mechanisms, would improve the overall

robustness of the solution. Furthermore, the development of

user-friendly frameworks, tools, and intuitive interfaces could

significantly simplify the setup, management, and monitoring

of distributed rendering systems for non-expert users.

Finally, research into security solutions specifically designed

for distributed rendering environments that involve consumer-

grade hardware is essential to address the concerns

surrounding data

protection and unauthorized access in such decentralized

settings. Continued innovation in these areas will pave the way

for more accessible and cost-effective high-

performance rendering solutions for a wider range of users and

applications.

REFERENCES

[1] Distributed Rendering - A Comprehensive Guide for 3D

Artists - A23D, [ONLINE] AVAILABLE AT,

https://www.a23d.co/blog/distributed-rendering-a-comprehensiv e-

guide-for-3d-artists

[2] Empowering Graphics: A Distributed Rendering

Architecture for Inclusive Access to Modern GPU Capabilities,

[ONLINE] AVAILABLE AT,

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=119

3&context=etd2023

[3] Navigating the Cost-Benefit Analysis of Render Farm

Services, [ONLINE] AVAILABLE AT,

https://garagefarm.net/blog/navigating-the-cost-benefit-analysis- of-

render-farm-services

[4] Grid Architecture for Distributed Rendering, [ONLINE]

AVAILABLE AT,

https://diglib.eg.org/bitstreams/555920cd-ee57-4cbe-86d7-b3ef1

2e4bc47/download

[5] p2p-rendering-computation, [ONLINE] AVAILABLE AT,

https://p2prc.akilan.io/

[6] Parallel rendering - Wikipedia, [ONLINE] AVAILABLE AT,

https://en.wikipedia.org/wiki/Parallel_rendering

[7] Distributed Rendering: A Guide (Jul 07, 2016) - AWS

Thinkbox Help Centre, [ONLINE] AVAILABLE AT,

https://awsthinkbox.zendesk.com/hc/articles/4990493150103

[8] Multi-GPU Parallel Pipeline Rendering with Splitting

Frame - ResearchGate, [ONLINE] AVAILABLE AT,

https://www.researchgate.net/profile/Junchao-Ma-3/publication/

373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Spli

tting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parall el-

Pipeline-Rendering-with-Splitting-Frame.pdf

[9] Dynamic load balancing strategy for sort-first parallel

rendering - Przegląd Elektrotechniczny, [ONLINE] AVAILABLE AT,

http://pe.org.pl/articles/2013/1b/14.pdf

[10] Performance Rendering Tools | NVIDIA Developer,

[ONLINE] AVAILABLE AT,

https://developer.nvidia.com/performance-rendering-tools

[11] Performance Challenges in Distributed Rendering

Systems,[ONLINE] AVAILABLE AT,

https://capuana.ifi.uzh.ch/publications/PDFs/6956_Makhinya.pd f

[12] Render Farm Services Guide: What to Know Before

Rendering - Render Pool-Cloud-based GPU rendering, ,[ONLINE]

AVAILABLE AT, https://renderpool.net/blog/render-farm-services/

http://www.ijsrem.com/
https://www.a23d.co/blog/distributed-rendering-a-comprehensive-guide-for-3d-artists
https://www.a23d.co/blog/distributed-rendering-a-comprehensive-guide-for-3d-artists
https://www.a23d.co/blog/distributed-rendering-a-comprehensive-guide-for-3d-artists
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1193&context=etd2023
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1193&context=etd2023
https://garagefarm.net/blog/navigating-the-cost-benefit-analysis-of-render-farm-services
https://garagefarm.net/blog/navigating-the-cost-benefit-analysis-of-render-farm-services
https://garagefarm.net/blog/navigating-the-cost-benefit-analysis-of-render-farm-services
https://diglib.eg.org/bitstreams/555920cd-ee57-4cbe-86d7-b3ef12e4bc47/download
https://diglib.eg.org/bitstreams/555920cd-ee57-4cbe-86d7-b3ef12e4bc47/download
https://p2prc.akilan.io/
https://en.wikipedia.org/wiki/Parallel_rendering
https://awsthinkbox.zendesk.com/hc/articles/4990493150103
https://www.researchgate.net/profile/Junchao-Ma-3/publication/373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Splitting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parallel-Pipeline-Rendering-with-Splitting-Frame.pdf
https://www.researchgate.net/profile/Junchao-Ma-3/publication/373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Splitting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parallel-Pipeline-Rendering-with-Splitting-Frame.pdf
https://www.researchgate.net/profile/Junchao-Ma-3/publication/373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Splitting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parallel-Pipeline-Rendering-with-Splitting-Frame.pdf
https://www.researchgate.net/profile/Junchao-Ma-3/publication/373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Splitting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parallel-Pipeline-Rendering-with-Splitting-Frame.pdf
https://www.researchgate.net/profile/Junchao-Ma-3/publication/373143662_Multi-GPU_Parallel_Pipeline_Rendering_with_Splitting_Frame/links/64e6c29f40289f7a0faf0058/Multi-GPU-Parallel-Pipeline-Rendering-with-Splitting-Frame.pdf
http://pe.org.pl/articles/2013/1b/14.pdf
https://developer.nvidia.com/performance-rendering-tools
https://capuana.ifi.uzh.ch/publications/PDFs/6956_Makhinya.pdf
https://capuana.ifi.uzh.ch/publications/PDFs/6956_Makhinya.pdf
https://renderpool.net/blog/render-farm-services/

